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Introduction

Ω ⊂ RN bounded smooth domain, x ∈ Ω generic point,
δ(x) := distance{x , ∂Ω}, µ ∈ R, p > 0,p , 1.
Consider

(P) ∆u +
µ

δ2
u = up in Ω, u > 0.

µ

δ2(x)
is called Hardy potential.



Driving mechanisms

nonlinear regime

(N) ∆U = Up in Ω,

linear regime

(L) ∆h +
µ

δ2
h ≥ 0 in Ω.



Known results for the nonlinear problem

∆u = up in Ω

• The boundary value problem with u = φ on ∂Ω has a
unique solution for every positive continuous φ.

• Let p > 1.
Then there exists a unique solution U such that U(x)→ ∞
as x → ∂Ω.

1. U(x)δ
2

p−1 (x)→ cp as x → ∂Ω.
2. U(x) ≥ u(x) for any other solution.

It is therefore called the large solution.
• Let p < 1.

1. There exist solutions which vanish identically on a sub
domain ω ⊂ Ω (=dead core) and are positive elsewhere.
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Phragmen-Lindelöf alternative

∆h + µ

δ2 h ≥ 0, µ ≤ 1/4 in a small strip near the boundary.

Theorem
(i) µ < 1/4.

Let β = β± where β(β − 1) + µ = 0

β− := 1/2 −
√

1/4 − µ < β+ := 1/2 +
√

1/4 − µ.

Then either
• lim supx→∂Ω h(x)/δβ−(x) > 0
or
• h ≤ cδβ+ in {δ(x) ≤ ρ} for some positive c (small subharmonics)
(ii) µ = 1/4.

The same statement holds with δβ− replaced by δ1/2(x) log(1/δ(x))

and β+ by 1/2.
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Hardy constant

CH(Ω) = inf
K

∫
Ω
|∇φ|2 dx , where K =

{
φ ∈ C∞0 (Ω),

∫
Ω

φ2

δ2
dx = 1

}
.

Properties:

0 < CH(Ω) ≤ 1/4.

CH(Ω) = 1/4 if Ω is convex or for annuli in RN , N > 2 .

CH(Ω) is attained if and only if CH(Ω) < 1/4.
Marcus, Mizel, Pinchover, Shafrir and Brezis 1997, 1998



1-dimensional problems

u′′(x) +
µ

x2
u(x) = up(x)

Elementary solution: u(x) = (
2(p+1)

(p−1)2 + µ)
1

1−p x−
2

p−1

h′′(x) +
µ

x2
h = 0

Solutions: h(x) = c1xβ+ + c2xβ− where β± are the roots of
β(β − 1) + µ = 0

β± =
1
2
±

√
1
4
− µ.

h ∼ xβ+ small harmonic
h ∼ xβ− large harmonic.



Radial solutions

Ω = BR or Ω = A(r0,R) := {r0 < |x | < R}

The solutions depending only on r = |x | satisfy the ODE

u′′(r) +
N − 1

r
u′(r) +

µ

δ2(r)
u(r) = up(r) ,

δ =

R − r if r > R+r0
2

r − r0 otherwise .



Asymptotic boundary behavior
0 < p

Let u be a positive local solution near the boundary. Then the
only possible behaviors at the boundary are

lim
δ→0

u(δ)

δβ−
= c, large harmonics ,

lim
δ→0

u(δ)

δβ+
= c, small harmonics ,

In addition if µ > −2(p+1)

(1−p)2 ,

(⇔ β+ < 2
1−p if p < 1 and β− > − 2

p−1 if p > 1)

lim
δ→0

u(δ)

δ2/(1−p)
= cp,µ

0 < p < 1 dead core solution

p > 1 blowup solution



Existence of local solutions

• If µ > −2(p+1)

(1−p)2 there exist local solutions of all types.

• If µ < −2(p+1)

(1−p)2 there exist only local

small harmonics if p > 1,
large harmonics if p < 1.



Global solutions of ∆u + µ

δ2 u = up

in arbitrary domains

Definition
A solution is called small solution if it belongs to W 1,2

0 (Ω).

Theorem
• If µ < CH(Ω) then there are no small, non trivial solutions
u ∈W 1,2

0 (Ω).

• If p > 1, CH(Ω) < 1/4 and µ ∈ (CH(Ω),1/4) then there exists a
small solution such that u(δ) ≤ cδβ+ .

Proof -The existence of a positive solution is incompatible with the
Hardy constant.
- Construction of an upper and lower solution, Keller-Osserman type
a priori bound.
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Radial solutions if 0 < p < 1 in the ball BR

Theorem
(i) There exist infinitely many strictly positive radial solutions.

(ii) For every r ∗ < R there exists a solution such that u = 0 in
(0, r ∗) and u > 0 in (r ∗,R).

(iii) All solutions satisfy at the boundary

lim
r→R

u(r)(R − r)−β− = v(0) > 0 .



Annuli
0 < p < 1

Theorem
There exist local solutions of the type described above.

A: µ < 0

	  

B: 0 < µ < 1/4

	  

	  

	   	  



p > 1

The situation is very similar except that instead of vanishing
with the dead core rate one has blow up

u(r) ∼ (r − R0)−
2

p−1 .



p > 1

A: µ < 0 B: 0 < µ < 1/4



General domains

Theorem
1. For p > 0,, 1 there exist solutions such that

0 < γ < lim inf
δ→0

u(δ)

δβ−
≤ lim sup

δ→0

u(δ)

δβ−
≤ γ−1.

(harmonic growth at the boundary)

2. If p > 1 and µ > −2(p+1)

(p−1)2 there exist solutions such that

0 < γ < lim inf
δ→0

u(δ)

δ
− 2

p−1

≤ lim sup
δ→0

u(δ)

δ
− 2

p−1

≤ γ−1.




