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Solutions of the 1D hyperbolic quasilinear gas dynamics system have the same typical germs of catas-

trophes as the general solution of 1D linear wave equation. We have obtained the canonical form of

the section of the hyperbolic umbilical catastrophe D4+:

F =
y3

1 + y3
2

3
+ k3(k1, k2)y1y2 + k2y1 + k1y2.

We state that a similar ”inheritance” should take place for typical singularities of solutions to systems

of equations of an isentropic gas flow in spatially non-1D cases as well.

The classification of catastrophes of solutions to the more general quasilinear system

wt + λ(w, z, x, t)wx = g(w, z, x, t), zt + µ(w, z, x, t)zx = h(w, z, x, t), λwλzµwµz 6= 0
was made by A. Kh. Rakhimov [2]:

A2 x1 + y2
1 = 0, x2 + y2 = 0

A3 x1 + y3
1 + y1y2 = 0, x2 + y2 = 0

C2,2 y2
1 + x1 + x2y2 = 0, y2

2 + x2 + x1y1 = 0

Knowing the catastrophes of solutions, we can understand the asymptotics in the neigbourhood of

the gradient catastrophe point. It is the finite point where all first derivatives of the solution tend to

infinity.
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Gas dynamics

One-dimensional gas dynamics equations{
ut + uux + α(ρ)ρx = 0,

ρt + (ρu)x = 0,
(1)

where α(ρ) = pρ
ρ > 0 is a smooth function such that α(ρ) = 4+

∑
i≥1

αi
i! ∆ρi and ρ∗α1+12 6= 0 (otherwise

it’s not the general situation, it’s the very special case). ∆ρ = ρ = ρ∗, ρ∗ > 0. p(ρ) is an equation of the

gas state. The flow is isentropic, so dS ≡ 0.
Riemann invariants

r = u +
∫ ρ

0
c
ρdρ, l = u −

∫ ρ
0

c
ρdρ, c2 = pρ = ρα(ρ) (2)

(where c > 0 is the sonic speed, r 6= l, otherwise ρ = 0) diagonalize (1):{
rt + (r+l

2 + c)rx = 0
lt + (r+l

2 − c)lx = 0.
(3)

The hodograph transformation

rx = Jtl, rt = −Jxl, lx = −Jtr, lt = Jxr, J = rxlt − rtlx, j = xrtl − xltr, J = j−1,

linearises (3): {
xl = tl(r+l

2 + c),
xr = tr(r+l

2 − c),

so we have the hodograph transformation’s jacobian

j = −2ctrtl. (4)

Our goal is to study the catastrophe of solution to system (3) in case j(r∗, l∗; t∗, x∗) = 0, so the mapping

(t, x) → (r, l) is no longer a diffeomorphism. All of derivatives of solutions to (3) approache infinity at

the finite point (r∗, l∗; t∗, x∗). The gradient catastrophe occurs.

The hodograph transformation and substitutions

t = Bu, x = uBu − B − ρBρ (5)

reduce (1) to the 2nd order hyperbolic equation α(ρ)Buu = ρBρρ + 2Bρ or

8αBrl =
(

αρ + 3α

ρ

)√
ρ

α
(Br − Bl), (6)

where B =
∑

i+j≥0 bij∆ri∆lj is a formal power series defining the solutuion. The equation (6) is

hyperbolic and it means that any formal solution corresponds to true solution.

j(r∗, l∗; t∗, x∗) = −2ctrtl(r∗, l∗; t∗, x∗) = 0 if r 6= l (otherwise ρ = 0) means b11 = −2b20 or b11 =
−2b02. We can impose no more than two restrictions on coefficients bij as governing parameters of

the catastrophe perturbation can depend only on t, x. So we demand b11 = −2b20 = −2b02 ⇒ b20 = b02.
From the equation and (5) we have

b20 = −(b10−b01)(α1ρ∗+12)
128√

ρ∗
, b21 = −b12 = (b10−b01)(2ρ2

∗α2−8ρ∗α1−ρ2
∗α2

1−48)
1024ρ∗ ,

t∗ = b10 + b01, x∗ = r∗+l∗
2 (b10 + b01) − b00 − 2√

ρ∗(b10 − b01), ...

Relations (5) are equivalent to zeroes of derivatives of the function

F = ρ(ut − x − B) (7)

of arguments u, ρ and parameters t, x and j(r∗, l∗, t∗, x∗) = 0 corresponds to Fu(u∗, ρ∗, t∗, x∗) = 0,
Fρ(u∗, ρ∗, t∗, x∗) = 0. There is no such ”potential” function in the Rakhimov’s study.

The description of typical degenerate critical points of locally smooth fuctions suchlike (7) is the typical

problem of the catastrophe theory.

Considering all relations between bij we can write the expansion of F :

F = 2ρ
3/2
∗ (b10 − b01) + ρ∗z + ρ∗∆t

2 (∆r + ∆l) +
√

ρ∗
4 z(∆r − ∆l)+

+
√

ρ∗
8 ∆t((∆r)2 − (∆l)2) + z(∆r − ∆l)2 + 4−α1ρ∗

512 ∆t(∆r − ∆l)2∆r+∆l
2 +

+h3z(∆r − ∆l)3 + A+(∆r)3 + A−(∆l)3 +
∑

i+j≥4
(f0

ij + f1
ij∆t + f2

ijz)(∆r)i(∆l)j,
(8)

where

∆t = t − t∗, z = (r∗+l∗)∆t
2 − x + x∗, h2 = (4−ρ∗α1)

256 , h3 = (ρ3/2
∗ (α2

1−2α2)−4√
ρ∗α1)

6144 , f0
ij = const,

A+ = (b10−b01)[8ρ∗α1+48−2ρ2
∗α2+ρ2

∗α2
1]

3072 − ρ∗b30, A− = −(b10−b01)[8ρ∗α1+48−2ρ2
∗α2+ρ2

∗α2
1]

3072 − ρ∗b03.

According to the form of (8) function F (r, l; t, x) is the 2-deformation of the function F (r∗, l∗; t, x)
and can be induced from the versal deformation defined by the three-parameter function family

Gk1,k2,k3(y1, y2) = (y1)3+(y2)3
3 − k3y1y2 − k2y1 − k1y2, which means F (r, l; t, x) can be defined in the

form

F (r, l; t, x) = (y1)3 + (y2)3

3
− k3y1y2 − k2y1 − k1y2 + γ, (9)

where kj = kj(t, x), j = 1, 2, 3 and γ = γ(t, x) – smooth in the neigbourhood of the points t = t∗,
x = x∗ functions; yi = yi(r, l; t, x), i = 1, 2 is the locally smooth change of coordinates (r, l, t, x) →
(y1(r, l, t, x), y2(r, l, t, x)) which is the local diffeomorphism if t and x are fixed.

So we can define the canonical form of the umbilical catastrophe from the expansion (8) using not just

formal transformations but smooth and bijective.

The critical points Fy1 = 0, Fy2 = 0 define the solutions to the gas dynamics system (1):

y2
1 = k3(k1, k2)y2 + k2,

y2
2 = k3(k1, k2)y1 + k1.

(10)

Now we show that k3 depends on k1, k2 and construct the transformation:

y1(r, l; t, x) =
∑

n+m>0
anm,00(∆t)nzm + ∆r[(3A+)1/3 +

∑
n+m>0

anm,10(∆t)nzm]+

+∆l
∑

n+m>0
anm,01(∆t)nzm +

∑
i+j>1

∞∑
n+m=0

anm,ij(∆r)i(∆l)j(∆t)nzm,

y2(r, l; t, x) =
∑

n+m>0
bnm,00(∆t)nzm + ∆l[(3A−)1/3 +

∞∑
n+m>0

bnm,01(∆t)nzm]+

+∆r
∑

n+m>0
bnm,10(∆t)nzm +

∑
i+j>1

∞∑
n+m=0

bnm,ij(∆r)i(∆l)j(∆t)nzm,

kj(t, x) = kj,10∆t + kj,01z +
∑

n+m>1 kj,nm(∆t)nzm, j = 1, 2, 3.

Here all coefficients are to be determined. We have the following relations:

a00,20 = f0
40

(3A+)2/3, a00,11 = f0
31

(3A+)2/3, b00,11 = f0
13

(3A−)2/3, b00,02 = f0
04

(3A−)2/3,

k2,10 = − ρ∗
2(3A+)1/3, k2,01 = −

√
ρ∗

4(3A+)1/3, k1,10 = − ρ∗
2(3A−)1/3, k1,01 =

√
ρ∗

4(3A−)1/3,

k3,10 = −k2,10a00,11+k1,10b00,11
(9A+A−)1/3 , k3,01 = −k2,01a00,11+k1,01b00,11−2h2

(9A+A−)1/3 ,

k10 = − 1
(3A−)1/3

[
4h2
ρ∗ + f0

31
3A+

]
, k01 = 1

(3A+)1/3

[
4h2
ρ∗ − f0

13
3A−

]
, ...

k3 = k10k1 + k01k2 +
∑

u+j≥2 kijk
i
1k

j
2.

Wave equation

The one-dimensional homogeneous linear wave equation with constant coefficients

utt = uxx (11)

is equivalent to the system ut = vx, vt = ux which can be reduced from the linearization of (1). By

using the hodograph transformation we have the system tv = xu, tu = xv with the jacobian of the

hodograph trasformation j = (tv)2 − (tu)2. Similar to (5) substitutions t = Bu, x = Bv allow us to define

the solutions of (11) by the general solution

B = f (u + v) + g(u − v) (12)

of the wave equation Buu = Bvv. Here f (u + v) and g(u − v) are infinitely differentiable functions with
the expansions f = f0 +

∞∑
j=1

fj
j! (∆u + ∆v)j and g = g0 +

∞∑
j=1

gj
j! (∆u − ∆v)j respectively.

Now we consider the function

Ψ(u, v; t, x) = ut + vx − B(u, v) (13)

analogous to the function F (7) such that relations Ψu = 0, Ψv = 0 are equivalent to t = Bu and x = Bv.

Now we have relations

j(u∗, v∗; t∗, x∗) = f2g2 = 0, t∗ = f1 + g1, x∗ = f1 − g1.

Considering these let us write the expansion of (13):

Ψ = (f1 + g1)u∗ + (f1 − g1)v∗ − (f0 + g0) + u∗∆t + v∗∆x+

+(∆t+∆x)
2 ũ + (∆t−∆x)

2 ṽ −
∞∑
i=2

fi
i! (ũ)i −

∞∑
j=2

gj
j! (ṽ)j,

where ũ = (∆u + ∆v), ṽ = (∆u − ∆v). Using the well known general catastrophe theory technics we

can describe the following catastrophe germs:

g2 6= 0, , f2 = 0, f3 6= 0 ⇒ Ψgerm = −f3
(ũ)3

6 ;
g2 6= 0, f2 = f3 = 0, f4 6= 0 ⇒ Ψgerm = −f4

(ũ)4
4! ;

f2 = g2 = 0, f3 6= 0, g3 6= 0 ⇒ Ψgerm = −f3
(ũ)3

6 − g3
(ṽ)3

6 .

(14)

All of them can be transformed to the corresponding germs of the soultions to the (1). That’s why we

can say about ”inheritance” of catastrophes from the solutions to the wave equation.

Notes and goals

In the Becker-Stanyukovich case p = c2
1ρ

3, c1 = const there is no k3 term in the form (9).

If ρ∗α1 = −12 there is no terms bij, i + j = 2 in the series defining the solution to the equation (6).

”Inheritance” occurs in the elliptic case (α(ρ) < 0) as well but we can’t prove the conformity between

the formal and true solution. This ”inheritance” was noted in [1] but it was stated that k3 ≡ 0 in the

case α(ρ) = const (shallow water equations) which is not so.

There are so called ”dropping” (means ρ∗ = 0) cusp catastrophes that were described for both cases of

α(ρ) > 0 [3] and α(ρ) < 0 [4] in (1). They are not ”inherited” but similar ”dropping” singularities should

be typical for non-1D gas dynamics systems as well.

Right nowwe study 2D homogeneous linearwave equationwith constant coefficients. The next object

is the 3D homogeneous linear Laplace equation with constant coefficients.
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