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1. Introduction
We are interested in solutions of the initial-value problem (1)–(2) arising in chemical flooding models for enhanced oil recovery (EOR). To distinguish
physically meaningful weak solutions we use vanishing viscosity admissibility criterion. We demonstrate that when the flow function depends non-
monotonically on the chemical agent concentration (which corresponds to the surfactant flooding), non-classical undercompressive shocks appear. They
correspond to the saddle-saddle connections for the traveling wave dynamical system and are sensitive to precise form of the dissipation terms. The talk is
based on preprint [1]. See a related work [2]. The analysis of a monotone case was done in [3], where it was proven that only Lax shocks have dissipative
profiles.

2. Problem statement
Consider two-phase oil-water flow with dissolved
chemical in water in porous media:

st + f(s, c)x = 0,

[c s + a(c)]t + [c f(s, c)]x = 0,
(1)

• s ∈ [0, 1] — water saturation
• c ∈ [0, 1] — chemical concentration
• f(s, c) — fractional flow function
• a(c) — adsorption function (a(0) = 0, in-

creasing, concave)
Find exact solution s(x, t) and c(x, t) to a Rie-
mann problem:

(s, c)
∣∣∣∣
t=0

=
{

(1, 1), x < 0,

(0, 0), x ≥ 0.
(2)

3. Properties of function f

(F1) f ∈ C2([0, 1]2); f(0, c) = 0; f(1, c) = 1;
(F2) fs(s, c) > 0 for 0 < s < 1, 0 ≤ c ≤ 1;

fs(0, c) = fs(1, c) = 0;
(F3) f is S-shaped in s: for each c ∈ [0, 1] func-

tion f(·, c) has a unique point of inflection
sI = sI(c) ∈ (0, 1), such that
fss(s, c) > 0 for 0 < s < sI and
fss(s, c) < 0 for sI < s < 1.

(F4) f is non-monotone in c:
∀s ∈ (0, 1) ∃c∗(s) ∈ (0, 1):
fc(s, c) < 0 for 0 < s < 1, 0 < c < c∗(s);
fc(s, c) > 0 for 0 < s < 1, c∗(s) < c < 1.

4. Vanishing viscosity formulation and travelling wave dynamical system
For model (1) we call a shock between states (s−, c−) and (s+, c+) (for c+ ̸= c−) admissible if it
could be obtained as a limit of smooth travelling wave solutions of (3) as εc,d → 0

st + f(s, c)x = εc(A(s, c)sx)x,

(cs + αa(c))t + (cf(s, c))x = εc(cA(s, c)sx)x + εd(cx)x.
(3)

Here A(s, c) bdd from zero and infinity function. Denote κ := εd/εc. We are looking for a travelling
wave solution of the form s(x, t) = s(ε−1

c (x − vt)), c(x, t) = c(ε−1
c (x − vt)), connecting (s−, c−) and

(s+, c+), i.e. s(±∞) = s±, c(±∞) = c±. We get the following dynamical system:{
A(s, c)sξ = f(s, c) − v(s + d1),
κcξ = v(d1c − d2 − a(c)),

(4)

Here d1, d2 are constants fully determined by c±, a(c±). We focus on the existence of a saddle-to-
saddle orbit for (4) depending on the parameters v, κ. This restriction comes from the compatibility
of speeds condition in a sequence of waves for the solution to a Riemann problem (2).

5. Main theorem formulation
There exist 0 < vmin < vmax < ∞, such that for all κ = εd/εc ∈ (0, +∞), there exists a unique

• points s−(κ) ∈ [0, 1] and s+(κ) ∈ [0, 1];

• velocity v(κ) ∈ [vmin, vmax],

such that there exists a travelling wave solution of (3), moving with velocity v(κ) and connecting two
saddle points u−(κ) = (s−(κ), c−) and u+(κ) = (s+(κ), c+) of the corresponding dynamical system
(4). Moreover, v(κ) is monotone and continuous; v(κ) → vmin as κ → ∞; v(κ) → vmax as κ → 0.

6. Example of solution to a “boomerang” model
Consider the simplest model with non-monotone flow function (we call it the “boomerang” model):
the fractional flow function f decreases in c from c = 0 up to some value cM ∈ (0, 1), and then
increases from cM to c = 1 back to the same function, i.e. f(s, 1) = f(s, 0).

f(s, c) = s2

s2 + µ(c)(1 − s)2 , µ(c) = 1 + 4c(1 − c), cM = 0.5.

Depending on κ = εd/εc the solution to a Riemann problem is different (see fig. below). Note that
the shock wave that satisfies the classical Lax criterion gives the solution s that doesn’t reflect any
change of flow function (corresponds to the case κ = 0) and contradicts the physical intuition. This
motivates us to use physically appropriate vanishing viscosity criterion.

κ = 2 κ = 0.1 κ = 0.05 κ = 0

7. Sketch of proof
The Theorem can be divided into simpler statements:

• ∀v ∈ [vmin, vmax] ∃!κ(v): there is a saddle-to-saddle
travelling wave with κ(v).

• κ(v) is continuous.
• ∄v1 ̸= v2 : κ(v1) = κ(v2), thus κ(v) is monotone.
• κ(v) → κcrit ⩾ 0 as v → vmax.
• when κ < κcrit and v = vmax there is a saddle to saddle-

node travelling wave

We analyze and classify all possible
nullcline configurations:
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