Quasilinear elliptic problems with Hardy potentials joint work with
 V. Moroz, W. Reichel \& M.A. Pozio

Catherine Bandle

University of Basel, Switzerland

Introduction

$\Omega \subset \mathbb{R}^{N}$ bounded smooth domain, $x \in \Omega$ generic point, $\delta(x):=\operatorname{distance}\{x, \partial \Omega\}, \mu \in \mathbb{R}, p>0, p \neq 1$.
Consider

$$
(P) \quad \Delta u+\frac{\mu}{\delta^{2}} u=u^{p} \text { in } \Omega, u>0
$$

$\frac{\mu}{\delta^{2}(x)}$ is called Hardy potential.

Driving mechanisms

nonlinear regime

(N) $\Delta U=U^{p}$ in Ω,
linear regime

$$
\text { (L) } \Delta h+\frac{\mu}{\delta^{2}} h \geq 0 \text { in } \Omega
$$

Known results for the nonlinear problem

$$
\Delta u=u^{p} \text { in } \Omega
$$

- The boundary value problem with $u=\phi$ on $\partial \Omega$ has a unique solution for every positive continuous ϕ.

Then there exists a unique solution U such that $U(x) \rightarrow \infty$ as $x \rightarrow \partial \Omega$.

```
1. U(x)}\mp@subsup{\delta}{}{\frac{L}{p-1}}(x)->\mp@subsup{c}{p}{}\mathrm{ as }x->\partial\Omega
2. U(x)\gequ(x) for any other solution.
    It is therefore called the large solution.
```

1. There exist solutions which vanish identically on a sub
domain $\omega \subset \Omega$ (=dead core) and are positive elsewhere.

Known results for the nonlinear problem

$\Delta u=u^{p}$ in Ω

- The boundary value problem with $u=\phi$ on $\partial \Omega$ has a unique solution for every positive continuous ϕ.
- Let $p>1$.

Then there exists a unique solution U such that $U(x) \rightarrow \infty$ as $x \rightarrow \partial \Omega$.

1. $U(x) \delta^{\frac{2}{p-1}}(x) \rightarrow c_{p}$ as $x \rightarrow \partial \Omega$.
2. $U(x) \geq u(x)$ for any other solution. It is therefore called the large solution.

There exist solutions which vanish identically on a sub
domain $\omega \subset \Omega$ (=dead core) and are positive elsewhere.

Known results for the nonlinear problem

$\Delta u=u^{p}$ in Ω

- The boundary value problem with $u=\phi$ on $\partial \Omega$ has a unique solution for every positive continuous ϕ.
- Let $p>1$.

Then there exists a unique solution U such that $U(x) \rightarrow \infty$ as $x \rightarrow \partial \Omega$.

1. $U(x) \delta^{\frac{2}{p-1}}(x) \rightarrow c_{p}$ as $x \rightarrow \partial \Omega$.
2. $U(x) \geq u(x)$ for any other solution. It is therefore called the large solution.

- Let $p<1$.

1. There exist solutions which vanish identically on a sub domain $\omega \subset \Omega$ (=dead core) and are positive elsewhere.

Phragmen-Lindelöf alternative

$\Delta h+\frac{\mu}{\delta^{2}} h \geq 0, \mu \leq 1 / 4$ in a small strip near the boundary.
Theorem
(i) $\mu<1 / 4$.

Let $\beta=\beta_{ \pm}$where $\beta(\beta-1)+\mu=0$
$\beta_{-}:=1 / 2-\sqrt{1 / 4-\mu}<\beta_{+}:=1 / 2+\sqrt{1 / 4-\mu}$.
Then either

- $\lim \sup _{x \rightarrow \partial \Omega} h(x) / \delta^{\beta-}(x)>0$
or
- $h \leq c \delta^{\beta_{+}}$in $\{\delta(x) \leq \rho\}$ for some positive c (small subharmonics)

The same statement holds with $\delta^{\beta-}$ replaced by $\delta^{1 / 2}(x) \log (1 / \delta(x))$ and β_{+}by $1 / 2$.

Phragmen-Lindelöf alternative

$\Delta h+\frac{\mu}{\delta^{2}} h \geq 0, \mu \leq 1 / 4$ in a small strip near the boundary.
Theorem
(i) $\mu<1 / 4$.

Let $\beta=\beta_{ \pm}$where $\beta(\beta-1)+\mu=0$
$\beta_{-}:=1 / 2-\sqrt{1 / 4-\mu}<\beta_{+}:=1 / 2+\sqrt{1 / 4-\mu}$.
Then either

- $\lim \sup _{x \rightarrow \partial \Omega} h(x) / \delta^{\beta-}(x)>0$
or
- $h \leq c \delta^{\beta_{+}}$in $\{\delta(x) \leq \rho\}$ for some positive c (small subharmonics)
(ii) $\mu=1 / 4$.

The same statement holds with $\delta^{\beta-}$ replaced by $\delta^{1 / 2}(x) \log (1 / \delta(x))$ and β_{+}by $1 / 2$.

Hardy constant

$$
C_{H}(\Omega)=\inf _{\mathcal{K}} \int_{\Omega}|\nabla \phi|^{2} d x \text {, where } \mathcal{K}=\left\{\phi \in C_{0}^{\infty}(\Omega), \int_{\Omega} \frac{\phi^{2}}{\delta^{2}} d x=1\right\} .
$$

Properties:

$$
\begin{aligned}
0 & <C_{H}(\Omega) \leq 1 / 4 . \\
C_{H}(\Omega) & =1 / 4 \text { if } \Omega \text { is convex or for annuli in } \mathbb{R}^{N}, N>2 .
\end{aligned}
$$

$C_{H}(\Omega)$ is attained if and only if $C_{H}(\Omega)<1 / 4$.
Marcus, Mizel, Pinchover, Shafrir and Brezis 1997, 1998

1-dimensional problems

$u^{\prime \prime}(x)+\frac{\mu}{x^{2}} u(x)=u^{p}(x)$
Elementary solution: $u(x)=\left(\frac{2(p+1)}{(p-1)^{2}}+\mu\right)^{\frac{1}{1-p}} x^{-\frac{2}{p-1}}$
$h^{\prime \prime}(x)+\frac{\mu}{x^{2}} h=0$
Solutions: $h(x)=c_{1} x^{\beta_{+}}+c_{2} x^{\beta_{-}}$where $\beta_{ \pm}$are the roots of $\beta(\beta-1)+\mu=0$

$$
\beta_{ \pm}=\frac{1}{2} \pm \sqrt{\frac{1}{4}-\mu} .
$$

$h \sim x^{\beta_{+}}$small harmonic $h \sim x^{\beta-}$ large harmonic.

Radial solutions

$$
\Omega=B_{R} \text { or } \Omega=A\left(r_{0}, R\right):=\left\{r_{0}<|x|<R\right\}
$$

The solutions depending only on $r=|x|$ satisfy the ODE

$$
\begin{array}{r}
u^{\prime \prime}(r)+\frac{N-1}{r} u^{\prime}(r)+\frac{\mu}{\delta^{2}(r)} u(r)=u^{p}(r), \\
\delta= \begin{cases}R-r & \text { if } r>\frac{R+r_{0}}{2} \\
r-r_{0} & \text { otherwise } .\end{cases}
\end{array}
$$

Asymptotic boundary behavior

$$
0<p
$$

Let u be a positive local solution near the boundary. Then the only possible behaviors at the boundary are

$$
\begin{aligned}
& \lim _{\delta \rightarrow 0} \frac{u(\delta)}{\delta^{\beta_{-}}}=c, \text { large harmonics }, \\
& \lim _{\delta \rightarrow 0} \frac{u(\delta)}{\delta^{\beta_{+}}}=c, \text { small harmonics },
\end{aligned}
$$

In addition if $\mu>-\frac{2(p+1)}{(1-p)^{2}}$,
$\left(\Leftrightarrow \beta_{+}<\frac{2}{1-p}\right.$ if $p<1$ and $\beta_{-}>-\frac{2}{p-1}$ if $p>1$)
$\lim _{\delta \rightarrow 0} \frac{u(\delta)}{\delta^{2 /(1-p)}}=c_{p, \mu}\left\{\begin{array}{l}0<p<1 \text { dead core solution } \\ p>1 \text { blowup solution }\end{array}\right.$

Existence of local solutions

- If $\mu>-\frac{2(p+1)}{(1-p)^{2}}$ there exist local solutions of all types.
- If $\mu<-\frac{2(p+1)}{(1-p)^{2}}$ there exist only local
small harmonics if $p>1$, large harmonics if $p<1$.

Global solutions of $\Delta u+\frac{\mu}{\delta^{2}} u=u^{p}$ in arbitrary domains

Definition

A solution is called small solution if it belongs to $W_{0}^{1,2}(\Omega)$.
Theorem

- If $\mu<C_{H}(\Omega)$ then there are no small, non trivial solutions $u \in W_{0}^{1,2}(\Omega)$.
- If $p>1, C_{H}(\Omega)<1 / 4$ and $\mu \in\left(C_{H}(\Omega), 1 / 4\right)$ then there exists a small solution such that $u(\delta) \leq c \delta^{\beta_{+}}$.

Global solutions of $\Delta u+\frac{\mu}{\delta^{2}} u=u^{p}$ in arbitrary domains

Definition
A solution is called small solution if it belongs to $W_{0}^{1,2}(\Omega)$.
Theorem

- If $\mu<C_{H}(\Omega)$ then there are no small, non trivial solutions $u \in W_{0}^{1,2}(\Omega)$.
- If $p>1, C_{H}(\Omega)<1 / 4$ and $\mu \in\left(C_{H}(\Omega), 1 / 4\right)$ then there exists a small solution such that $u(\delta) \leq c \delta^{\beta_{+}}$.

Proof -The existence of a positive solution is incompatible with the Hardy constant.

- Construction of an upper and lower solution, Keller-Osserman type a priori bound.

Radial solutions if $0<p<1$ in the ball B_{R}

Theorem
(i) There exist infinitely many strictly positive radial solutions.
(ii) For every $r^{*}<R$ there exists a solution such that $u=0$ in ($0, r^{*}$) and $u>0$ in (r^{*}, R).
(iii) All solutions satisfy at the boundary

$$
\lim _{r \rightarrow R} u(r)(R-r)^{-\beta_{-}}=v(0)>0
$$

Annuli

$$
0<p<1
$$

Theorem
There exist local solutions of the type described above.
A: $\mu<0$
B: $0<\mu<1 / 4$

$p>1$

The situation is very similar except that instead of vanishing with the dead core rate one has blow up

$$
u(r) \sim\left(r-R_{0}\right)^{-\frac{2}{p-1}} .
$$

$p>1$

A: $\mu<0$

B: $0<\mu<1 / 4$

General domains

Theorem

1. For $p>0, \neq 1$ there exist solutions such that

$$
0<\gamma<\liminf _{\delta \rightarrow 0} \frac{u(\delta)}{\delta^{\beta_{-}}} \leq \limsup _{\delta \rightarrow 0} \frac{u(\delta)}{\delta^{\beta_{-}}} \leq \gamma^{-1} .
$$

(harmonic growth at the boundary)
2. If $p>1$ and $\mu>-\frac{2(p+1)}{(p-1)^{2}}$ there exist solutions such that

$$
0<\gamma<\liminf _{\delta \rightarrow 0} \frac{u(\delta)}{\delta^{-\frac{2}{p-1}}} \leq \limsup _{\delta \rightarrow 0} \frac{u(\delta)}{\delta^{-\frac{2}{p-1}}} \leq \gamma^{-1} .
$$

Happy birthday,

dear Nína

