On the constancy of the extremal function in the embedding theorem of fractional order

Nikita Ustinov

St.Petersburg State University

Introduction

Let $n \geq 1$, and let $\Omega \subset \mathbb{R}^n$ be a bounded domain with Lipschitz boundary. Assume that $s \in (0, 1), 2_s^* := 2n/(n - 2s)_+$ and

$$q \in \begin{cases} [1, 2_s^*] & \text{if } n \ge 2 \text{ or } n = 1 \text{ and } s < 1/2; \\ [1, \infty) & \text{if } n = 1 \text{ and } s = 1/2; \\ [1, \infty] & \text{if } n = 1 \text{ and } s > 1/2. \end{cases}$$

We consider the fractional Sobolev embedding $\mathcal{H}^s(\Omega) \hookrightarrow L_q(\Omega)$:

$$\inf_{u \in \mathcal{H}^{s}} \mathcal{I}_{s,q}^{\Omega}[u] := \inf_{u \in \mathcal{H}^{s}} \frac{\|u\|_{\mathcal{H}^{s}(\Omega)}^{2}}{\|u\|_{L_{q}(\Omega)}^{2}} \equiv \inf_{u \in \mathcal{H}^{s}} \frac{\langle (-\Delta)_{Sp}^{s} u, u \rangle + \|u\|_{L_{2}(\Omega)}^{2}}{\|u\|_{L_{q}(\Omega)}^{2}} > 0.$$
(1)

The spectral Neumann fractional Laplacian

The spectral Neumann fractional Laplacian $(-\Delta)_{Sp}^s$ is the *s*-th power of conventional Neumann Laplacian in the sense of spectral theory. Its quadratic

Existence results

Existence of the extremal function in (1) is a simple fact for $q \in [1, 2_s^*)$ due to the fact that the embedding $\mathcal{H}^s(\Omega) \hookrightarrow L_q(\Omega)$ is compact here. The critical non-compact case $q = 2_s^*$ is much more complex. The following result was proved in [5] (for the local case s = 1 this result is well-known):

Theorem (N.Ustinov, 2020, [5]):

Let $n \geq 3$, let $\partial \Omega \in \mathcal{C}^2$ and let 2s > 1. Then there exists a non-negative non-zero extremal function for the embedding theorem (1) with $q = 2_s^*$.

Problem statement

By the variational argument, for $q < \infty$, any extremal function in (1) is a ground state solution (up to a multiplicative constant) to the following problem:

form in a bounded domain Ω is defined by

$$\langle (-\Delta)_{Sp}^{s} u, u \rangle := \sum_{j=1}^{\infty} \lambda_{j}^{s} \langle u, \phi_{j} \rangle^{2},$$
 (2)

where λ_i are eigenvalues and ϕ_i are orthonormal eigenfunctions of the Neumann Laplacian in Ω (we denote $\lambda_0 = 0$ and $\phi_0 = C$).

Structure of the extremal functions

First, let us consider the case $q \in [1,2]$. The Hölder inequality implies $||u||^2_{L_q(\Omega)} \le ||u||^2_{L_2(\Omega)} \cdot \max(\Omega)^{2/q-1}$, therefore $\mathcal{I}_{s,q}^{\Omega}[u] = \inf_{u \in \mathcal{H}^s} \frac{\langle (-\Delta)_{Sp}^s u, u \rangle + \|u\|_{L_2(\Omega)}^2}{\|u\|_{L_2(\Omega)}^2} \ge \operatorname{meas}(\Omega)^{1-2/q} = \mathcal{I}_{s,q}^{\Omega}[\mathbf{1}],$

and the constant function is the only minimizer of the functional $\mathcal{I}_{s,q}^{\Omega}[u]$ for any $s \in (0, 1]$.

Let us consider the more interesting case $q \in (2, 2_s^*]$. It turns out that the result here depends on the domain size. Accordingly, we use such reformulation: let $\Omega_{\varepsilon} := \{ \varepsilon x \mid x \in \Omega \}$ and let $u_{\varepsilon}(y) := u(\varepsilon^{-1}y)$, then

$$\mathcal{I}_{s,q}^{\varepsilon}[u] := \frac{\mathcal{I}_{s,q}^{\Omega_{\varepsilon}}[u_{\varepsilon}]}{\varepsilon^{n-2s-\frac{2n}{q}}} = \frac{\langle (-\Delta)_{Sp}^{s}u, u \rangle + \varepsilon^{2s} \|u\|_{L_{2}(\Omega)}^{2}}{\|u\|_{L_{q}(\Omega)}^{2}}.$$

So, the main question for the functional $\mathcal{I}_{s,q}^{\Omega}[u]$ in Ω_{ε} transforms into the similar question for the functional $\mathcal{I}_{s,q}^{\varepsilon}[u]$ in Ω in terms of ε .

$$(-\Delta)_{Sp}^{s}u + u = |u|^{q-2}u, \quad u \in \mathcal{H}^{s}(\Omega).$$
(3)

Obviously, from (2) it follows that $(-\Delta)_{Sp}^s \mathbf{1} = 0$, and the Neumann boundary value problem (3) always has a trivial solution u = 1.

The question is: is the extremal function in (1) constant or it gives the ground state solution for (3) that differs from the trivial one?

Theorem (N.Ustinov, 2020, [6]):

Let $meas(\Omega) = 1$ and let $q \in (2, 2_s^*]$. Then:

• for $\varepsilon > \varepsilon_s(q) := (\lambda_1^s/(q-2))^{1/(2s)}$ the function u = 1 is not a *local* minimizer of the functional $\mathcal{I}_{s,q}^{\varepsilon}[u]$ (obviously, is not a **global** one); **2** for $\varepsilon < \varepsilon_s(q)$ the function u = 1 gives a *local* minimum for $\mathcal{I}_{s,q}^{\varepsilon}[u]$;

\Im there exists an $\mathcal{E}_s(q) > 0$ such that, for all $\varepsilon \leq \mathcal{E}_s(q)$ the function u = 1 gives a **global** minimum for the functional $\mathcal{I}_{s,q}^{\varepsilon}[u]$, whereas for all $\varepsilon > \mathcal{E}_s(q)$ the function $u = \mathbf{1}$ is not a **global** minimizer for the functional $\mathcal{I}_{s,q}^{\varepsilon}[u]$. Moreover, the function $\mathcal{E}_s(q)$ is continuous and monotonically decreasing.

Whether $\mathcal{E}_s(q) = \varepsilon_s(q)$?

• Functions $\mathcal{E}_1(q)$ and $\varepsilon_1(q)$ were initially introduced in [3]; results on the constancy of the extremal function in the local case s = 1 are the same. • For n = 1 one has $\mathcal{E}_1(q) = \varepsilon_1(q)$ (see [1, 2]); for $n \ge 2$ there exist both examples of domains with $\mathcal{E}_1(q) < \varepsilon_1(q)$ (see [3]) or with $\mathcal{E}_1(q) = \varepsilon_1(q)$ (see [4]). • In [6] for arbitrary $s \in (0, 1)$ examples of domains with $\mathcal{E}_s(q) < \varepsilon_s(q)$ were provided for $n \ge 2$, in the analogous way to [3].

References

[1] Nazarov A.I., On exact constant in a one-dimensional embedding theorem, Probl. Mat. Anal., **19** (1999), 149–163.

[2] Nazarov A.I., On sharp constants in one-dimensional embedding theorems of arbitrary order, St. Petersburg Univ. Publ., (2004) 146–158.

[3] Nazarov A.I. and Scheglova A.P., On some properties of extremals in a variational problem generated by the Sobolev embedding theorem, Probl. Mat. Anal., **27** (2004), 109–136.

[4] Scheglova A.P., The Neumann boundary value problem for a semilinear elliptic equation in a thin cylinder. The least energy solutions, ZNS POMI, **348** (2007), 272–302.

[5] Ustinov N.S., On the constancy of the extremal function in the embedding theorem of fractional order, Funct. Anal. Appl., 54:4(2020), 295-305. [6] Ustinov N.S., On solvability of a critical semilinear problem with the spectral Neumann fractional Laplacian, Algebra i Analiz, 33:1 (2021), 194–212.