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Formulation of the problem Formulation of the problem

In a reflexive Banach spaces X , Y a continuous linear operator L ∈ L(X ,Y) is given, M ∈ Cl(X ,Y)
is a linear closed operator with domain DM dense in X , U is a Banach space, B ∈ L(U ;Y),
N : R×Xn → Y is a nonlinear operator, U = Lq(t0, T ;U)×Xm is a control space with the norm
‖(u, v)‖2U = ‖u‖2Lq(t0,T ;U) + ‖v‖2Xm .

LDα
t x(t) = Mx(t) +N(t,Dα1

t x(t), . . . , Dαn
t x(t)) +Bu(t), t ∈ (t0, T ), (1)

(Px)(k)(t0) = vk, k = 0, 1, . . . ,m− 1, (2)

(u, v) = (u, v0, v1, . . . , vm−1) ∈ U∂ , (3)

J(x, u, v)→ inf, (4)

where 0 ≤ α1 < α2 < . . . < αn < α, m− 1 < α ≤ m, m ∈ N, Dβ
t is the Gerasimov — Caputo

derivative, k = 0, 1, . . . ,m− 1, U∂ is a set of admissible controls, U∂ ⊂ U, J is the cost functional.
We accept the following notation gδ(t) := Γ(δ)−1tδ−1 for δ > 0, t > 0, g̃δ(t) := Γ(δ)−1(t− t0)δ−1,

Jδt h(t) :=
t∫
t0

gδ(t− s)h(s)ds for t > t0. Let m− 1 < α ≤ m ∈ N, Dm
t is an ordinary derivative, wich

order is m ∈ N, J0
t is an identity operator. The Gerasimov — Caputo derivative of fuction h

defined as follows
Dα
t h(t) = Dm

t J
m−α
t

(
h(t)−

m−1∑
k=0

h(k)(t0)g̃k+1(t)

)
, t ≥ t0.
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Formulation of the problem Strong solution

Strong solution for a nonlinear fractional equation

Definition

Define L-resolvent set ρL(M) :=
{
µ ∈ C : (µL−M)−1 ∈ L(Y;X )

}
of an operator M and its

L-spectrum σL(M) := C\ρL(M), and denote RLµ (M) := (µL−M)−1L, LLµ(M) := L(µL−M)−1.

Definition

An operator M is called (L, σ)-bounded, if ∃a > 0 ∀µ ∈ C (|µ| > a)⇒ (µ ∈ ρL(M)).

Under the condition of (L, σ)-boundedness of operator M we have the projections

P =
1

2πi

∫
γ

RLµ (M) dµ ∈ L(X ), Q =
1

2πi

∫
γ

LLµ(M) dµ ∈ L(Y),

where γ = {µ ∈ C : |µ| = r > a}. Put X 0 := kerP , Y0 := kerQ; X 1 := imP , Y1 := imQ. Denote by
Lk (Mk) the restriction of the operator L (M) on X k (DMk

= DM ∩ X k), k = 0, 1.
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Formulation of the problem Strong solution

Theorem ((1) Sviridyuk G. A., Fedorov V. E.)

Let an operator M be (L, σ)-bounded. Then

(i) M1 ∈ L(X 1,Y1), M0 ∈ Cl(X 0,Y0), Lk ∈ L(X k,Yk), k = 0, 1, then X = X 0 ⊕X 1;

(ii) there exist operators M−1
0 ∈ L(Y0,X 0), L−1

1 ∈ L(Y1,X 1).

Denote N0 := {0} ∪ N, G := M−1
0 L0. For p ∈ N0 operator M is called (L, p)-bounded, if it is

(L, σ)-bounded, Gp 6= 0, Gp+1 = 0.

LDα
t x(t) = Mx(t) +N(t,Dα1

t x(t), . . . , Dαn
t x(t)), t ∈ (t0, T ), (5)

(Px)(k)(t0) = xk, k = 0, 1, . . . ,m− 1. (6)

Let αn ≤ r ≤ m− 1. A strong solution of problem (5), (6) is a function
x ∈ Cr([t0, T ];X ) ∩ Lq(t0, T ;DM ), such that Lx ∈ Cm−1([t0, T ];Y),

Jm−αt

(
Lx−

m−1∑
k=0

(Lx)(k)(t0)g̃k+1

)
∈Wm

q (t0, T ;Y)

and equality (6) is valid and equality (5) is valid almost everywhere on (t0, T ).
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Formulation of the problem Strong solution

Strong solution for a nonlinear fractional equation

Theorem (2)

Let α > 0, q > (α−m+ 1)−1, an operator M be (L, 0)-bounded, N : [t0, T ]×Xn → Y for all
x1, x2, . . . , xn ∈ X and almost all t ∈ (t0, T ) satisfies the condition
N(t, x1, . . . , xn) = N1(t, Px1, . . . , Pxn) under some mapping N1 : [t0, T ]× (X 1)n → Y, thus
QN1 ∈ Cmn+1([t0, T ]× (X 1)n;Y) uniformly Lipschitz in x̄ ∈ (X 1)n,
(I −Q)N1 ∈ Cm([t0, T ]× (X 1)n;Y), x0, x1, . . . , xm−1 ∈ X 1, to solve the problem the equalities

если αk < mk, то v(mk+r)(t0) = 0, k = 1, 2, . . . , n, r = 0, . . . ,max{mn,m− 1},

Dk
t |t=t0 [QN1(t,Dα1

t v(t), Dα2
t v(t), . . . , Dαn

t v(t))] = 0, k = 0, 1, . . . ,mn.

That problem (5), (6) has a unique solution on (t0, T ).

*Baybulatova G.D., Plekhanova M.V. An Initial Problem for a Class of Weakly Degenerate Semilinear
Equations with Lower Order Fractional Derivatives. The Bulletin of Irkutsk State University. Series
Mathematics, 2021, vol. 35, pp. 34-48.
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Formulation of the problem Mixed control

Mixed control

A strong solution of (1), (2) is a function in the space

Zα,q(t0, T ;X ) := {x ∈ Lq(t0, T ;DM ) ∩ Cm−1([t0, T ];X ) :

Jm−αt

(
x−

m−1∑
k=0

x(k)(t0)g̃k+1

)
∈Wm

q (t0, T ;X )}.

Lemma (*)

Zα,q(t0, T ;X ) is a Banach space with norm

‖z‖Zα,q(t0,T ;Z) = ‖z‖Cm−1([t0,T ];Z) + ‖Dα
t z‖Lq(t0,T ;Z).

Let the continuous operator γ0 : C([t0, T ];Z)→ Z, γ0x = x(t0), γ0 ∈ L(Qα,q(t0, T ;Z);Z).

* Plekhanova M.V. Degenerate distributed control systems with fractional time derivative / M.V.
Plekhanova // Ural Mathematical Journal. – 2016. – С. 58–71.
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Formulation of the problem Mixed control

Definition
The set of admissible elements W of problem is a set of such (x, u, v̄) = (x, u, v0, v1, . . . , vm−1),
that (u, v̄) ∈ U∂ , x ∈ Zα,q(t0, T ;X ) is a strong solution of (1), (2) and J(x, u, v̄) <∞.

Definition
To solve problem (1)–(4) means to find the set (x̂, û, v̂0, v̂1, . . . , v̂m−1) ∈W, which minimize the
cost functional, i.e.,

J(x̂, û, v̂0, v̂1, . . . , v̂m−1) = inf
(x,u,v̄)∈W

J(x, u, v̄).

Definition
The functional is coercive, if for all R the set {(u, v̄) ∈ U : J(x, u, v̄) < R} is bounded.

Proof of the main result
1 The set W of admissible sets is nonempty.
2 Compactness condition.
3 Checking the coercivity of the functional.
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Formulation of the problem Mixed control

Theorem (The main result)

Let α > 1, q > (α−m+ 1)−1, q > (mk − αk)−1 for αk < mk, k = 1, 2, . . . , n, αn ≤ m− 2, an
operator M (L, 0)-bounded, x0, x1, . . . , xm−1 ∈ X 1, X ,X1 are reflexive Banach spaces, X compactly
nested in space X1, the mapping N1 : [t0, T ]×Xn1 → Y for almost all t ∈ (t0, T ) and for all
x1, x2, . . . , xn ∈ X satisfies the condition N(t, x1, . . . , xn) = N1(t, Px1, . . . , Pxn) at some
N1 ∈ Cmn+1([t0, T ]× (X 1)n;Y). Let QN1 is uniformly Lipschitz in x̄ mapping,
(I −Q)N1 ∈ Cm([t0, T ]× (X 1)n;Y). Assume that U∂ is a non-empty closed convex subset in
U = Lq(t0, T ;U)×Xm, exists (u0; v0

k) ∈ U∂ , that QBu0 ∈ Cmn+1([t0, T ];Y),
(I −Q)Bu0 ∈ Cm([t0, T ];Y), for all solution w of problem

Dα
t w(t) = L−1

1 M1w(t) + L−1
1 QN1(t,Dα1

t w(t), . . . , Dαn
t w(t)) + L−1

1 QBu0(t),
w(k)(t0) = v0

k, k = 0, 1, . . . ,m− 1,

if αk < mk, then w(mk+r)(t0) = 0, k = 1, 2, . . . , n, r = 0, 1, . . . ,m− 1,
Dk
t |t=t0 [L−1

1 QN1(t,Dα1
t w(t), Dα2

t w(t), . . . , Dαn
t w(t)) + L−1

1 QBu0(t)] = 0; Zα,q(t0, T ;X )
continuously embedded in a Banach space Y, which continuously embedded in a Banach space
Wm−2
q (t0, T ;X1); the cost functional J is convex, bounded below and semi-continuous below on

Y× Lq(t0, T ;U)×Xm, the cost functional is coercive on Zα,q(t0, T ;X )× Lq(t0, T ;U). Then that
problem (1) – (4) has a unique solution (x̂, û, v̂) ∈ Zα,q(t0, T ;X )× U∂ .
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