Sectorial Tuples of Operators and Fractional Multi-Term Linear Equations

Turov Mikhail Mikhailovich V. E. Fedorov Mathematical Analysis Department Chelyabinsk State University

«O.A. Ladyzhenskaya centennial conference on PDE's»

16 - 22.07.2022

16 - 22.07.2022

Let \mathcal{Z} be a Banach space, $\mathcal{L}(\mathcal{Z})$ denote the Banach space of linear bounded operators in \mathcal{Z} , and by $\mathcal{C}l(\mathcal{Z})$ the set of linear closed operators with dense domains in \mathcal{Z} be denoted, $\mathbb{R}_+ := \{a \in \mathbb{R} : a > 0\}, h : \mathbb{R}_+ \to \mathcal{Z}.$

Consider the linear homogeneous multi-term fractional equation

$$D_t^{\alpha} z(t) = \sum_{j=1}^{m-1} A_j D_t^{\alpha-m+j} z(t) + \sum_{l=1}^n B_l D_t^{\alpha_l} z(t) + \sum_{s=1}^r C_s J_t^{\beta_s} z(t)$$
(1)

with initial conditions

$$D_t^{\alpha - m + k} z(0) = 0, \ k = m^*, m^* + 1, \dots, m - 1.$$
(2)

We accept the following notation $g_{\beta}(t) := \Gamma(\beta)^{-1}t^{\beta-1}$ for $\delta > 0, t > 0, J_t^{\beta}h(t) := \int_0^t g_{\beta}(t-s)h(s)ds$ for $t > t_0$. Let $m-1 < \alpha \le m \in \mathbb{N}, 0 < \alpha_1 < \alpha_2 < \cdots < \alpha_n < \alpha, \beta_1 > \beta_2 > \cdots > \beta_r \ge 0, D_t^m$ is an ordinary derivative, witch order is J_t^0 is an identity operator, m^* is the defect of the Cauchy type problem for multi-term equation. The Riemann — Liouville derivative of function h defined as follows

$$D_t^\beta h(t) = D_t^m J_t^{m-\alpha} h(t).$$

ヘロマ 不通 アイヨマ イヨマー ヨー

The defect of the Cauchy type problem for multi-term equation

To solve Equation

$$D_t^{\alpha} z(t) = \sum_{j=1}^{m-1} A_j D_t^{\alpha-m+j} z(t) + \sum_{l=1}^n B_l D_t^{\alpha_l} z(t) + \sum_{s=1}^r C_s J_t^{\beta_s} z(t).$$

conditions are necessarily satisfied¹

$$D_t^{\alpha-m+k}z(0) = 0, \ k = 0, 1, \dots, m^* - 1, \quad D_t^{\gamma}z(0) = 0, \ \gamma \in \Lambda,$$

where Λ is a set $\{\alpha_1 - 1, \alpha_1 - 2, \dots, \alpha_1 - m_1, \alpha_2 - 1, \alpha_2 - 2, \dots, \alpha_n - m_n\}$, from which repeated numbers are thrown out (they are present if there are numbers with the same fractional part among $\alpha_l, \, l = 1, 2, ..., n$).

Thus, for (1), it makes sense to consider only the incomplete Cauchy type problem

$$D_t^{\alpha-m+k} z(0) = z_k, \ k = m^*, m^* + 1, \dots, m-1.$$

Denote $\underline{\alpha} := \max\{\alpha_l : l \in \{1, 2, \dots, n\}, \alpha_l - m_l < \alpha - m\},$
 $\overline{\alpha} := \max\{\alpha_l : l \in \{1, 2, \dots, n\}, \alpha_l - m_l > \alpha - m\}, \underline{m} = \lceil \underline{\alpha} \rceil, \overline{m} = \lceil \overline{\alpha} \rceil, m^* := \max\{\underline{m} - 1, \overline{m}\}.$

¹Fedorov V. E., Turov M. M. The defect of a Cauchy type problem for linear equations with several Riemann-Liouville derivatives // Siberian Mathematical Journal, 2021, Vol. 62, No. 5, pp. 925=942. V. E. Fedorov, M. M. Turov (ChelGU) Fractional Multi-Term Linear Equations 16 - 22.07.2022

Let $A_1, A_2, \ldots, A_{m-1}, B_1, B_2, \ldots, B_n, C_1, C_2, \ldots, C_r$ be closed linear operators with domains $D_{A_1}, D_{A_2}, \ldots, D_{A_{m-1}}, D_{B_1}, D_{B_2}, \ldots, D_{B_n}, D_{C_1}, D_{C_2}, \ldots, D_{C_r}$ respectively. Denote

$$D := \bigcap_{j=1}^{m-1} D_{A_j} \cap \bigcap_{l=1}^n D_{B_l} \cap \bigcap_{s=1}^r D_{C_s},$$

and

$$R_{\lambda} := \left(\lambda^{\alpha}I - \sum_{j=1}^{m-1} \lambda^{\alpha-m+j}A_j - \sum_{l=1}^n \lambda^{\alpha_l}B_l - \sum_{s=1}^r \lambda^{-\beta_s}C_s\right)^{-1} : \mathcal{Z} \to D.$$

We supply the set D with the norm:

$$\|\cdot\|_{D} = \|\cdot\|_{\mathcal{Z}} + \sum_{j=1}^{m-1} \|A_{j}\cdot\|_{\mathcal{Z}} + \sum_{l=1}^{n} \|B_{l}\cdot\|_{\mathcal{Z}} + \sum_{s=1}^{r} \|C_{s}\cdot\|_{\mathcal{Z}},$$

with respect to which D is a Banach space, since it is the intersection of the Banach spaces $D_{A_1}, D_{A_2}, \ldots, D_{A_{m-1}}, D_{B_1}, D_{B_2}, \ldots, D_{B_n}, D_{C_1}, D_{C_2}, \ldots, D_{C_r}$ with the corresponding graph norms.

V. E. Fedorov, M. M. Turov (ChelGU)

Definition of Class $\mathcal{A}^{n,r}_{\alpha}(\theta_0, a_0)$

Definition

A tuple of operators
$$(A_1, A_2, \dots, A_{m-1}, B_1, B_2, \dots, B_n, C_1, C_2, \dots, C_r) \in (\mathcal{Cl}(\mathcal{Z}))^{m+n+r-1}$$
 belongs
to the class $\mathcal{A}^{n,r}_{\alpha}(\theta_0, a_0)$ for some $\theta_0 \in (\pi/2, \pi), a_0 \ge 0$, if
(i) D is dense in \mathcal{Z} ;
(ii) for all $\lambda \in S_{\theta_0, a_0} := \{\mu \in \mathbb{C} : |\arg(\mu - a_0)| < \theta_0\}, p = 0, 1, \dots, m-1$ operators
 $R_{\lambda} \cdot \left(I - \sum_{j=p+1}^{m-1} \lambda^{j-m} A_j\right) \in \mathcal{L}(\mathcal{Z})$

exist:

(iii) for any $\theta \in (\pi/2, \theta_0)$, $a > a_0$, there exists such $K(\theta, a)$, that for all $\lambda \in S_{\theta,a}$, $p = 0, 1, \ldots, m - 1$ we have

$$\left\| R_{\lambda} \cdot \left(I - \sum_{j=p+1}^{m-1} \lambda^{j-m} A_j \right) \right\|_{\mathcal{L}(\mathcal{Z})} \leq \frac{K(\theta, a)}{|\lambda - a| |\lambda|^{\alpha - 1}}.$$

Resolving Operators Families

Definition

Let $p \in \{0, 1, \ldots, m-1\}$; a family of operators $\{S_p(t) \in \mathcal{L}(\mathcal{Z}) : t > 0\}$ is called *p*-resolving for equation (1), if next conditions are satisfied: (i) $S_p(t)$ is strongly continuous for t > 0; (ii) for t > 0 $S_p(t)[D_{A_j}] \subset D_{A_j}$, $S_p(t)A_jx = A_jS_p(t)x$ for all $x \in D_{A_j}$, $j = 1, 2, \ldots, m-1$; $S_p(t)[D_{B_l}] \subset D_{B_l}$, $S_p(t)B_lx = B_lS_p(t)x$ for all $x \in D_{B_l}$; $S_p(t)[D_{C_s}] \subset D_{C_s}$, $S_p(t)C_sx = C_sS_p(t)x$ for all $x \in D_{C_s}$; (iii) for every $z_p \in D$ $S_p(t)z_p$ is a solution of problem (1), (2) with $z_l = 0$ for every $l \in \{0, 1, \ldots, m-1\} \setminus \{p\}$.

Definition

A p-resolving family of operators for $p \in \{0, 1, ..., m-1\}$ is called **analytic**, if it has the analytic extension to a sector Σ_{ψ_0} at some $\psi_0 \in (0, \pi/2]$. An analytic p-resolving family of operators $\{S_p(t) \in \mathcal{L}(\mathcal{Z}) : t > 0\}$ has a type (ψ_0, a_0, β) at some $\psi_0 \in (0, \pi/2]$, $a_0 \in \mathbb{R}$, $\beta \in [0, 1)$, if for all $\psi \in (0, \psi_0)$, $a > a_0$ there exists such $C(\psi, a)$, that for all $t \in \Sigma_{\psi}$ the inequality $||S_p(t)||_{\mathcal{L}(\mathcal{Z})} \leq C(\psi, a)|t|^{-\beta}e^{a\operatorname{Re} t}$ is satisfied.

Theorem (The main result)

Let $m-1 < \alpha \leq m \in \mathbb{N}$, $A_j \in \mathcal{C}l(\mathcal{Z})$, j = 1, 2, ..., m-1, $\alpha_1 < \alpha_2 < \cdots < \alpha_n < \alpha$, $m_l - 1 < \alpha_l \leq m_l \in \mathbb{N}$, $\alpha_l - m_l \neq \alpha - m$, $B_l \in \mathcal{C}l(\mathcal{Z})$, l = 1, 2, ..., n, $\beta_1 > \beta_2 > \cdots > \beta_r \geq 0$, $C_s \in \mathcal{C}l(\mathcal{Z})$, s = 1, 2, ..., r, D is dense in \mathcal{Z} . Then there exist analytic p-resolving operators families for equation (1) of type $(\theta_0, a_0, 0)$, $p = m^*, m^* + 1, ..., m-1$ (of type $(\theta_0, a_0, m-\alpha)$ for $p = m^* = 0$), if and only if $(A_1, A_2, ..., A_{m-1}, B_1, B_2, ..., B_n, C_1, C_2, ..., C_r) \in \mathcal{A}^{n,r}_{\alpha}(\theta_0, a_0)$. If $z_p \in D$, $p = m^*, m^* + 1, ..., m-1$, then there exists a unique solution to problem (1), (2), and it has the form

$$z(t) = \sum_{p=m^*}^{m-1} Z_p(t) z_p, \text{ where } Z_p(t) = \frac{1}{2\pi i} \int_{\Gamma} \lambda^{m-1-p} R_\lambda \left(I - \sum_{j=p+1}^{m-1} \lambda^{j-m} A_j \right) e^{\lambda t} d\lambda,$$

$$\begin{split} &\Gamma:=\Gamma^+\cup\Gamma^-\cup\Gamma^0,\ \Gamma^0:=\{\lambda\in\mathbb{C}:|\lambda-a|=r_0>0,\arg\lambda\in(-\theta,\theta)\},\\ &\Gamma^\pm:=\{\lambda\in\mathbb{C}:\arg(\lambda-a)=\pm\theta, |\lambda-a|\in[r_0,\infty)\},\ \theta\in(\pi/2,\theta_0),\ a>a_0,\ r_0>0. \ Moreover,\ the solution \ can \ be \ extended \ on \ the \ sector\ \Sigma_{\theta_0-\pi/2} \ analytically. \end{split}$$

Corollary (1)

Let
$$m-1 < \alpha \leq m \in \mathbb{N}$$
, $A_j \in Cl(\mathcal{Z})$, $j = 1, 2, ..., m-1$, $\alpha_1 < \alpha_2 < \cdots < \alpha_n < \alpha$,
 $m_l - 1 < \alpha_l \leq m_l \in \mathbb{N}$, $\alpha_l - m_l \neq \alpha - m$, $B_l \in Cl(\mathcal{Z})$, $l = 1, 2, ..., n$, $\beta_1 > \beta_2 > \cdots > \beta_r \geq 0$,
 $C_s \in Cl(\mathcal{Z})$, $s = 1, 2, ..., r$, D is dense in \mathcal{Z} . If there exist analytic p -resolving operators families
for equation (1) of type ($\theta_0, a_0, 0$), $p = m^*, m^* + 1, ..., m - 1$ (of type ($\theta_0, a_0, m - \alpha$) for
 $p = m^* = 0$), then for every $p \in \{m^*, m^* + 1, ..., m - 1\}$ such family is unique and for any
 $q \in \{p + 1, p + 1, ..., m - 1\}$, $z_q \in D$

$$S_q(t)z_q = J_t^{q-p}S_p(t)z_q + \frac{1}{2\pi i} \int_{\Gamma} R_\lambda \sum_{j=p+1}^q \lambda^{j-1-q}A_j z_q e^{\lambda t} d\lambda.$$

Corollary (2)

Let $m-1 < \alpha \leq m \in \mathbb{N}$, $A_j \in \mathcal{L}(\mathcal{Z})$, $j = 1, 2, \dots, m-1$, $\alpha_1 < \alpha_2 < \dots < \alpha_n < \alpha$, $m_l - 1 < \alpha_l \leq m_l \in \mathbb{N}$, $\alpha_l - m_l \neq \alpha - m$, $B_l \in \mathcal{L}(\mathcal{Z})$, $l = 1, 2, \dots, n$, $\beta_1 > \beta_2 > \dots > \beta_r \geq 0$, $C_s \in \mathcal{L}(\mathcal{Z})$, $s = 1, 2, \dots, r$. Then $(A_1, A_2, \dots, A_{m-1}, B_1, B_2, \dots, B_n, C_1, C_2, \dots, C_r) \in \mathcal{A}^{n,r}_{\alpha}(\theta_0, a_0)$.

イロト 不得 とくき とくき とうき