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FORMULATION OF THE PROBLEM

We consider an elliptic variational inequality, that 
arises in an obstacle problem for a nonlinear p-Laplace 
operator (𝑝 > 1). This free boundary problem reduces 
to minimizing the energy functional

𝐽 𝑣 = '
!

1
𝑝
∇𝑣 " − 𝑓𝑣 𝑑𝑥

on a closed convex set
𝕂 = 𝑣 ∈ 𝑊#

$," Ω : 𝑣 ≥ 𝜙 in Ω .
Here Ω is a bounded domain in the space ℝ& with 
Lipschitz continuous boundary 𝜕Ω, the function 𝑓 is 
given, 𝑓 ∈ 𝐿' Ω ($"+

$
' = 1), and the function 𝜙 is a 

sufficiently smooth obstacle function from the 
𝐶()* +, " space.

𝜙: #Ω → ℝ!
𝜙 ≤ 0 𝑜𝑛 𝜕Ω
𝜙 ∈ 𝐶"(Ω)

ℝ!

Ω

Fig.:A model problem with an obstacle, 𝑝 = 2

A LITTLE BIT ABOUT P-LAPLACIAN (AND QR)

It is worth paying attention to the definition
of the p-Laplace operator:

Δ"𝑣 ≔ div ∇𝑣 ",+∇𝑣 ,

∇𝑣 ",+ = 𝑣-!
+
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+
+⋯+ 𝑣-#

+
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+ ,
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!

∇𝑣 ",+∇𝑣∇𝜓𝑑𝑥 = 0 for any 𝜓 ∈ 𝐶#. Ω .

GENERAL DUAL THEORY FOR CONVEX 
VARIATIONAL PROBLEMS

𝐽 𝑣 ≔ 𝐺 Λ𝑣 + 𝐹 𝑣 ,
Λ: 𝑉 → 𝑌, 𝐺: 𝑌 → ℝ, 𝐹: 𝑉 → ℝ.

Theorem 1 (“Abstract error identity”, see [1]): Let 
𝑢, 𝑝∗ be the exact solutions of the primal and dual 
problems, respectively. Then for any functions 𝑣 ∈ 𝑉
and 𝑦∗ ∈ 𝑌∗ identity is true:

𝒟0 Λ𝑣, 𝑝∗ +𝒟0 Λ𝑢, 𝑦∗ +𝒟1 𝑣,−Λ∗𝑝∗
+𝒟1 𝑢,−Λ∗𝑦∗ = 𝒟0 Λ𝑣, 𝑦∗ +𝒟1 𝑣,−Λ∗𝑦∗ ,

where
𝒟0 Λ𝑢, 𝑦∗ ≔ 𝐺 Λ𝑢 + 𝐺∗ 𝑦∗ − 𝑦∗, Λ𝑢 ,

𝒟1 𝑣,−Λ∗𝑝∗ ≔ 𝐹 𝑣 + 𝐹∗ −Λ∗𝑝∗ + Λ∗𝑝∗, 𝑣 .

Remark 1: This theorem is true for abstract 𝐺, 𝐹 and 
Λ with general properties, as well as for abstract 
reflexive Banach spaces 𝑉, 𝑌, 𝑉∗ and 𝑌∗.

SPACES AND FUNCTIONALS OF OUR PROBLEM

Taking into account Remark 1, we need to define 
all the spaces, operators and the composite functionals, 
corresponding to our problem with p-laplacian.

+) To define the functional 𝐹∗(−Λ∗𝑦∗) we need to 
introduce an intermediate space

𝐻' = 𝐻' Ω, div ≔ 𝑦 ∈ 𝑌∗: div 𝑦∗ ∈ 𝐿' .
In the dual space, this functional is represented 
as a supremum, that takes finite values if and only if 
the condition 𝑓 + div 𝑦∗ ≤ 0 is satisfied. So, for any
𝑦∗ ∈ 𝑄',2# = {𝑦∗ ∈ 𝐻': 𝑓 + div 𝑦∗ ≤ 0 a. e. in Ω}

𝐹∗ −Λ∗𝑦∗ = '
!

𝑓 + div 𝑦∗ 𝜙𝑑𝑥.

Spaces and operators Functionals

𝑉 = 𝑊#
$,&(Ω),

𝑌 = 𝐿& Ω,ℝ! ,
Λ ≔ ∇.

𝐺 𝑦 =
1
𝑝
𝑦 '!

& ,

𝐹 𝑣 = − 6
(

𝑓𝑣 𝑑𝑥 + 𝜒𝕂 𝑣 ,

where 𝜒𝕂 𝑣 = < 0, 𝑣 ∈ 𝕂,
+∞, 𝑣 ∉ 𝕂.

𝑉∗ = 𝑊#
+$, , ,

𝑌∗ = 𝐿, Ω,ℝ! ,
Λ∗: 𝑌∗ → 𝑉∗, Λ∗ ≔ div.

𝐺∗ 𝑦∗ =
1
𝑞
𝑦∗ '"

, ,

𝐹∗ −Λ∗𝑦∗ =

= 6
(

𝑓 + div 𝑦∗ 𝜙 𝑑𝑥."

Composite functionals

𝒟0 Λ𝑣, 𝑦∗ = '
!

1
𝑝 ∇𝑣 " +

1
𝑞 𝑦∗ ' − ∇𝑣 ⋅ 𝑦∗ 𝑑𝑥 ,

at the same time, 𝒟0 Λ𝑢, 𝑦∗ and 𝒟0 Λ𝑣, 𝑝∗ are 
found by substituting 𝑢 and 𝑝∗ instead of 𝑣 and 𝑦∗, 
respectively.

𝒟1 𝑣,−Λ∗𝑦∗ = '
!

(𝑓 + div 𝑦∗)(𝜙 − 𝑣) 𝑑𝑥 ,

and 𝒟1 𝑢,−Λ∗𝑦∗ is obtained by replacing 𝑣 with 𝑢.
From the duality relation 𝐽 𝑢 = 𝐼∗[𝑝∗] we get:

𝐽 𝑣 − 𝐽 𝑢 = 𝒟0 Λ𝑣, 𝑝∗ +𝒟1 𝑣,−Λ∗𝑝∗ .
From here at 𝑣 = 𝑢 it follows that

𝒟1 𝑣,−Λ∗𝑝∗ = '
!

𝑓 + div 𝑝∗ 𝑢 − 𝑣 𝑑𝑥.

The left side of the abstract identity (ℐ)
Using the connection conditions of the primal and 

dual problems 𝑝∗ = ∇𝑢 ∇𝑢 ",+ and ∇𝑢 " = 𝑝∗ ', we 
obtain the expressions on the left side of the identity 
of Theorem 1:

𝜇 𝑣 ≔ '
!

1
𝑝
∇𝑣 " +

1
𝑞
∇𝑢 " − ∇𝑣∇𝑢 ∇𝑢 ",+ 𝑑𝑥 +

+ '
{456}

(𝑓 + Δ"𝑢)(𝑢 − 𝑣) 𝑑𝑥 ,

𝜇∗ 𝑦∗ ≔ '
!

1
𝑝 𝑝∗ ' +

1
𝑞 𝑦∗ ' − 𝛾 𝑥 𝑝∗𝑦∗ 𝑑𝑥

+ '
{896}

(𝑓 + div 𝑦∗)(𝜙 − 𝑢) 𝑑𝑥 ,

where 𝛾 𝑥 = b
0, if 𝑥 ∈ Ω ∩ ∇𝑢 = 0 ,

𝑝∗
"$%
%$!, otherwise.

ERROR IDENTITY FOR P-LAPLACIAN

Theorem 2: For any functions 𝑣 ∈ 𝕂 and 𝑦∗ ∈ 𝑄',2#, 
which are approximate solutions of the primal and dual 
problems, respectively, the following identity holds:

𝜇 𝑣 + 𝜇∗ 𝑦∗ =

= '
!

1
𝑝
∇𝑣 " +

1
𝑞
𝑦∗ ' − ∇𝑣 ⋅ 𝑦∗ 𝑑𝑥 +

+'
!

𝑓 + div 𝑦∗ 𝜙 − 𝑣 𝑑𝑥 ,

where the left side of the equality is defined by the 
formulas above.

Remark 2: The expressions 𝜇 𝑣 and 𝜇∗ 𝑦∗ are non-
negative quantities, that vanish when the exact and 
approximate solutions are equal in the primal and dual 
problems, respectively. It is also worth noting that
the expression on the right side of the identity of this 
theorem is fully computable.

Remark 3: At this stage of obtaining an estimate, 
some “problem” arises, condition 𝑓 + div 𝑦∗ ≤ 0 is 
rather narrow and inconvenient for practical use. Let 
us show for the superquadratic case (𝑝 ≥ 2) how 
to extend the admissible set for 𝑦∗.

ERROR ESTIMATE IN THE FORM OF 
INEQUALITY. SUPERQUADRATIC CASE (𝑝 ≥ 2)

Lemma 1: For any function 𝑧∗ ∈ 𝐻' the projection 
inequality holds:

inf
:∗∈<',)*

𝑧∗ − 𝑦∗ ='
' ≤ 𝐶1

' 𝑓 + div 𝑧∗ > ='
' ,

where 𝐶1 is a constant from a Friedrichs - type 
inequality:

𝑤 =% ≤ 𝐶1 ∇𝑤 =% ,
and 𝑓 + div 𝑧∗ > = max{𝑓 + div 𝑧∗ , 0} .

Using the first Clarkson inequality for any
functions ∇𝑢, ∇𝑣 ∈ 𝐿"(Ω), and, also representing
the expression 𝜇∗(𝑦∗) in terms of the functions 
𝑧∗ ∈ 𝐻', we obtain a lower estimate for the left-hand 
side of the identity of the Theorem 2. Applying 
the general Young inequality and the Minkowski
inequality for integrals to the right side of the identity 
in Theorem 2 leads us to an upper estimate for the left 
side of the identity. And further, using the projection 
inequality and the Cauchy inequality with sufficiently 
small 𝜖, we obtain

Theorem 3: For any functions 𝑣 ∈ 𝕂, 𝑧∗∈ 𝐻' and
parameter 𝑝 ≥ 2 the total measure of the deviation 
of these functions from the exact solutions of the 
primal and dual problems satisfies the inequality:

(1 − 2",$𝜖)
2",$𝑝

∇ 𝑢 − 𝑣 =%
" +

+ '
{496}

𝑓 + div 𝑧∗ 𝜙 − 𝑢 𝑑𝑥 ≤

≤ 𝔐 𝑣, 𝑧∗, 𝑓, 𝜙, 𝜖 ,
where

𝔐 𝑣, 𝑧∗, 𝑓, 𝜙, 𝜖 ≔
2
𝑝
∇𝑣 =%

" +
2'

𝑞
𝑧∗ ='

' +

+'
!

(𝑓 + div 𝑧∗)(𝜙 − 𝑣) 𝑑𝑥 +

+
𝐶1
'(1 + 2'𝜖

"
')

𝑞𝜖
"
'

𝑓 + div 𝑧∗ > ='
' .

(ℐ)


