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Formulation of the problem Formulation of the problem

In a reflexive Banach spaces X, ) a continuous linear operator L € £(X,)) is given, M € CI(X,))
is a linear closed operator with domain Djy; dense in X, U is a Banach space, B € L(U;)),
N :R x X™ — )Y is a nonlinear operator, 4l = Ly(to, T;U) x X™ is a control space with the norm

1w )l = llZ, g 00 + 015

LDgz(t) = Mx(t) + N(t, D x(t), ..., Di*x(t)) + Bu(t), t€ (to,T), (1)
(Pz) ) (tg) = vg, k=0,1,...,m —1, (2)

(u,v) = (U, 00,01, ..., Um—1) € Us, (3)

J(x,u,v) — inf, (4)

where 0 <y < <...<ap<a,m-—-1<a<m,meN, Df is the Gerasimov — Caputo
derivative, k = 0,1,...,m — 1, Uy is a set of admissible controls, Uy C U, J is the cost functional.
We accept the following notation gs(t) := I'(6) ™'~ for 6 > 0, t > 0, gs(t) := T'(6) " (t — to)° ",

¢
JOh(t) :== [ gs(t — s)h(s)ds for t > tg. Let m — 1 < a <m € N, DI is an ordinary derivative, wich
to

order is m € N, J? is an identity operator. The Gerasimov — Caputo derivative of fuction h
defined as follows

m—1
D{h(t) = Dyt <h(t) -y h(k)(t0)§k+1(t)> ., t>to.
k=0
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Formulation of the problem Strong solution

Strong solution for a nonlinear fractional equation

Define L-resolvent set p“(M) := {p € C: (uL — M)™' € L(V; X)} of an operator M and its
L-spectrum o™ (M) := C\p*(M), and denote R (M) := (uL — M)~'L, LL(M) := L(uL — M)~".

An operator M is called (L, o)-bounded, if 3a > 0 Vu € C (|u| > a) = (u € p*(M)).

Under the condition of (L, o)-boundedness of operator M we have the projections

P= oo [ BEOD e L), @ = o [ i due L)),

2mi 21
v v

where v = {u € C: [u| = r > a}. Put XY :=ker P, Y° := ker Q; X! := imP, Y! := imQ. Denote by
Ly (My,) the restriction of the operator L (M) on X* (Dy, = Dy N X*), k=0,1.
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Formulation of the problem Strong solution

Theorem ((1) Sviridyuk G. A., Fedorov V. E.)

Let an operator M be (L, o)-bounded. Then
(i) My € L(X1, DY), My € CI(X°,)0), Ly € L(X*, V), k=0,1, then X = X° @ X';
(ii) there exist operators My ' € L()°, X°), LT € L(Y', &Y).

Denote Ny := {0} UN, G := M; ' Ly. For p € Ny operator M is called (L, p)-bounded, if it is
(L,o)-bounded, GP # 0, GPT! = 0.

LDYz(t) = Mxz(t) + N(t, DM x(t), ..., D x(t)), t € (to,T),
(Pz)®)(ty) =2, k=0,1,...,m— 1.

Let a, <7 < m — 1. A strong solution of problem (5), (6) is a function
x € C"([to, T); X) N Ly(to, T; Do), such that Lz € C™1([ty, T]; V),

m—1
J (L:z: - Z(LI)(k)(to)ng) €Wy (to, T3 7)

k=0

and equality (6) is valid and equality (5) is valid almost everywhere on (tg,T).
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Formulation of the problem Strong solution

Strong solution for a nonlinear fractional equation

Theorem (2)

Let a >0, ¢ > (o —m + 1)1, an operator M be (L,0)-bounded, N : [to,T] x X™ — Y for all
T1,%2,-.-,Tn € X and almost all t € (to,T) satisfies the condition

N(t,z1,...,2,) = Ni(t, Pxy,..., Px,) under some mapping Ny : [to, T] x (X1)™ — Y, thus
QN € C™ 1 ([tg, T) x (X1)™; V) uniformly Lipschitz in & € (X1)",

(I —Q)N1 € C™([to, T] x (XY™ V), 2o, T1, ..., Tm—1 € X, to solve the problem the equalities

eciu v < My, TO v(m’““’)(to) =0, k=1,2,...,n, r=0,...,max{m,,m — 1},

Df|t:t0 [QN1(t, D' w(t), Di?o(t),. .., Div(t)] =0, k=0,1,...,m,.

That problem (5), (6) has a unique solution on (to,T).

*Baybulatova G.D., Plekhanova M.V. An Initial Problem for a Class of Weakly Degenerate Semilinear
Equations with Lower Order Fractional Derivatives. The Bulletin of Irkutsk State University. Series
Mathematics, 2021, vol. 35, pp. 34-48.
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Formulation of the problem Mixed control

Mixed control

A strong solution of (1), (2) is a function in the space

Zoq(to, T;X) :={x € Ly(to, T; Dpr) N C™Y([to, T); X) :
m—1
Jmoe (x -3 x<k>(t0)gk+1) € Wi (to, T; X)}.
k=0

Zoq(to, T; X) is a Banach space with norm

12| 2., (t0,152) = 2llcm=1(1t0,11,2) + 1DE 2| L (50, 7:2) -

Let the continuous operator v : C([to,T]; Z) = Z, vox = z(to), Y0 € L(Qa,q(t0, T; Z); Z).

* Plekhanova M.V. Degenerate distributed control systems with fractional time derivative / M.V.
Plekhanova // Ural Mathematical Journal. — 2016. — C. 58-71.
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Formulation of the problem Mixed control

The set of admissible elements 20 of problem is a set of such (x,u,?) = (x,u, Vo, V1, -, Um—1),
that (u,v) € Up, x € Z4,4(to, T; X) is a strong solution of (1), (2) and J(z,u,v) < co.

.
Definition

To solve problem (1)—(4) means to find the set (Z,w, 0o, 01, .., 0m—1) € 2, which minimize the
cost functional, i.e.,

J(Z,4,00,01,...,0m-1) = inf J(z,u,0).
(x,u,0)EW

The functional is coercive, if for all R the set {(u,v) € U : J(z,u,v) < R} is bounded.

Proof of the main result
@ The set 20 of admissible sets is nonempty.
© Compactness condition.

© Checking the coercivity of the functional.
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Formulation of the problem Mixed control

Theorem (The main result)

Leta>1,¢>(a—m+1)7"1 g> (mp —ag)™t foragy <mg, k=1,2,...,n, a, <m—2, an
operator M (L,0)-bounded, xg,x1,...,Tm_1 € X1, X, X1 are reflexive Banach spaces, X compactly
nested in space Xy, the mapping Ny : [to, T] X XJ* — Y for almost all t € (to,T) and for all
Z1,%9, ..., T, € X salisfies the condition N(t,x1,...,x,) = Ny(t, Pz1,..., Pz,) at some
Ny € O™t l([tg, T) x (V)™ V). Let QN is uniformly Lipschitz in T mapping,
(I —Q)N1 € C™([to, T] x (X1)™;Y). Assume that Uy is a non-empty closed convex subset in
U= Ly(to, T;U) x X™, exists (u®;0Y) € Uy, that QBu® € C™ 1 ([ty,T);Y),
(I — Q)Bu0 € C™([to, T); V), for all solution w of problem

D¢w(t) = Ly Myw(t) + Ll_lQNl(t D w(t), ..., Dimw(t)) + Ly ' QBul(t),

w® (o) = v), k= 0,1,..., -1,

if ap < my, then w(™+)(tg) =0, k=1,2,...,n, r=0,1,...,m — 1,
DFle=to[L7 ' QN1 (t, Df w(t), DE2w(t), . .., Df"w(t)) + Ly ' QBul(1)] = 05 Za4(to, T; X)
continuously embedded in a Banach space Y, which continuously embedded in a Banach space
Wi 2(to, T; X1); the cost functional J is convex, bounded below and semi-continuous below on
Y >< L, (to, T;U) x X™, the cost functional is coercive on Zq q(to, T; X) x Ly(to, T;U). Then that
problem (1) — (4) has a unique solution (&,u,0) € Z4,4(to, T; X) X Us.
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