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Reflection calculus and conservativity spectra
Lev D. Beklemishev1

Steklov Mathematical Institute, Moscow, Russia
bekl@mi.ras.ru

Strictly positive logics recently attracted attention both in the description logic and in the
provability logic communities for their combination of efficiency and sufficient expressivity. The
language of Reflection Calculus RC consists of implications between formulas built up from
propositional variables and constant ‘true’ using only conjunction and diamond modalities
which are interpreted in Peano arithmetic as restricted uniform reflection principles.

We extend the language of RC by another series of modalities representing the operators
associating with a given arithmetical theory T its fragment axiomatized by all theorems of T
of arithmetical complexity Π0

n, for all n > 0. We note that such operators, in a precise sense,
cannot be represented in the full language of modal logic.

We formulate a formal system extending RC that is sound and, as we conjecture, complete
under this interpretation. We show that in this system one is able to express iterations of
reflection principles up to any ordinal < ε0. On the other hand, we provide normal forms for
its variable-free fragment. Thereby, the variable-free fragment is shown to be algorithmically
decidable and complete w.r.t. its natural arithmetical semantics.

The normal forms for the variable-free formulas of RC∇ are related in a canonical way to the
collections of proof-theoretic ordinals of arithmetical theories for each complexity level Π0

n+1

that we call conservativity spectra. Joost Joosten [2] established a one-to-one correspondence
between conservativity spectra (for a certain class of theories) and the points of the universal
model for the variable-free fragment of GLP due to Konstantin Ignatiev [1].

The third part of our paper provides an algebraic model I for the variable-free fragment
of RC∇. Our main theorem states the isomorphism of several representations of I: the
Lindenbaum–Tarski algebra of the variable-free fragment of RC∇; a constructive represen-
tation in terms of sequences of ordinals below ε0; a representation in terms of the semilattice
of bounded RC-theories and as the algebra of cones of the Ignatiev model.

References

[1] K.N. Ignatiev. On strong provability predicates and the associated modal logics. The
Journal of Symbolic Logic, 58:249–290, 1993.
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Subrecursive dialectica interpretations for subrecursive realizations
Anatoly Beltiukov

Udmurt State University, Izhevsk, Russia
belt.udsu@mail.ru

In this paper a connection of subrecursive variants of Dialectica Godel interpretation and real-
izational interpretation of Kleene is considered. The result is that you can call implementation
with support and opposition. It is shown that implementations with support can be automat-
ically extracted from intuitionistic proofs. The paper is intended for further use in systems of
program synthesis together with error analysis modules.

We consider the following types of constructive interpretation assertions: p : Q : r - Godel’s
interpretation (dialectica) [1], a : A - Kleene’s realization [2].

Formula p : Q : r informally can be read as follows: the object p confirms the statement Q
in the face of opposition r. Formula à : A means: the object à is a realization of the formula
A, or: the object a solves the constructive problem in the formula A. The combination of
these structures together gives a formula of the form p : (a : A) : r. For brevity, we omit the
brackets: p : a : A : r. This formula can be read as follows: the object a realizes formula A in
the face of opposition r with support of the object p". The practical meaning of this statement
is that the object a is a solution of the task, written in the form of the formula A, the object
r is a condition in which this solution is used, and the object p is used to check correctness of
this condition. Then the whole statement p : a : A : r means, that application of opbject a for
solution of task A in the condition r with support p passed successfully (there were no errors
in the solution with unerring condition).

For atomic formulas, the truth of the statement p : a : P (c) : q is determined by the
interpretation, i.e. each predicate P can be considered an algorithm with the property:
P (p, a, c, q) = (p : a : P (c) : q). The most interesting case of complex formulas is the real-
ization of the implication:

(g, h) : f : (A⇒ B) : (c, a, b)⇔

(c : a : A : g(c, a, b)⇒ h(c, a) : f(a) : B : b).

Here the support consists of two parts: g is a premise check module and h is a conclusion
realization support module.

It is proved that for natural deductive systems one can construct such polynomial algorithms
extrp and extra, that

Proof(d,A)⇒ (extrp(d) : extra(d) : A : x)

for any opposition x, where Proof(d,A) means, that d is a proof of the formula A.
In the deductive system, various limited induction schemes can be included depending on

the complexity class used in the functions of realizations [3].
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A note on counting quantifiers
Christian Choffrut

IRIF, University of Paris 7, France
choffrut@irif.fr

A unary counting quantifier is a construct of the form ∃=yx and serves as a prefix of a first
order formula of the Presburger arithmetics, i.e., the arithmetics of the integers Z without the
multiplication, denoted FO(+). A formula ∃=yxn φ(x1, x2, . . . , xn) is true under the interpretation
a1, a2, . . . , an−1 for x1, x2, . . . , xn−1 and b for y if and only if the number of integer values a
satisfying φ(a1, a2, . . . , an−1, a) equals b. For example the formula ∃=yx (−1 ≤ x ≤ 3) interprets
to true if and only if y = 5. The logic FO(+) extends to FOC(+) (c for counting) by allowing,
along with the ordinary quantifiers, these counting quantifiers. It seems that the term appeared
for the first time in [2]. However, the notion was known well before. Apelt1 proved in 1966 that
this logic does not have a greater expressive power expressiveness than FO(+), [1, p. 156]. It
was rediscovered by Nicole Schweikardt in [6]. It can be stated as follows.

Theorem 1. Given a Presburger formula φ(x1, . . . , xn) with free variables x1, . . . , xn, there
exists a Presburger formula ψ(x1, x2, . . . , xn−1, y) equivalent to the formula ∃=yxn φ(x1, . . . , xn)

The purpose of this short note is to show that the use of Ginsburg’ and Spanier’s charac-
terization of Presburger definable subsets along with the more precise version of Eilenberg and
Schützenberger allows us to eliminate some technicalities of the original proofs. It thus claims
no novelty and is a mere effort to reduce ad hoc demonstrations as much as possible.

1 Semilinear sets

We refer to [3] for a full exposition of the theory of rational subsets of Nn and Zn. In order to
keep our work self-contained, we content ourselves with recalling the properties needed for our
purpose only.

It is convenient to view the elements of Zn or Nn as vectors and to write them in boldface
and scalars in lightface. The operation of addition extends to subsets: if X, Y ⊆ Zn, then the
sum X + Y ⊆ Zn is the set of all sums x + y where x ∈ X and y ∈ Y . When X is a singleton
{x} we simply write x + Y . Given x in Zn, the expression Nx represents the subset of all
vectors nx where n ranges over N and similarly for Zx. For example, Zx + Zy represents the
subgroup generated by the vectors x and y.

We need a preliminary definition.
1Apelt refers to Härtig for the original definition which is equivalent, yet different from that given here.
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Definition 1. A subset of Zn (resp. Nn) is linear if it is of the form

Nb1 + · · ·+ Nbp (1)

for some n-vectors a,b1, . . . ,bp in Zn (resp.in Nn). It is simple if furthermore, the vectors
b1, . . . ,bp are linearly independent when considered as embedded in Qn. It is semilinear if it
is a finite union of linear (resp. simple) sets.

The main result on semilinear sets is summarized in the Theorem below. Ginsburg and
Spanier proved the equivalence of the first two statements for Nn, [4], but it can readily be
seen to hold for Zn. Eilenberg and Schützenberger, [3] proved the equivalence of the first
two statements in the general case of commutative monoids and established furthermore their
equivalence with the last statement for Z and N, a result which was explicitly left open by
Ginsburg and Spanier and which was independently obtained by Ito [5].

We denote Z and N respectively, the first order structure 〈Z; +, 0, 1, <〉 and 〈N; +, 0, 1, <〉.

Theorem 2. Given a subset X of Zn (resp. Nn), the following assertions are equivalent: (i)
X is first-order definable in Z (resp. N );
(ii) X is N-semilinear;
(iii) X is a finite union of disjoint simple subsets.

Consequently, a subset in Zn (resp. Nn) is first-order definable in the above structure if
and only if it is a disjoint union of simple subsets of Zn (resp. Nn).

2 A significant example

We study an example in order to highlight the specific properties that we take advantage of in
order to more easily produce an equivalent counting predicate. Consider the first-order formula

φ(x1, x2, x3, x4) ≡ ∃z1, z2, z3 : z1, z2, z3 ≥ 0
(x1 = z1 + 2z2 − z3) ∧ (x2 = 2z1 + 4z2 − 2z3) ∧ (x3 = 2z1 + z2) ∧ (x4 = z1 + z2 − z3)

which we write as a linear system of equations

z1 + 2z2 − z3 = x1
2z1 + 4z2 − 2z3 = x2
2z1 + z2 = x3
z1 + z2 − z3 = x4

The two specific features enjoyed by this example is the lack of disjunction and the fact that
every submatrix of rank 3 necessarily contains the row of the matrix corresponding to the
variable to be counted, namely the fourth row. We will see that these two conditions can always
be assumed. The subsystem consisting of the first, third and fourth rows has determinant equal
to 2. We solve the subsystem in the unknowns z1, z2 and z3, which yields

2z1 = −x1 + x3 + x4
2z2 = 2x1 − 2x4
2z3 = x1 + x3 − 3x4

4



Now, we must express the fact that the variables z1, z2, z3 are positive integers. This is the
case if and only if the following conditions hold (the coefficient 6 is the least common multiple
of the coefficients of the variable x4)

6x4 ≥ 6x1 − 6x3

6x4 ≤ 6x1

6x4 ≤ 2x1 + 2x3

x1 + x3 + x4 = 0 mod 2 (2)

The first three conditions are equivalent to

6x1 − 6x3 ≤ 6x4 ≤ min{6x1, 2x1 + 2x3} (3)

There are four different cases according to whether or not 2x1 + 2x3 ≤ 6x1 and whether or
not x1 + x3 = 0 mod 2. We only treat the case where these two conditions hold, implying in
particular because of (2), we get x4 = 0 mod 2. Observe that 2x1 + 2x3 ≤ 6x1 is equivalent to
x3 ≤ 2x1 and therefore (3) can be expressed as

6x1 − 6x3 ≤ 6x4 ≤ 2x1 + 2x3 (4)

Then the number of even values x4 satisfying (4) is equal to

b 1

6× 2
(2x1 + 2x3 − (6x1 − 6x3)c = b1

3
(2x3 − x1)c

Consequently, the counting predicate ∃yx4φ(x1, x2, x3, x4) is a disjunction of four predicates.
One of the four predicates corresponds to 2x1 + 2x3 ≤ 6x1 and x1 +x3 = 0 mod 2. It expresses
that the variable x4 varies in the interval (4) and is as follows

∃x4 φ(x1, x2, x3, x4) ∧ (x3 ≤ 2x1) ∧ (x1 + x3 =2 0) ∧ (x1 ≤ 2x3) ∧ y = b1
3

(2x3 − x1)c

3 The proof

Because of Ginsburg’s charaterization, every formula of Presburger arithmetic with free vari-
ables x1, . . . , xn is equivalent to a formula of the form

φ(x1, · · · , xn) ≡ φ1(x1, · · · , xn) ∨ · · · ∨ φr(x1, · · · , xn)

where the φi’s define disjoint simple subsets Ri ⊆ Zn. Now we have

∃=yxn φ(x1, · · · , xn) ≡ ∃y1, . . . ,∃yr
∃=y1xn φ1(x1, · · · , xn) ∨ · · · ∨ ∃=yrxn φr(x1, · · · , xn) ∧ (y1 + · · ·+ yr = y)

It thus suffices to prove the case r = 1, which means that we can assume that φ(x1, · · · , xn)
defines a simple subset. We express the problem in terms of linear algebra. We use the
expression (1) and we denote by M ∈ Zn×p the matrix of rank p whose columns are the
linearly independent vectors b1, · · · ,bp. We are interested in solving the following equation
where x and a are n-column integer vector and z is a p-column nonnegative integer vector

a +Mz = x (5)

5



In particular we get
φ(x)⇔ ∃z ∈ Np : a +Mz = x

which in terms of matrices and with the convention that bi,j and ai are the i-th components of
the vector bj and a respectively, is equivalent to the following system of equations

b1,1z1 + · · · + b1,pzp = x1 − a1
. . .
bn,1z1 + · · · + bn,pzp = xn − an

(6)

Observe that p ≤ n. The matrix has rank p. If there is a submatrix of rank p obtained by
selecting p among the n − 1 first rows, then the xi − ai’s for which i is the index of a row
among the selected rows define uniquely all xj − aj’s for all indices outside the selected rows.
In particular there is a unique possible value for xn − an’s. A Presburger formula expressing
this relation is

∃=yxn φ(x1, . . . , xn) ≡ ∃xnφ(x1, . . . , xn) ∧ y = 1.

Consider now the second case where all submatrices of rank p contain the last row. This
means that there exist p−1 among the n−1 first rows that determine the values of the variables
xi, for i < n. Thus we may assume without loss of generality that n = p. By Cramer’s rules,
z1, . . . zp can be uniquely expressed as a function of xi’s, i.e.,

Dzi = λi,pxp +

p−1∑
j=1

λi,jxj + γi i ∈ {1, . . . , p} (7)

where D is the absolute value of the determinant of the matrix M and where the coefficients
λi,j, γi are integers. We want to express in FO(+) the fact that the zi’s are nonnegative integers.
For that purpose we let −λi,p = m

ηi
wherem is the least common positive multiple of the −λi,p’s,

we let Si(x1, . . . , xp−1) be the polynomial
∑p−1

j=1 λi,jxj + γi and we set
Ui(x1, . . . , xp−1) = ηiSi if ηi > 0
Ei(x1, . . . , xp−1) = Si if λi,p = 0
Li(x1, . . . , xp−1) = ηiSi if ηi < 0

Let A ⊆ {1, . . . , p} be the set of indices i for which ηi > 0 and let B ⊆ {1, . . . , p} be the set
of indices i for which ηi < 0. Then, the zi’s are nonnegative integers if and only if the following
holds

Ui(x1, . . . , xp−1) ≥ mxp for all i ∈ A) (8)
Ei(x1, . . . , xp−1) ≥ 0 for all i 6∈ A ∪B (9)
Li(x1, . . . , xp−1) ≤ mxp for all i ∈ B) (10)

p∑
j=1

λi,jxj + γi ≡D 0 for all i = 1, . . . , p (11)

If A = ∅, for a fixed interpretation a1, . . . , ap of the variables x1, . . . , xp satisfying
φ(x1, . . . , xp) there are infinitely many values b such that φ(a1, . . . , ap−1, b) holds. By con-
vention we set ∃=yxp φ = false and we treat similarly the case where B = ∅. We thus assume
A,B 6= ∅. The conjunction of conditions (8) and (10) is equivalent to

max
β∈B

Lβ(x1, . . . , xp−1) ≤ mxp ≤ min
α∈A

Uα(x1, . . . , xp−1) (12)
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For all α ∈ A, β ∈ B set

Hα,β(x1, . . . , xp−1) ≡ Lβ(x1, . . . , xp−1) = maxβ′∈B Lβ′(x1, . . . , xp−1)
∧Uα(x1, . . . , xp−1) = minα′∈A Uα′(x1, . . . , xp−1)

Then condition (12) is equivalent to the following disjunction∨
α∈A,β∈B

Hα,β(x1, . . . , xp−1) ∧ Lβ(x1, . . . , xp−1) ≤ mxp ≤ Uα(x1, . . . , xp−1) (13)

Observe that if for two different pairs (α, β), (α′, β′) the p − 1-tuple (x1, . . . , xp−1) satis-
fies both Hα,β and Hα′,β′ then the set of xp associated is the same. Therefore we are left
with computing the number of elements satisfying condition (11) in the interval between
Lβ(x1, . . . , xp−1) and Uα(x1, . . . , xp−1) for fixed α, β. To that purpos let F be the set of map-
pings f : {1, . . . , p} 7→ {0, . . . , D− 1} such that

∑p
j=1 λi,jf(j) +γi ≡D 0 for all i = 1, . . . , p and

let G be the set of mappings g : {1, . . . , p − 1} 7→ {0, . . . , D − 1}. For g ∈ G and 0 ≤ θ < D
the pair (g, θ) denotes the mapping f ∈ F , when it exists, whose restriction to {1, . . . , p− 1}
is g and such that f(p) = θ. It is an easy exercise to verify that the predicate

ψm,D,θ(y, u, v) ≡ y = #{k ∈ N | u ≤ m(kD + θ) ≤ v}
is expressible in Z. It thus suffices to replace the double inequality of (13) by the following
disjunction over g ∈ G.∨

g∈G

[
x1 ≡D g(1) ∧ · · · ∧ xp−1 ≡D g(p− 1) ∧ ∃y1, . . . , yc y = y1 + · · ·+ yc∧

(g,θj)∈F

ψm,D,θj(yj, Lβ(x1, . . . , xp−1), Uα(x1, . . . , xp−1)
] (14)

4 The structure N

We now deal with the structure 〈N; +, <〉. In order to rewrite the condition (7), we let
ηiSi(x1, . . . , xp−1) = Pi(x1, . . . , xp−1)−Ni(x1, . . . , xp−1) where the coefficients of the two poly-
nomials Pi and Ni are strictly positive. We let A ⊆ {1, . . . , p} be the subset of integers i such
that ηi > 0 and B ⊆ {1, . . . , p} be the subset of integers i such that ηi < 0. Requiring that
zi be nonnegative is equivalent to requiring Pi ≥ Ni if ηi > 0 and Ni ≥ Pi if ηi < 0. Thus
condition (12) is expressed as follows in N

max
b∈B
{max{Pb −Nb, 0}} ≤ mxp ≤ min

a∈A
{max{Pa −Na, 0}}

The predicate Hα,β takes on the following form

Hα,β(x1, . . . , xp−1) = ∃α′∈Auα′∃β′∈Bvβ′∧
α′∈A

(uα′ +Nα′ = Pα′ ∨ uα′ = 0)
∧
β′∈B

(vβ′ +Nβ′ = Pβ′ ∨ vβ′ = 0)

∧uα = min
α′∈A

uα′ ∧ vβ = max
β′∈B

vβ′

and (13) takes on the form∨
α∈A,β∈B

Hα,β(x1, . . . , xp−1) ∧ uα ≤ mxp ≤ vβ (15)

The final predicate is obtained by substituting ψm,D,θj(yj, vβ, uα) for ψm,D,θj(yj, Lβ, Uα) in (14).
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Roots of exponential polynomials
Paola D’Aquino

Universita’ della Campania “L. VANVITELLI”, Italy
paola.daquino@unicampania.it

Zilber identified a new class of exponential fields (pseudo-exponential fields) proving a cate-
goricity result in every uncountable cardinality. He conjectured that the complex exponential
field is the unique pseudo-exponential field of cardinality continuum. I will present a result
jointly obtained with A. Fornasiero and G. Terzo in which we prove some instances of one of
Zilber’s axioms for (C; exp).

Computable groups of low complexity
Henri-Alex Esbelin

LIMOS, Université Clermont Auvergne, France
henri.esbelin@uca.fr

Building on Rabin’s definition of computable groups in [4], Cannonito defined in [1] a
hierarchy of such groups, measuring the complexity of computation by the classes of functions
Eα of the Grzegorczyk’s Hierarchy. Roughly speaking, a Eα-group has an integer indexing
function of the elements, such that the product and inverse may be computed in Eα.

He proved numerous theorems of closure of the class of the Eα-groups under free or amalaga-
mated products, quotients, etc... Due to his way of indexing, his results hold for α ≥ 3.

8



Studies on the Word Problem went far from this point of view, although Lipton and Zalc-
stein solved in [3] one of the main problem stated in [1], proving that the word problem for free
groups and the membership problem for the two-sided Dyck language are solvable in logspace.

Building on their idea, we extend the definition and some results of Cannonito to com-
putable groups with complexity in low classes Eα and in the smallest classes of polynomially

bounded functions with graphs in ∆N
0 (the so-called rudimentary functions) or in

(
∆]

0

)N
(for

informations about these classes, see [2].)
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Nonstandard methods and models of weak arithmetics
Jana Glivická

Charles University, Czech Republic
jana.glivicka@gmail.com

We show how to use nonstandard methods of set theory to obtain various models of weak
arithmetics. The nonstandard methodology provides us with class mapping ∗ defined on V,
the class of all sets. To construct models of arithmetics, we start with the structure (·N, ·+, ··),
which is obtained as the limit of an elementary chain (N,+, ·) 4 (∗N, ∗+, ∗·) 4 (∗∗N, ∗∗+, ∗∗·) 4
· · · 4 (n∗N, n∗+, n∗·) 4 · · · . The structure (·N, ·+, ··) and its basic properties are due to work
by Josef Mlček and Petr Glivický. For every a ∈ ·N, its rank is defined by r(a) = min{n ∈
N; a ∈ n∗N}.

Graded arithmetical structures arise when functions ·+ and ·· are replaced by their so called
graded versions. Given g0, g1, functions from N2 to N, the graded version of f(x, y) with respect
to g0, g1 is defined as f(g0(r(x),r(y))∗x, g1(r(x),r(y))∗y).

We study basic properties of graded functions and explore how various choices of g0, g1
result in very different graded arithmetical structures. An important tool in analyzing the
behavior of graded functions is the so called depth function.

We are especially interested in how grading influences prime numbers. By Chen’s theorem,
there are infinitely many primes p such that p+ 2 is a product of at most two prime numbers.
Using grading, it is possible to enforce that some composite numbers become primes with
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respect to the new multiplication; such numbers are called graded primes. Using Chen’s
theorem, we show how to obtain a structure that is a model of Robinson (and Presburger)
arithmetic and in which the twin prime conjecture holds for graded primes.

Model theory of linear fragments of Peano arithmetic
Petr Glivicky

University of Economics, Prague, , Czech Republic
petrglivicky@gmail.com

We give a survey of our results (partialy a joint work with P.Pudlák) on linear arithmetics –
linear fragments of Peano arithmetic (PA). For a cardinal k, the k-linear arithmetic LAk is a
theory extending Presburger arithmetic (in the language (0, 1,+, <)) by k unary functions of
multiplication by distinguished (nonstandard) elements (called scalars) and containing the full
scheme of induction for its language.

We give a classification of all definable sets in models of LA1 and, as a corollary, show
that LA1 is a tame theory – model complete, decidable, NIP, having recursive nonstandard
models...

On the other hand we prove that LA2 (as well as any LAk with k > 2) is model theoretically
wild. As a manifestation of this fact we show that there is a model M of LA2 in which an
infinitely large initial segment of Peano multiplication (i.e. a multiplication · such that (M, ·)
is a model of PA) is 0-definable. Consequently, the theories LAk with k > 1 are not model
complete nor NIP.

Each model of a linear arithmetic naturally corresponds to a discretely ordered module over
the ordered ring generated by the scalars. Our results on LA2 thus yield a non NIP ordered
module answering negatively the question of Chernikov and Hils whether all ordered modules
are NIP.

Congruence Preservation and Recognizability
Patrick Cégielski1,3, Serge Grigorieff2,3, Irène Guessarian2,3,4

We proved [1] that if f : N −→ N is non decreasing then conditions (1) and (2) below are
equivalent

(1) for all a, b ∈ N, a− b divides f(a)− f(b) and f(a) ≥ a,

(2) every lattice L of regular subsets of N which is closed under x 7→ x−1 is also closed under
f−1: i.e., for every L ∈ L, f−1(L) = {n ∈ N | f(n) ∈ L} ∈ L.

1LACL, EA 4219, Université Paris-Est Créteil, IUT Sénart-Fontainebleau, France cegielski@u-pec.fr
2IRIF, UMR 8243, Université Paris 7 Denis Diderot, France FirstName.LastName@irif.fr
3Partially supported by TARMAC ANR agreement 12 BS02 007 01
4Emeritus at UPMC Université Paris 6
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Does this property still hold when we replace the semi-ring of natural integers N with the
ring of integers Z or with the ring of profinite integers Ẑ ? The corresponding property does not
hold in the same terms, but the two conditions in (1) are fortunately equivalent to the notion
of “congruence preservation” in the case of N; we thus will use the latter notion of congruence
preservation.

Moreover, as regular subsets coincide with recognizable subsets for N, we will use “recog-
nizable” subsets in condition (2), leading to a statement more amenable to generalizations for
algebras different from 〈N,+〉. The above equivalence can thus be restated as

Theorem 1. If f : N −→ N is non decreasing then conditions (1) and (2) below are equivalent

(1) f is congruence preserving on N and, for all a ∈ N, f(a) ≥ a

(2) for every recognizable subset L of N the smallest lattice of subsets of N containing L and
closed under x 7→ x− 1 is also closed under f−1.

In the present paper, we investigate the relationships between congruence preservation,
recognizability and lattices of recognizable sets. We will show that Theorem 1 extends to
suitably ordered residually finite algebras, i.e., algebras where every congruence is an intersec-
tion of finite index congruences. Consequently, Theorem 1 also holds for 〈Z,+〉 and 〈Z,+,×〉.
Extending Theorem 1 to the additive group of p-adic integers requires more work.

• the generalization holds for 〈Zp,+,×〉 if we substitute “closure under all translations” for
“closure under decrement”.

• the generalization holds for 〈Zp,+〉 if we substitute “continuously recognizable subsets”
for “recognizable subsets”.

References

[1] P.Cégielski, S.Grigorieff, I. Guessarian, On Lattices of Regular Sets of Natural
Integers Closed under Decrementation, Information Processing Letters 114(4): 197-202,
2014.

The logical strength of automata theory
Leszek Kolodziejczyk

Institute of Mathematics, University of Warsaw, Poland
lak@mimuw.edu.pl

I will talk about some recent results concerning the axiomatic strength needed to prove two
classical theorems of automata theory: (1) the complementation theorem for nondeterministic
automata on infinite words, which plays a key role in the proof of Büchi’s theorem on the
decidability of the MSO theory of the natural numbers with order, and (2) the complementation
theorem for nondeterministic automata on infinite trees, which plays a key role in in the proof
of Rabin’s theorem on the decidability of the MSO theory of the full infinite binary tree.
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Typical proofs of the complementation theorem for automata on words make use of either
Ramsey’s Theorem or Weak Kőnig’s Lemma. We show that the axiomatic requirements of
the theorem are actually rather tame, as it is equivalent to the Σ0

2 induction principle over
RCA0. Also Büchi’s decidabiliy theorem, to the extent that it can be stated in the language of
second-order arithmetic, is equivalent to Σ0

2 induction over RCA0.
Typical proofs of the complementation theorem for automata on trees invoke the deter-

minacy of some Borel games, more specifically of games in which winning conditions are
given by boolean combinations of Σ0

2 sets. We show that this is in some sense necessary,
as the complementation theorem is equivalent to Bool(Σ0

2)-determinacy over RCA0. By results
due to MedSalem and Tanaka as well as Heinatsch and Möllerfeld, it follows that comple-
mentation for automata on infinite trees is unprovable from Π1

2-comprehension. Moreover, if
Π1

2-comprehension is taken as the base theory, then also Rabin’s decidabiliy theorem, to the
extent that it can be stated in the language of second-order arithmetic, becomes equivalent to
Bool(Σ0

2)-determinacy.
The talk will be based on joint work with Henryk Michalewski, Pierre Pradic and Michał

Skrzypczak.

Recent results on combinatorics and algorithmics of repeats in strings
Gregory Kucherov

CNRS & Université Paris-Est, Marne-la-Vallée, France
Gregory.Kucherov@univ-mlv.fr

We will present some recent combinatorial and algorithmic results on repeated structures
in strings. In particular, we will focus on α-gapped repeats in strings [7, 4], defined as factors
of the form uvu with |uv| = |u|+ |v| ≤ α|u|. By way of introduction, we will summarize main
results on periodicities in strings – a classic combinatorial notion that has long been a subject
of study for “stringology” researchers [5] – including some major recent advancements [1].

Our main result is the O(αn) bound on the number of maximal α-gapped repeats in a string
of length n, previously proved to be O(α2n) in [4]. For a closely related notion of maximal
δ-subrepetition (maximal factors of exponent between 1 + δ and 2), our result implies the
O(n/δ) bound on their number, which improves the bound of [6] by a log n factor.

We also present an algorithmic time bound O(αn+S) (S size of the output) for computing
all maximal α-gapped repeats. Together with our bound on S, this implies an O(αn)-time
algorithm for computing all maximal α-gapped repeats.

In the conclusion, we will mention some open questions and directions for future research.

Joint work with Maxime Crochemore (King’s College London and Université Paris-Est) and
Roman Kolpakov (Moscow University). Main results published in LATA’2016 conference [2].
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On the Strength of Various Truth Principles
Mateusz Łełyk

University of Warsaw, Poland
lelyk@op.pl

An axiomatic theory of truth is an extension of PA formulated in a language LPA +T , where
T is a fresh unary predicate. The basic classically compositional theory of truth, CT−, is the
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extension of PA with sentences naturally corresponding to inductive Tarski’s truth conditions
for LPA, e.g.

∀φ
(
SentLPA(φ)→ T (¬φ) ≡ ¬T (φ)

)
1. (NEG)

The starting point of the talk is the theorem on multiple axiomatizations of CT− extended
with a ∆0 induction for formulae with the T predicate (CT0): putting together the results
of Cieśliński ([2], [1], [3]), Kotlarski ([5]) and myself we can show that CT0 is deductively
equivalent to extensions of CT− with various reflection principles, e.g.

TPA ∀φ
(
PrPA(φ)→ T (φ)

)
(“All theorems of PA are true”),

TL ∀φ
(
Pr∅(φ)→ T (φ)

)
(“All theorems of First-Order Logic are true”),

REF ∀φ
(
PrT∅ (φ)→ T (φ)

)
(“Consequences of true sentences are true”).

Then we study the role the axiom NEG plays in obtaining these equivalences: we investigate
analogous extensions of PT−, the theory in which NEG is replaced with axioms of the form

∀φ, ψ
(
SentLPA(φ) ∧ SentLPA(ψ)→

(
T (¬(φ ∨ ψ)) ≡ T (¬φ) ∧ T (¬ψ)

))
2.

It turns out that in this context adding bounded induction results one more axiomatization of
CT0. However differences between “completeness” (TPA, TL) and “closure” (REF) reflection
principles become visible: PT− extended with

1. TL is conservative over PA,

2. TPA is conservative over the Uniform Reflection scheme over PA, hence is strictly weaker
than CT0,

3. REF is the same as CT0.
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Lipschitz determinacy for initial levels
of the Hausdorff hierarchy in Second Order Arithmetic

Manuel José S. Loureiro
Lusófona University, Lisbon, Portugal

mloureiro@ulusofona.pt

Lipschitz games in the Cantor space are infinite two person games where players I and II
alternately choose an element of {0, 1} and built two infinite sequences. We know that Lipschitz
games are determinate for all Borel sets in second order arithmetic. However, there is no
analysis of the strength of Lipschitz games in terms of subsystems of second order arithmetic.

In this talk we show how to formalize Lipschitz games within second order arithmetic
and we investigate the reverse mathematics of Lipschitz determinacy, as well as the tightly
related semilinear order principle, for the first levels of the Hausdorff hierarchy. It turns out
that the subsystem WKL0 proves Lipschitz determinacy and semilinear order principle for
clopen sets in the Cantor space. If we assume a certain dichotomy principle we can also derive
Lipschitz determinacy for open sets within the subsystem WKL0. Most remarkably, we can
fully characterize ACA0 in terms of Lipschitz determinacy for differences of closed sets in
Cantor space.

This is joint work with Andrés Cordón-Franco (University of Seville) and F. Félix Lara-Martín
(University of Seville).

The Four Color Conjecture
as a particular case of Hilbert’s tenth problem

Yuri Matiyasevich
St. Petersburg Department of V.A.Steklov Institute of Mathematics,

St.Petersburg, Russia
yumat@pdmi.ras.ru

Besides conventional proof of the undecidability of Hilbert’s tenth problem there is a very
informal “explanation” of the difficulty of Diophantine equations. Namely, according to DPRM-
theorem many outstanding mathematical problems can be reformulated as assertions about
non-existence of solutions of certain Diophantine equations. Examples of such problems are:
Fermat’s Last Theorem, Goldbach’s Conjecture, Riemann’s Hypothesis, and the Four Color
Conjecture (4CC).

Hardly we can hope to give a new (or the first) solution of any of these four problems
by examining corresponding (rather complicated) Diophantine equation. But we can look at
such reformulations from the other side. Namely, the undecidability of Hilbert’s tenth problem
implies that we need to invent more and more ad hoc methods for dealing with more and
more Diophantine equations. Now 4CC (proved forty years ago by K.Appel and W.Haken)
can be viewed as a very sophisticated method of tackling a particular Diophantine equation.
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One could try to “distill” their technique and then apply it to other equations. The success
would heavily depend on the way of constructing such an equation, the universal technique of
arithmetizing would just ruin the specificity of the Four Color Problem.

The talk will present a Diophantine equation equivalent to the Four Color Conjecture; in
its construction the speaker tried to use the peculiarity of the 4CC as he could.

“One equation to rule them all”, revisited
Domenico Cantone1, Eugenio G. Omodeo2

If the quaternary quartic equation

9 (u2 + 7 v2)
2 − 7 (r2 + 7 s2)

2
= 2 (*)

which M. Davis put forward in 1968 has only finitely many solutions in integers, then—as
observed by M. Davis, J. Robinson, and Yu. V. Matiyasevich in 1976—every listable set would
turn out to admit a single-fold Diophantine representation.

In 1995, D. Shanks and S. S. Wagstaff conjectured that (*) has infinitely many solutions;
while in doubt, it seemed wise to us to seek another candidate for the role of “one equation to
rule them all”. We put forward another quaternary quartic equation, namely

3 (r2 + 3 s2)
2 − (u2 + 3 v2)

2
= 2 ,

whose significance can be supported by much the same arguments found in Davis’s original
paper. Directly from the unproven assertion that this novel equation has only finitely many
solutions in integers, we show how to construct a Diophantine relation of exponential growth.

Interpretations by Positive Existential Formulas and
the Diophantine-Class Problems over Algebraic Structures

Albert Garreta, Alexei Miasnikov, and Denis Ovchinnikov
Stevens Institute of Technology, USA

dovchinn@stevens.edu

For an algebraic structureM, the Diophantine problem overM (or D(M)) is an agorithmic
problem to decide, by a given finite system of equations over M, if it has a solution or not.
Despite the obvious interest in studying decidabilty of D(M), most of results concern the case
when M is a commutative associative ring (a.g. Z, Q, Z[X]). I will try to avoid looking at
these specific structures, and instead talk about D(M) for general structuresM.

I will explain the general machinery of interpretations by positive existential formulas (or
PE-interpretations) that often allows one to reduce undecidability of D(M) to undecidabilty

1DMI, University of Catania, Italy. Email: cantone@dmi.unict.it
2DMG/DMI, University of Trieste, Italy. Email: eomodeo@units.it
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of D(A) for some well known A (in particular A = Z), even if the initial structureM had a
different signature.

I will focus on examples of new results about D(M) that can be obtained using this
technique. Examples include wide classes of nilpotent or metabelian groups, as well as certain
rings (not necessary commutative or associative).

Gödel’s Second Incompleteness Theorem Without Arithmetization
Fedor Pakhomov1

Steklov Mathematical Institute, Moscow, Russia
pakhfn@mi.ras.ru

Kurt Gödel in his famous paper on incompleteness theorems [Gö31] have introduced Gödel
numbering of formulas. As far as the author is aware, all the existing presentations of Gödel’s
second incompleteness theorem rely on either an arithmetization of formal language or on
formalization of it in terms of other notions of the same or higher expressibility power.

The key part of the usual proofs of the theorem is the use of Diagonal Lemma in order
to construct a sentence that is equivalent to its own unprovability. We show that in certain
much less expressive formal theories T it is still possible to formalize formal language and
prove Diagonal Lemma. Namely, our requirement is that T interprets certain theory Syn(T)
that we consider to be a “natural” theory of the syntax of T; note that the theory Syn(T) is
mutually interpretable with the theory of pairing function on an infinite domain. In particular,
it is possible to prove Diagonal Lemma for the elementary theory Th(N, C) of Cantor pairing
function C(n,m) = (n + m)(n + m + 1)/2 + m; in contrast with arithmetical theories, the
theory is known to be complete and decidable [CGR00].

For T as above, Gödel Second Incompleteness Theorem holds for any provability predicate
Prv(x) that satisfy Hilbert-Bernays-Löb derivability conditions. Also, we show that a theory
T is undecidable if some Prv(x) satisfy the natural condition T 0 Prv(p. . .Prv︸ ︷︷ ︸

n times

(p⊥q) . . .q), for

all n.
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Goodstein-type theorems and fast-growing functions
Denis I. Saveliev1

Steklov Mathematical Institute, Moscow, Russia
d.i.saveliev@gmail.com

Goodstein’s theorem [1] states that each process of a certain kind starting with any given
natural number n and growing very fast, the faster the bigger n is, nonetheless terminates
at 0. It was shown that this arithmetical fact is unprovable in Peano arithmetic [2]. Actually,
the length of the process starting with n ≥ 4 is extremely large and can be precisely calculated
in terms of the Hardy [3] and Löb–Wainer [4] fast-growing hierarchies.

We consider similar processes where decompositions of natural numbers into a sum of powers
of a given base, used in Goodstein’s theorem, are replaced by decompositions into a sum of
some functions growing faster than exponentiation. These processes also terminate at 0, and
this fact has a higher proof-theoretic strength. The length of them also can be calculated via
some faster-growing functions. Finally, we discuss some natural types of decompositions of
large natural numbers.
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Global neighbourhood completeness
of the Gödel-Löb provability logic

Daniyar Shamkanov2

Steklov Mathematical Institute, Moscow, Russia
daniyar.shamkanov@gmail.com

The Gödel-Löb provability logic GL is a modal logic describing all universally valid principals
of the formal provability in Peano arithmetic. In this talk, we consider neighbourhood (topo-
logical) semantics of GL. As was independently noticed by H. Simmons [5] and L. Esakia [1],

1The author was supported by Grant 16-11-10252 of the Russian Science Foundation.
2This work is supported by the Russian Science Foundation under grant (14-50-00005).
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formulas of GL can be interpreted as subsets of a scattered topological space, where boolean
connectives correspond to boolean operations and the modal connective ♦ corresponds to the
topological derivative operator acting on the given topological space. L. Esakia proved that
GL is complete with respect to this topological interpretation. In addition, he established
that scattered topological spaces coincide with neighbourhood GL-frames. In other words,
neighbourhood semantics of GL and its topological interpretion coincide with each other. Fur-
ther, V. Shehtman proved that GL is also strongly complete with respect to its neighbourhood
semantics [4].

This strong completeness result is obtained for the so-called local semantic consequence re-
lation. Recall that, over neighbourhood GL-models, a formula A is a local semantic consequent
of Γ if for any neighbourhood GL-modelM and any world x ofM

(∀B ∈ ΓM, x � B)⇒M, x � A .

A formula A is a global semantic consequent of Γ if for any neighbourhood GL-modelM

(∀B ∈ ΓM � B)⇒M � A .

This talk is devoted the case of the global semantic consequence relation over neighbourhood
GL-models.

Recently a new proof-theoretic description for the Gödel-Löb provability logic GL in the
form of a sequent calculus allowing non-well-founded proofs was given in [3, 2]. We con-
sider Hilbert-style non-well-founded derivations in GL and establish that GL with the obtained
derivability relation is strongly neighbourhood complete in the case of the global semantic
consequence relation.
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On entropic measures of computations
Anatol Slissenko

Université Paris-Est Créteil, LACL, France
anatol.slissenko@sfr.fr

It is intuitively clear that an algorithm (program or circuit), while computing a function, dimin-
ishes the uncertainty of its knowledge about the result. The classical measure of uncertainty
in mathematics is entropy. However, this notion does not represent adequately our intuition
about (deterministic) computations. E.g., if the domain of search diminishes then intuitively
so does the uncertainty but, in general, not entropy.

An entropy-style measure demands a probabilistic distribution. We take a measure reflect-
ing the principle of maximal uncertainty : imagine that an algorithm plays against an adversary
who wishes to maximize the uncertainty of the result; then all outputs should be equiprobable.

Denote by F the function computed by an algorithm A. We restrict the analysis to the
inputs of the domain of F of a fixed size n, where n is not far from the bitwise size (e.g.,
the number of vertices or edges of a graph). Below dm is this finite domain of F (for better
intuition we suppose that it is big, say of a cardinality exponential in n), rn is the respective
range F (dm) and M = |rn| (the number of values of F over dm). According the principle
of maximal uncertainty we take as a probabilistic measure P (f−1(v)) = 1

|rn(f)| . On F−1(v),
v ∈ rn(f), we make it uniform. On can think about non-uniform measures inside sets F−1(v)
or dynamic measures that change during the execution of A but we do not discuss it here.

Intuitively, when processing an input, say X, algorithm A searches in what set F−1(v) the
input is placed. We represent the runs of A as traces. Each trace is a sequence of events,
and each event is either an update (assignment) or a guard (the condition in a conditional
branching). We tacitly suppose that the complexity of an event is much smaller than the time
complexity of A. Each trace us transformed into a sequence of literals containing only inputs
and basic operations of A (arithmetical, logical operations, shifts etc.). This transformation
eliminates some events that do not explicitly depend on inputs, like those related to looping etc.
Besides its technical role, such a logical representation of runs permits to better understand
the type of algorithms we deal with, and put a question of lower bounds of complexity for such
particular models that are much simpler and better comprehensible than general algorithms;
however, they englobe many practical ones.

The next crucial step is to attribute to each event E a subset of dm that is, in a way, defined
by this event. The point is that many traces may have events similar to E, so all inputs defining
these traces are in the set Ê attributed to E. We order rn, and thus the sets F−1(v), and
construct an ordered partition π(E) of dm that consists of sets Ê ∩ F−1(v). For π(E) we
define a measure D(π(E)) with the properties: D(dm) = logM (maximal uncertainty); if
S ⊆ F−1(v) then D(S) = 0 (maximal certainty); if S ⊆ S ′ then D(S) ≤ D(S ′) (monotone,
decreasing).

The analysis of the behavior of D, though technically difficult, gives a valuable information
about A that shows ways of improving the algorithm. It seems likely that D may be useful
in the search for complexity lower bounds for classes of interesting algorithms (as mentioned
above).

This framework is illustrated by examples.
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Some technical details, including the transformation of events into literals and a definition
of D can be found in my paper http://arxiv.org/abs/1605.01519.

On weak monadic second-order definability in
some weak arithmetical structures

Stanislav O. Speranski
St. Petersburg State University, St. Petersburg, Russia

katze.tail@gmail.com

This talk surveys some recent results on weak monadic second-order definability in

〈N; +,=〉, 〈N;×,=〉, 〈N; | 〉 and 〈N;⊥〉

where | and ⊥ denote the divisibility relation and the coprimeness relation respectively. In
particular, we shall see that for each of these structures, if a set of n-tuples is computably
enumerable and closed under automorphisms of this structure, then it is weakly Σ1

1-defina-
ble (by a Σ1

1-formula with only one set quantifier) in this structure.
To prove these and other results, we use the technique developed in [4] and [5]. Further —

in applying this technique to the four structures mentioned above some results on first-order
definability in their expansions obtained in [3] and [1] turn out to be helpful, as well as the
famous Matiyasevich–Robinson–Davis–Putnam theorem [2].
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Our talk concerns satisfaction classes in models of Peano Arithmetic (PA). Let M |= PA
be a model of PA. Then a satisfaction class S ⊂ M may be viewed as an interpretation of
a fresh predicate (intended to represent the truth predicate) satisfying Tarski’s compositional
clauses for certain (Gödel codes of) arithmetical sentences, including at least some nonstandard
ones. If the satisfaction class happens to satisfy the compositional clauses for all (codes of)
arithmetical formulae, we call it a full satisfaction class. If the class satisfies compositional
clauses for (the codes of) all sentences of complexity at most Σc for some nonstandard c, we
call it a partial satisfaction class. If S ⊂ M is a satisfaction class, either full or partial,
and the expanded structure (M,S) satisfies the induction axioms for the expanded language,
we call the satisfaction class inductive.

It is surprisingly difficult for a model of PA to admit a full satisfaction class. Namely, the
following theorem holds:
Theorem 1 (Lachlan). Let M |= PA be a nonstandard model. Suppose that exists a full
satisfaction class S ⊂M . Then M is recursively saturated.

The proof has been originally presented in [1]. In our talk, we will try to present a proof
of Lachlan’s theorem which closely follows the original argument and the proof of Smith’s
theorem that every model of PA which has a full satisfaction class also has an undefinable
class satisfying ∆0-induction (which in particular shows that not every recursively saturated
model of PA admits a full satisfaction class). We believe however that our presentation is
considerably more structured and makes the theorem look much less ad hoc. Moreover, it
allows for certain generalisations. In particular, if time allows we would like to show how our
proof of Lachlan’s theorem may be slightly modified to obtain the following result (which has
been originally presented in [2]):
Theorem 2. Let M |= PA be a nonstandard model. Suppose that there exists a partial satis-
faction class S ⊂M . Then there exists a partial inductive satisfaction class S ′ ⊂M .

One can show relatively easily that any model M which has a partial inductive satisfaction
class is recursively saturated. On the other hand, a partial inductive satisfaction class S ′ ⊂M
is clearly undefinable in M and satisfies ∆0-induction. Thus the above result gives a common
generalisation of both Lachlan’s and Smith’s theorems.
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This is joint work with Fedor Pakhomov.
It is well known that Peano Arithmetic (PA) is a reflexive theory, that is, it proves the con-

sistency of all its finitely axiomatizable subtheories. All sequential theories with full induction
scheme are also reflexive, such as all extensions of PA and set theory ZF . Reflexivity implies
the impossibility to interpret a theory in any of its finite subtheories. But unlike reflexivity this
property could be formulated for any theory, not just theories that could formalize consistency
statements. A. Visser asked whether a similar phenomenon holds for the interpretations of less
expressive theories still possessing the induction principle. In particular, he considered Pres-
burger Arithmetic PrA, the true theory of (N,+). J. Zoethout studied Visser’s conjecture in
one-dimensional case [1] and established it under the assumption of the statement of Theorem
1(b). Thus by proving the following theorem we showed the impossibility to interpret PrA
one-dimensionally in any of its finite subtheories.

Theorem 1. Let ι : PrA → N be a one-dimensional parameter-free interpretation of Pres-
burger Arithmetic in the model (N,+). Then (a) the interpretation gives the model that is
isomorphic to the standard one; (b) the isomorphism is definable in (N,+).

Note that Theorem 1(a) was known to Zoethout, though we found a simpler proof. In
order to prove the analogue of Theorem 1(a) for multi-dimensional case we study which orders
are interpretable in (N,+). We show that all such orders are scattered (do not contain a dense
suborder). Using the notion of V D-rank the following stronger result was obtained:

Theorem 2. All m-dimensionally interpretable in PrA linear orders (m ≥ 1) are of V D-rank
m+ 1 or below.

In order to prove it, we show that for any infinite PrA-definable set M ⊆ Nm there
is a unique number n ≥ 1 such that there is a Presburger-definable isomorphism between
M and Nn. We call n the Presburger dimension of M. Theorem 2 immediately implies the
multi-dimensional generalization of Theorem 1(a). Whether the (b) part also holds when
m ≥ 2, however, remains an open question.
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