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INTRODUCTION
Chaos theory 15 a very active area of research, involving many different disciplings such as 0A Ladyzhenskaya Centennia| conference on PDE'S | _11 _i g | (12)
o = - .
Mathematics, Phvsics, Chemical svstem, Population studes, Biology, Metrology, Astrophysics, | L0 5;

16 - 22 July, 2022,

Information theory, etc. In the past few vears, chaos synchronization has attracted the aftention | | _ | _ L
' Putting the value of @ from equation (10) i equation (4) with consideration of systems (6) and

of many researchers. The idea of synchromzation with two 1dentical mitial conditions was Euler International Mathematical Institute, St. Petersburg, Russia

(9), we get the controller as
ntroduced by Pecora and Carroll [1]. It plavs an mmportant role m study of vartous types of . o,
U (1) =-033x (t-1)+ 2xx, +2.5x, - 055,25 =3, -y, - 0.1cos(07),
- - ' 9 . , 4o o 1
systems such as electromechanical system [2], neuron network system [3], satellite system [4], () <0331 (t=1)+ 05%, +0.55,02 +X 1, + s Y, =y, +01cos(308), (13)
neural system [3] and a variety of physical and chemical systems. There are several types of 0, (f) =x,+2x, -x, +0.6x, ~x.x, +150,3, + 3.3, + 3, - 3, ~0.1sin(500),

synchronization but 1n this work, we analyze a spectal type of synchronization namely Matrix Substituting the value of controller and values of different parameters from equations (11), (12)

SYSTEM DESCRIPTION AND MATRIX PROJECTIVE SYNCHRONIZATION BETWEEN

projective synchronization. There are various applications of matrix projective synchronization CHAOTIC SYSTEMS and (13) in (5), we get the error system as

such as Secure Communication [6], delaved fractional order neural networks [/] etc. : . . - - - -
6], delay g Muthuswamy and Chua proposed a new chaotic system. This system with delay is given as 8 =—6,06=—0,0="6 (15)

A matrix projective synchronization 15 a type of projective synchronization when a scalin . _ . L
Pl - pe of pro] ' : All etgenvalues of error system are negative. According to Theoreml, the matrix projective

constant 15 a generalized constant in projective synchronization master and slave system could be ()= l (D)4 l . l .y 6 svnchronization has been achieved.

synchronized vp fo that scaling factor. Thus it 15 interesting to mvestigate the matrix projective ) 2" 277

synchronization with the help of control methods applving Lvapunov stability. In order to () =% =00+ xyx - e
analyze the behavior of matrix projective synchronization, several results could be found in The system (6) represents chaotic behavior with tnitial condition(0.1,0,0.1). N | o
literatures. Ovannas and Abu-Saris [8] investigated a sufficient condition for matrix projective The system with multiple delays 1s expressed as - 3 1'5'

synchronization and inverse matrix projective synchronization between discrete-time chaotic 5(0)=x,, ‘% H

dynamical systems of identical and non-identical dimensions. Jinman He ef af. [9] examined the 5L(0)= —% X, + % X,(f-1y)- 13 A () (7) 0

synchronization of disturbed fractional-order hyperchaotic system by the help of fractional t,(f)==x, - 0.6%, + 1., N

matrix and mverse matrix projective synchronization methods. Zhaoyan Wu er al. [10] The system (7) represents chaotic behavior with initial condition 0.1,0,0.1) N
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investigated the problem of generalized matrix projective synchromization in general colored

networks with different-dimensional node dynamics. Fig 3. The time evolution of states of errors €, €. €;.

He and Chen [11] found the matrix synchronization, stability, chaotic behavior, and chaos
control of a new type of fraction-order Rabmovich system. He ef al. [12] discussed the global

1, th

matrix-projective synchronization of time delaved fractional-order competitive neural networks.

Khan ¢f al. [13] discussed the application of the fractional inverse matrix projective combination

o L NUMERICAL RESULTS AND DISCUSSION
synchronization 1 the field of secure communication.

In the numerical simulation of matrix projective synchronization the initial conditions of

Motivated by above discussion, author has studied synchronization between delay chaotic

. . . Va2 oar o2 s o4 oz oar 0w i oan @ a0 ar oo Simplest chaotic circuit and simple chaotic flows are consider as (0.1,0,0.1) and (0,0.5.0.5]
systems via matrix projective approach. i, i . . . .
e . | respectively. Fig. 1 show the phase portraits of simplest chaotic circuit with single delay and
Fig 1. (a) Fhase portrails of fime delay system (6} in x, — x, plane. Red attractor represents system with

delayt = 0.1 and green attractor show system without delay (b) Phase portraits of multiple delay system multtple delays while Fig. 2 depicts that the phase portraits of simple chaofic flow with

(7) in x, - x, plane. Red affractor represents fystem withr = 0.2 anar, = (.1 .Green attractor show disturbance. Fig. 3 depicts state of signal and errors wrt time between chaotic system with

system without delgy; single delay and chaotic system with disturbances

MATRIX PROJECTIVE SYNCHRONIZATION Jafart and Sprott considered a bunch of chaotic systems which show many features. Here we take CONCLUSION

The tuvo chaosc systems with disturbances and Ryperbolic nonlunearty are expressed one of this system as slave system In this arficle, chaos 15 found 1 a time delay svstem and a system with external disturbances.
X()=Ax+C(x(t-1)+f, t>0, . . L L . . .
IE i (0 [i[ {?} f | (1) V(1) =), Thereafter matrix projective synchronization between these systems is studied. Further, matrix
X(t)=¢(L),-r 2tz . i
Y, (0)==3, %, (&) projective synchronization between time delay chaotic system and chaotic system with external
YO = By +D(9)+ 4, +ulx 1) 2 V() ==y, =133,3, = 0J.. disturbance is obtained. Theoretical analysis and numerical simulations show that these systems
where x(f) = x (), %, (0)— 4, (8. ¥ () = (0.0, 3,0, 7,(0) e B . dendBare  the  nxn The system (8) with disturbances {s taken as can be matrix projective synchronized by choosing proper projective matrix and gain matrix.
matrices, (and Dare nonlinear parts of the systems T denotes time delay, f represents hyperbolic
nonlinearity, 0l ) represent the trajectories of the solutions in the past, ] | is disturbances satisfies|; 1% p,
;where [, iz positive constant and 1(X, V)is controller. |
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