Construction of Approximate Solutions to an Elliptic Variational Problem with a Thin Obstacle

A.N. Potyomkina¹

¹) Peoples' Friendship University of Russia (RUDN University), Moscow; e-mail: alina.bodnya@yandex.ru Presented results were obtained under supervision of Darya Apushkinskaya

(1)

Formulation of the problem We consider elliptic variational inequalities generated by obstacle type problems with thin

obstacles. This problem with a free boundary is reduced to minimizing the functional

on a closed convex set

$$\mathbb{K} = \{ v \in H^1(\Omega) : v \ge \psi \text{ on } \mathcal{M} \cap \Omega, v = \varphi \text{ on } \partial\Omega \}.$$
Here Ω is an open, connected, and bounded domain in \mathbb{R}^2
with Lipschitz continuous boundary $\partial\Omega$, \mathcal{M} is smooth one –
dimensional manifold in \mathbb{R}^2 , which divides Ω into two Lipschitz
subdomains Ω_- and Ω_+ . The given functions $\psi : \mathcal{M} \to \mathbb{R}$ is a

 $\int |\nabla y|^2 dx$

sufficiently smooth and $\varphi \in H^{1/2}(\partial \Omega)$. For this class of problems, we construct an approximate solution.

Coordinate relaxation	
If $i \neq j$:	
$oldsymbol{v}_{ij} \longrightarrow \widetilde{J}(oldsymbol{v}_{ij})$	
$oldsymbol{v}_{ij}+h\longrightarrow \widetilde{J}(oldsymbol{v}_{ij}+h)$	
$oldsymbol{v}_{ij}-h \longrightarrow \widetilde{J}(oldsymbol{v}_{ij}-h)$	
$m{v}_{ij} = argmin(ilde{J}(m{v}_{ij}), ilde{J}(m{v}_{ij}+h), ilde{J}(m{v}_{ij}-h))$	
If $i = j$:	
$\mathbf{v}_{ii} \longrightarrow \widetilde{J}(\mathbf{v}_{ii})$	
$oldsymbol{v}_{ii}+h\longrightarrow \widetilde{J}(oldsymbol{v}_{ii}+h)$	
$m{v}_{ii}-h \longrightarrow \widetilde{J}(m{v}_{ij}-h)$ and $m{v}_{ii}-h \ge -m{w}_{0ii}$	
$\mathbf{v}_{ii} = argmin(ilde{J}(\mathbf{v}_{ii}), ilde{J}(\mathbf{v}_{ii}+h), ilde{J}(\mathbf{v}_{ii}-h))$	

Numerical results

Construction of an approximate solution to the problem (1)

Let w_0 be a continuation of φ from $\partial \Omega$ to Ω and let $v = v_0 + w_0$. Obviously $v_0|_{\partial\Omega} = 0, w_0|_{\partial\Omega} = \varphi$. As a result, the original problem turns into a variational problem

$$\tilde{\mathcal{I}}(v_0) = \frac{1}{2} \int_{\Omega} |\nabla v_0|^2 dx + \int_{\Omega} \nabla v_0 \nabla w_0 dx + \frac{1}{2} \int_{\Omega} |\nabla w_0|^2 dx \to \min$$

W₀

 $\varphi \in H^{1/2}(\partial \Omega)$ — such a function allows continuations with $\partial \Omega$ inside Ω .

As a reference, we will take the exact solution and compare it with it. Therefore, when

$$u(x,y) = \operatorname{Re}\left(\left[\frac{x+y}{\sqrt{2}} - a + i\left|\frac{y-x}{\sqrt{2}}\right|\right]^{\frac{3}{2}}\right)$$

$$\tilde{J}(v_0) = \frac{1}{2} \int |\nabla v_0|^2 dx + \int \nabla v_0 \nabla w_0 dx$$

As an indicator of the accuracy of the approximate solution, we take the L^2 -norm of the gradient of the difference between the exact and approximate solutions.

Number of iterations	$\ abla(u-v)\ _{2,\Omega}$
10	3.684996763005937
20	2.7119223135718897
30	2.0812470516475314
50	1.465314923616265
60	1.19669961812561
80	0.8244171157921146
90	0.7388018907419068
100	0.6719099635315782
200	0.40473180451218443

Construction

Comparison

References

[1] D.E. Apushkinskaya, S.I. Repin, Thin obstacle problem: Estimates of the distance to the exact solution. Interfaces and Free Boundaries 20 (2018), 511-531.

[2] R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer, New York, 1984.

[3] Amosov A.A., Yu Dubinsky.A., Kopchenova N.V., or Computational methods for engineers 15 (1994), 487-490.

[4] In Berdyshev.I., Petrak L.B. or Approximation of functions, compression of numerical information, applications. Yekaterinburg: Ural Branch of the Russian Academy of Sciences, 1999.

[5] Kikuchi, N. & Oden, J. T., Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, vol. 8 of SIAM Studies in Applied Mathematics. Philadelphia, PA, 1988.