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We consider quasilinear system

ur — div(a(z,u)Vu) = g—divG, z=(z,t) e Q =Q2 x (=T7,0), (1)

ulg,o = u’. (2)
Here € is a bounded domain in R?, n > 2, T > 0, and u: Q — RY,
w=(ul,...,ulV), N>1, Vu= {uﬁa}ggx

We assume that for almost all z € Q and all uw € RY

la(z,w)|| < p; (alz,w)E, €) > v|€]?, Ve € R,

with some constants 0 < v < u. We write a € {v,u}. We are interesting
in additional conditions on the matrix a (for smooth enough g, G, uo)
to prove partial regularity of weak solutions v € V(Q) := Wzl’O(Q) =
La((=T,0); W5(£2)) of (1).

parabolic case:(n = 1)-regularity; (n = 2) =7 (n > 3) - counterexamples
by O.John, J.Stara, J.Maly (1986), and O.John, J.Stara (1995): weak
bounded solution in Q1 = B1(0) x (0,1) under condition u|3pQ = ¢, ¢ €
Lip, but u is smooth on the set Q1 \ {(0,t) : t > 1}.



Partial regularity results a) Local partial regularity for solutions u €
V(Q) of system (1) was proved by M.Giaquinta, E.Giusti (1973)."If a €
{v, u}, all elements of a are uniformly continuous functions (only con-
tinuous) then " for any fixed o € (0,1) there exist 6, Ry such that the
assumption

][ u— (u)p 0l2dz <0, inQr(z°) CCQ, R< R, (%)
Qr(zY)
supplies Hélder continuity of u in some Qr(z°), r < R, witha € (0,1),” here
Qr(29) = Br(29) x Ar(#9), Ar(t9) = (10 — r2,¢0 4 r2) .7
By Caccioppoli and Poincare inequalities, (*) is equivalent to the condi-
tion
%/QR(,ZO) IVul?dz < 61, R< Rp. (%)

0 . . e 1 2 .
We say z" € Reg(u) if “}r{n_L?)fRn fQR(Z()) |'Vul“dz = 0.

We put = = {z € Q : |imi8f’r_anr|Vu|2dz > 0}, Hn(X;0) = 0; u €
r—r

C*(Qo;9), Va € (0,1), Qo =Q\=. (H, 2(X¢) =0 fora.a. t€(0,7)).
b) boundary partial regul.: Cauchy-Dir.problem -S.Campanato,1981;
Cauchy-Neum. pr.- A.Arkhipova, 1992-1994.



The work I discuss today was inspired by results dedicated to L,- theory
for scalar nonlinear parabolic equations ( in divergence and nondivergence
form) and to linear systems with nonsmooth in time principal matrix.
Works by N.V. Krylov (and with coauthors Dong H, Kim D., ...)

There are three approaches to study regularity of quasilinear systems:
1) indirect method (by contradiction)

2) direct method (to freeze coefficients + Gehring Lemma)

3) A-caloric approximation method

e We say that h is A-caloric function in Qp(2°) = Bp(a®) x Ap(0) if it
satisfies

hi — AV2h =0, z € Qpr(2Y).

The problem: to estimate |ju — hHgQR(zO)’ hlg,o 7 u, if the integral
identities for w and h are similar in sbme sense.

The idea of the method belongs to E.De Giorgi (1961) who compared
weak solutions of elliptic equations with harmonic functions. For different
classes of elliptic systems, the method was successfully developed by F.
Duzaar, J.F.Grotowski (2000) (A-harmonic method), and by F. Duzaar,
G. Mingione (2005) for parabolic systems (A-caloric method).



We modified A-caloric method to A(t)-caloric method to prove partial
regularity of u € V(Q) for systems (1) when no smoothness of the matrix
a(z,t,u) in t is assumed.

Main assumptions

[H1] The matrix a(z,u) € {v,u} for almost all z€ Q and all u € RV,

[H2] |la(z,u) — a(z,v)]| < w(u —v|?), a.a. z € Q, Yu,v € RY, where w(s)
is bounded convex function, w(s) — 0, s — 0.

[H3] a(-,t,u) € VMO() for a.a.t € (=T,0), Yu € RY, and

supsup £ Ja ) = (@), ot mIPdydt = gP(r) > O,
2VeQneRN p=r A(19) B, (29)N0 r—0

[HA4]

ess sup ||la(z, t,u) — ay, t,v)|| < L(|lz -y’ + |u—v|?), Yo,y € Q, u,v e RV,
te(=T,0)

If g,G = 0, local smoothness in Q: let 20 € Reg(u) then
1) [H1] — [H3] = u € CY(Qr(29)), Va € (0,1);

2) [H1], [H4] = Vu e CP(Qr(29)).
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Remark As a consequence, we arrive at the known result: v € C*(Qqp;9),
Va € (0,1), where open set Qg = Q \ X, X is the singular set of u,
Hp—e(XZ;6) = 0. Under the conditions of Theorem 2, we can additionally
assert that Vu € CP(Qo; 6).

Second step— boundary regularity.

Theorem Let [H1]—[H3] hold, 82 € C1, any a € (0,1) be fixed. Let g €
L27n_2+2a(Q),G c L2,n—|—2a(Q)7 uO c £2,n—|—2—|—2a(Q)7 vuO c L2,n—|—2a(Q),
up € L2n2T22(Q); wu € V(Q) be a weak solution to problem (1),(2).
If 20 = (29,19 € QU 8,Q, 20 € Reg(u), then there exist r > 0 such that
u € C9%Q,.(29)), Vu e L2nT22(Q,) and these norms are estimated by
lully gy and known characteristics of data.

e Under assumptions [H1], [H4] for smooth enough ¢g,G, u°® and 02, we
prove that additionally Vu € C?(Q,(29)),some 8 € (0,1).

The idea of the proof.

1o(z) = u(z) — u0(2), vlg,q = 0;

2) local coordinates y = y(x), Qi" = Bi" x(—1,0); 1 =~v1 x(—1,0), v1 =
B1(0) N {zn = 0O}.



We preserve all notation:
up — div(al(z,u)Vu) = f(z) — div F(2), zeQ7, (3)

Ulyotoy =0 9QT0)=r1u(Bf x {-1}). (4)

e A function u € V(Qi") is a weak solution to problem (3), (4), if u satisfies
boundary condition (4) in the sense of traces on "1 and the identity

0 —
Jor @ ud+ @EOVE TN = |

v € WH(QT(0)), dlyr =0, 0°QF = 0QF \ (B x {~1}).

e "Function h € V(Q}), hlr, = 0, is A(t)-caloric in QF if A(t) € {v,u}
for a.a. t € A and it is a weak solution to the problem

(fo+F, Ve))dz,  (5)

he — AX)V?h =0, z€Q%; hlr,=0."

he W3 (QF), Dh e C(QF), (D°h)y € L2(QF), r < R,Val;

2
][ |h|2dz§c(§) ][ h[2dz, €€ er(0), p<r<R:
Qy (€9) Q7 (€9)



4
][ h — (hay)pan|2dz < c (3> ][ h — (ha, )r 2n|? dz.
T
Q4 (€9 Qi (£9)

Lemma (!) Let O < v < u and Q?{ = Ql‘g(zo), 20 € 11(0), be fixed.
For any ¢ > 0 there exist Ce = C(e,v,u,n, N) > 0 such that the following
holds: for any matrix A(t) € {v,u} for a.a. t € Nr, and any function
u € V(QE), ulr, = O, there exist an A(t)-caloric function h € V(Q}'%'/Q),

h||—R/2 =0, and ¢ € C&(Qg), supQg |V ¢| <1, such that

£ (hP+ RV HR) dz < 2"F2 f (uP+ RV uP) 2, (6)
Q;/z QF

][ u—h2dz < e ][(|u|2—|—R2|Vu|2)dz—|—C’eR21CR, (7)
Qf;/z QF

Kpi=| 1] (wer— (AOV©,V $))dz
QL




We fix 20 € I, 20 € Reg(u), and QL (z0), Qr(:z%)n{t = -1} =0,

and put A(t) = t=][ a(z,t,0) dr,
put A = a0 =, aG1,0)ds
1
d(p,20) 1= — Vu|2dz, o < R.
p Qp(zo)l

Using assumptions [H1] — [H3], we estimate g in the way:

Kr < M(9,R)R?®(R,2°) + cR™?By, By = |fII? + |F|*.

where some function M(6,R) — 0, 6, R — O.
By relations (6), (7), Caccioppoli and Poincare inequalities for v and h,
and the assumptions on f, F', we derive the inequality

2 R n—+2
(ﬁ) + (c + Cc M(8, R)) (—)
R p

R n—+2
D(p) < cp d(R) 4+ Ce <—> R%“ By.

P
Then we put in the last inequality p = 7R with 7 < 1/4 to define below:
®(TR) < colr? + 7~ ("2 (e + Cc M (0, R)]P(R) + Cer~("T2)R20 B,

For a fixed exponent a € (0,1) we put 8 = (1+«)/2 and choose T, ¢, 0, Ry
to obtain

®(7R,20) < %P d(R, 2°) + K By R**.

Using iteration process with R; = TjR, 7 € N, we arrive at the inequality

®(Rj,20) < 72PId(R, 20) + K Bpr2@iR2os) _ r25(8-a),



It follows that
2x
®(p,0) < c [(%) ®(R,2%) +p>*By|, 2Ty (8)

Note that ®(R, z) is a continuous function in z for the fixed R. It means
that there exists a cylinder Q;"(zo) such that condition (*) holds for
®(R,£9) with any €0 ¢ Q;"(zo). It allows us to "sew” boundary estimate
(8) and corresponding estimate for inner cylinders and to assert that
estimate (8) is valid for all ¢9 ¢ Qﬂ'(zo). It supplies us the estimate
of Vu in L27t29(QF(29);6), and u € £27T2+2a(QF(20);5). Due to
isomorphism of this space to CO‘(Qf,?"(zo);é), we obtain the estimate of
the Holder norm of w.

o If Qp(z9) N{t=—1} %0, we put a%a=,t,u) = a%=x,—1,0), and f, F =0
for t < —1.

To estimate Vu € £2712+28 \we assume [H1] and [H4] and estimate the
function

Wip, 2% = f (VU + sy = (ua) 0/ dz, 20 € Mo
Qp(zo)
In this case A(t)-caloric lemma is applied to v(z) = u(z) — (uz,)p 0(zn).



