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Introduction

: %0
(%)
Q) c RN bounded smooth domain, x € Q generic point,
6(x) := distance{x,0Q}, u e R, p>0,p # 1.
Consider

(P) Au+Eu=wvPinQ u>o.
62

62’(‘—)() is called Hardy potential.



Driving mechanisms

nonlinear regime
(N) AU=UPinQ,

linear regime
yi! .
(L) Ah+ 6—2h2 0in Q.



Known results for the nonlinear problem

Au=uPinQ

e The boundary value problem with u = ¢ on 92 has a
unique solution for every positive continuous ¢.



Known results for the nonlinear problem

Au=uPinQ

e The boundary value problem with v = ¢ on 9 has a
unique solution for every positive continuous ¢.

o letp>1.
Then there exists a unique solution U such that U(x) — oo
as x — 09.
1. U(x)677(x) > ¢, as X — .
2. U(x) = u(x) for any other solution.
It is therefore called the /large solution.



Known results for the nonlinear problem

Au=uPinQ

e The boundary value problem with v = ¢ on 9 has a
unique solution for every positive continuous ¢.
o letp>1.

Then there exists a unique solution U such that U(x) — oo
as x — 09.

1. U(x)677(x) > ¢, as X — .
2. U(x) > u(x) for any other solution.
It is therefore called the large solution.

o Letp< 1.

1. There exist solutions which vanish identically on a sub
domain w c Q (=dead core) and are positive elsewhere.



Phragmen-Lindelof alternative

Ah + 2 £h>0, u<1/4 inasmall strip near the boundary.

Theorem
(i) < 1/4.
Let,B B. wherep(B—-1)+u=0
=1/2= T/A-p<pi =12+ \1/4-p.
Then either
e limsup,_,,q h(x)/8#-(x) >0

or
e h < ¢+ in{6(x) < p} for some positive ¢ (small subharmonics)



Phragmen-Lindelof alternative

Ah + 2 £h>0, u<1/4 inasmall strip near the boundary.

Theorem
(i) < 1/4.
Let,B =p. wherep(B-1)+u=0
=1/2= JT/A-p<py:=1/2+ \1/4-p.
Then either
e limsup,_,,q h(x)/8#-(x) >0

or
e h < ¢+ in{6(x) < p} for some positive ¢ (small subharmonics)

(il) 1 = 1/4.
The same statement holds with &°- replaced by '/2(x)log(1/6(x))
andpB, by1/2.



Hardy constant

. o ¢
CH(2) = |7n(ffQ IVo|? dx, where K = {q’) € Gy (Q),j;2 2 dx = 1} .

Properties:

0< Cy(Q2) <1/4.
CH(Q) = 1/4if Q is convex or for annuliin RN, N > 2.

Cn(Q) is attained if and only if Cy(Q2) < 1/4.
Marcus, Mizel, Pinchover, Shafrir and Brezis 1997, 1998




1-dimensional problems

Elementary solution: u(x) = (% )X

1 Mo

Solutions: h(x) = ¢y xP+ + coxP- where . are the roots of
BB-1)+u=0

h ~ xA+ small harmonic
h ~ xP- large harmonic.



Radial solutions

Q=BgorQ=A(nR):={n<IxI<R)

The solutions depending only on r = |x| satisfy the ODE

() + X () + Sl = (),

5 R-r ifr>
" |r-r, otherwise .

R+ry
2



Asymptotic boundary behavior
O0<p
Let u be a positive local solution near the boundary. Then the
only possible behaviors at the boundary are

lim us) c, | h i
——= = ¢, large harmonics ,
6—0 5'3* g

. u(s) :
lim = ¢, small harmonics ,
0—0 5B+

2(p+1)

In addition if u > - -2’

(0B <755ifp<tandp. > -Zifp>1)

. u(s) {O < p < 1 dead core solution
Ilm ) — JoNT]

6—0 §2/(1-p p > 1 blowup solution



Existence of local solutions

2(p+1)
(1-p)2
2(p+1)
(1-p)?

olfu>— there exist local solutions of all types.

olf u<-—

there exist only local

small harmonics if p > 1,
large harmonics if p < 1.



Global solutions of Au + g‘—gu = uP
in arbitrary domains

Definition
A solution is called small solution if it belongs to W ?(2).

Theorem
o Ifu < Cy(Q2) then there are no small, non trivial solutions

ue WA(Q).

e Ifp>1,CnH(Q2) <1/4 and 1 € (CH(2),1/4) then there exists a
small solution such that u(s) < cé*+.



Global solutions of Au + g‘—zu = uP
in arbitrary domains

Definition
A solution is called small solution if it belongs to W ?(2).

Theorem

o Ifu < Cy(Q2) then there are no small, non trivial solutions
1.2

ue W;5(Q).

e Ifp>1,CnH(Q2) <1/4 and 1 € (CH(2),1/4) then there exists a
small solution such that u(s) < cé*+.

Proof -The existence of a positive solution is incompatible with the
Hardy constant.

- Construction of an upper and lower solution, Keller-Osserman type
a priori bound.



Radial solutions if 0 < p < 1 in the ball Bg

Theorem
(i) There exist infinitely many strictly positive radial solutions.

(ii) For every r* < R there exists a solution such that u = 0 in
(0,r*)yandu>0in(r*,R).

(iii) All solutions satisfy at the boundary

lim u(r)(R-r)™ = v(0) > 0.

r-R



Annuli

O<p<i
Theorem
There exist local solutions of the type described above.
A: u<0 B: O<u<1/4



The situation is very similar except that instead of vanishing
with the dead core rate one has blow up

u(r) ~ (r — Ro) 7.



p>1

B: 0<u<1/4




General domains

Theorem
1. Forp > 0,+ 1 there exist solutions such that

u(s) u(s)

0<y<||m|nf—<||msup <y~

- a0 O T

(harmonic growth at the boundary)

2(p+1)

2. pr>1and/,¢>—( 72

u(s)

0 <y<liminf —
6-0 o p-1 6—-0 § b

u(s)

<limsup —;~ <y

1

there exist solutions such that

-1






