Non-uniqueness from molecular equations

St. Petersburg, September 2014 N.N. Uralceva's 80th birthday

$$u_i'(t) = m_N \nabla_{x_i} \Phi_N(|x_i - x_j|)$$

$$u_i'(t) = m_N \nabla_{x_i} \Phi_N(|x_i - x_j|)$$

$$u_i'(t) = -\frac{1}{\sigma_N} \sum_{\substack{j=1\\i \neq i}}^N \Phi'\left(\frac{|x_i - x_j|}{\sigma_N}\right) \frac{x_i - x_j}{|x_i - x_j|}$$

N molecules at
$$x_i(t)$$
, $i = 1, ..., N$,

$$u_i'(t) = m_N \nabla_{x_i} \Phi_N(|x_i - x_j|)$$

$$u_i'(t) = -\frac{1}{\sigma_N} \sum_{\substack{j=1\\j\neq i}}^N \Phi'\left(\frac{|x_i - x_j|}{\sigma_N}\right) \frac{x_i - x_j}{|x_i - x_j|}$$

$$\mu_t^{(N)}(d\vec{x}) = \frac{1}{N} \sum_{i=1}^N \delta_{\vec{x}_i(t)}(d\vec{x}),$$

$$u_i'(t) = m_N \nabla_{x_i} \Phi_N(|x_i - x_j|)$$

$$u_i'(t) = -\frac{1}{\sigma_N} \sum_{\substack{j=1\\j\neq i}}^N \Phi'\left(\frac{|x_i - x_j|}{\sigma_N}\right) \frac{x_i - x_j}{|x_i - x_j|}$$

$$\mu_t^{(N)}(d\vec{x}) = \frac{1}{N} \sum_{i=1}^N \delta_{\vec{x}_i(t)}(d\vec{x}),$$

$$M_t^{(N)}(d\vec{x}, d\vec{v}) = \frac{1}{N} \sum_{i=1}^N \delta_{(x_i, u_i)}(dx, dv)$$

= $(Id \times \vec{u}_N)_{\#} \mu_N(d\vec{x}, d\vec{v}),$

Chain rule \Rightarrow

Chain rule ⇒

$$\frac{d}{dt} \int_{\mathbb{R}^3} \phi(x) \; \mu_t^{(N)}(dx) = \int_{\mathbb{R}^3} \nabla_x \phi(x) \cdot u_N(t,x) \mu_t^{(N)}(dx),$$

Chain rule ⇒

$$\frac{d}{dt} \int_{\mathbb{R}^3} \phi(x) \; \mu_t^{(N)}(dx) = \int_{\mathbb{R}^3} \nabla_x \phi(x) \cdot u_N(t,x) \mu_t^{(N)}(dx),$$

$$\begin{split} \frac{d}{dt} \int_{\mathbb{R}^3} \phi(x) u_N(t,x) \ \mu_t^{(N)}(dx) \\ &= \int_{\mathbb{R}^3} \nabla_x \phi(t,x) \cdot u_N(t,x) \ u_N(t,x) \ \mu_t^{(N)}(dx) \\ &- \frac{1}{N\sigma_N} \int \phi(t,x) \ \Phi'\left(\frac{|x-x'|}{\sigma_N}\right) \frac{x-x'}{|x-x'|} \ n_t^{(N)}(dx,dx'). \end{split}$$

Under assumption on positions and velocities can show:

$$\mu_t^{(N)}(d\vec{x}) \Rightarrow \mu_t(d\vec{x}), \ M_t^{(N)}(d\vec{x}, d\vec{v}) \Rightarrow M_t(d\vec{x}, d\vec{v}),$$

Under assumption on positions and velocities can show:

$$egin{aligned} \mu_t^{(N)}(dec{x}) &\Rightarrow \mu_t(dec{x}), \ M_t^{(N)}(dec{x},dec{v}) &\Rightarrow M_t(dec{x},dec{v}), \ \int \phi(ec{x})ec{u}_N(t,x)\mu_t^{(N)}(dec{x}) & o \int \phi(ec{x})ec{u}(t,ec{x})\mu_t(dec{x}), \ orall \ \phi ext{test.} \end{aligned}$$

Under assumption on positions and velocities can show:

$$\mu_t^{(N)}(dec{x}) \Rightarrow \mu_t(dec{x}), \ M_t^{(N)}(dec{x}, dec{v}) \Rightarrow M_t(dec{x}, dec{v}), \ \int \phi(ec{x}) ec{u}_N(t, x) \mu_t^{(N)}(dec{x}) o \int \phi(ec{x}) ec{u}(t, ec{x}) \mu_t(dec{x}), \ orall \ \phi ext{ test.}$$

$$\int |\vec{u}_N|^2(\vec{x})\mu^{(N)}(d\vec{x}) \nrightarrow \int |\vec{u}|^2(\vec{x})\mu(d\vec{x}).$$

 $N o \infty$:

$$N \to \infty$$
:

$$rac{d}{dt}\int\phi(ec{x})\mu_t(dec{x})=\int
abla\,\phi(ec{x})\cdotec{u}(t)\mu_t(dec{x})$$

$$N \to \infty$$
:

$$\begin{split} \frac{d}{dt} \int \phi(\vec{x}) \mu_t(d\vec{x}) &= \int \nabla \phi(\vec{x}) \cdot \vec{u}(t) \mu_t(d\vec{x}) \\ \frac{d}{dt} \int \phi(\vec{x}) \vec{u}(t, \vec{x}) \mu_t(d\vec{x}) \\ &= \int \nabla \phi(\vec{x}) \cdot \vec{u}(t, x) \ \vec{u}(t, x) \ \mu_t(d\vec{x}) \\ &+ \int \nabla \phi(\vec{x}) \cdot (v - \vec{u}(t, \vec{x})) (v - \vec{u}(t, \vec{x})) M_t(dx, dv) \\ &+ \mathcal{I}_{\Phi}(t, x), \end{split}$$

weakly.

Theorem

Let
$$|x_i(0)| \leq X$$
, $|u_i(0)| \leq U$, $i \in \mathbb{N}$,

Theorem

Let
$$|x_i(0)| \leq X$$
, $|u_i(0)| \leq U$, $i \in \mathbb{N}$, and such that

$$(x_i(0)-x_j(0))\cdot(u_i(0)-u_j(0))\geq 0,$$

Theorem

Let
$$|x_i(0)| \leq X$$
, $|u_i(0)| \leq U$, $i \in \mathbb{N}$, and such that

$$(x_i(0)-x_j(0))\cdot(u_i(0)-u_j(0))\geq 0,$$

T any fixed time,

Theorem

Let $|x_i(0)| \leq X$, $|u_i(0)| \leq U$, $i \in \mathbb{N}$, and such that

$$(x_i(0)-x_j(0))\cdot (u_i(0)-u_j(0))\geq 0,$$

T any fixed time, $-\Phi'$ decreasing,

Theorem

Let $|x_i(0)| \leq X$, $|u_i(0)| \leq U$, $i \in \mathbb{N}$, and such that

$$(x_i(0)-x_j(0))\cdot(u_i(0)-u_j(0))\geq 0,$$

T any fixed time, $-\Phi'$ decreasing, and take σ_N :

$$-\frac{1}{\sigma_N}\sum_{\substack{j=1\\i\neq j}}^N \Phi'\left(\frac{|x_i(0)-x_j(0)|}{\sigma_N}\right)\leq B_N.$$

Theorem

Let $|x_i(0)| \leq X$, $|u_i(0)| \leq U$, $i \in \mathbb{N}$, and such that

$$(x_i(0)-x_j(0))\cdot(u_i(0)-u_j(0))\geq 0,$$

T any fixed time, $-\Phi'$ decreasing, and take σ_N :

$$-\frac{1}{\sigma_N}\sum_{\substack{j=1\\i\neq j}}^N \Phi'\left(\frac{|x_i(0)-x_j(0)|}{\sigma_N}\right)\leq B_N.$$

Theorem

Let $|x_i(0)| \le X$, $|u_i(0)| \le U$, $i \in \mathbb{N}$, and such that

$$(x_i(0)-x_j(0))\cdot(u_i(0)-u_j(0))\geq 0,$$

T any fixed time, $-\Phi'$ decreasing, and take σ_N :

$$-\frac{1}{\sigma_N}\sum_{\substack{j=1\\j\neq i}}^N \Phi'\left(\frac{|x_i(0)-x_j(0)|}{\sigma_N}\right) \leq B_N.$$

Then hydrodynamic limits exist.

Theorem

Let $|x_i(0)| \le X$, $|u_i(0)| \le U$, $i \in \mathbb{N}$, and such that

$$(x_i(0)-x_j(0))\cdot(u_i(0)-u_j(0))\geq 0,$$

T any fixed time, $-\Phi'$ decreasing, and take σ_N :

$$-\frac{1}{\sigma_N}\sum_{\substack{j=1\\j\neq i}}^N \Phi'\left(\frac{|x_i(0)-x_j(0)|}{\sigma_N}\right)\leq B_N.$$

Then hydrodynamic limits exist.

$$\left(B_N := \frac{\min\limits_{1 \leq i \neq j \leq N} (x_i(0) - x_j(0)) \cdot (u_i(0) - u_j(0))}{XT + 3T^2U + 4T^3}\right)$$

Theorem

Let $|x_i(0)| \leq X$, $|u_i(0)| \leq U$, $i \in \mathbb{N}$, and such that

$$(x_i(0)-x_j(0))\cdot(u_i(0)-u_j(0))\geq 0,$$

T any fixed time, $-\Phi'$ decreasing, and take σ_N :

$$-\frac{1}{\sigma_N}\sum_{\substack{j=1\\j\neq i}}^N \Phi'\left(\frac{|x_i(0)-x_j(0)|}{\sigma_N}\right) \leq B_N.$$

Then hydrodynamic limits exist.

$$\left(B_N := \frac{\min\limits_{1 \leq i \neq j \leq N} (x_i(0) - x_j(0)) \cdot (u_i(0) - u_j(0))}{XT + 3T^2U + 4T^3}\right)$$

Accelerations are uniformly bounded in N.

$$\frac{d}{dt} \int \phi(\vec{x}) \vec{u}(t, \vec{x}) \mu_t(d\vec{x})
= \int \nabla \phi(\vec{x}) \cdot \vec{u}(t, x) \ \vec{u}(t, x) \ \mu_t(d\vec{x})
+ \int \nabla \phi(\vec{x}) \cdot (v - \vec{u}(\vec{x})) (v - \vec{u}(\vec{x})) M_t(dx, dv)$$

$$\frac{d}{dt} \int \phi(\vec{x}) \vec{u}(t, \vec{x}) \mu_t(d\vec{x})
= \int \nabla \phi(\vec{x}) \cdot \vec{u}(t, x) \ \vec{u}(t, x) \ \mu_t(d\vec{x})
+ \int \nabla \phi(\vec{x}) \cdot (v - \vec{u}(\vec{x})) (v - \vec{u}(\vec{x})) M_t(dx, dv)$$

In fact, for the M_t -measure:

$$\begin{split} \frac{d}{dt} & \int \phi(\vec{x}) \vec{u}(t, \vec{x}) \mu_t(d\vec{x}) \\ & = \int \nabla \phi(\vec{x}) \cdot \vec{u}(t, x) \ \vec{u}(t, x) \ \mu_t(d\vec{x}) \\ & + \int \nabla \phi(\vec{x}) \cdot (v - \vec{u}(\vec{x})) (v - \vec{u}(\vec{x})) M_t(dx, dv) \end{split}$$

In fact, for the M_t -measure:

$$\frac{d}{dt}\int\phi\left(x,v\right)M_{t}\left(dx,dv\right)=\int\nabla_{x}\phi\left(x,v\right)\cdot v\ M_{t}\left(dx,dv\right).$$

Can solve:

$$M_t = (S_t)_{\#} M_0,$$

 $S_t(x, v) = (x + tv, v).$

$$\left\{\left(x_{1},x_{2},x_{3}\right):\left(x_{1},x_{2}\right)\in\left(-1,1\right)\times\left(-1,1\right),x_{3}=0\right\}.$$

$$\left\{ \left(x_{1},x_{2},x_{3}\right) :\left(x_{1},x_{2}\right) \in\left(-1,1\right) \times\left(-1,1\right) ,x_{3}=0\right\} .$$

$$N = 4n^2$$
:

$$x_{ij} = \left(\frac{1}{2n} + \frac{i}{n}, \frac{1}{2n} + \frac{j}{n}, 0 \right), -n \le i, j \le n-1$$

$$\left\{\left(x_{1},x_{2},x_{3}\right):\left(x_{1},x_{2}\right)\in\left(-1,1\right)\times\left(-1,1\right),x_{3}=0\right\}.$$

 $N = 4n^2$:

$$x_{ij} = \left(\frac{1}{2n} + \frac{i}{n}, \frac{1}{2n} + \frac{j}{n}, 0\right), -n \le i, j \le n-1$$

and

$$u(0, x_{ij}) = \begin{cases} (0, 0, 1) & \text{if } i + j \text{ even} \\ (0, 0, -1) & \text{if } i + j \text{ odd,} \end{cases}$$

$$\left\{\left(x_{1},x_{2},x_{3}\right):\left(x_{1},x_{2}\right)\in\left(-1,1\right)\times\left(-1,1\right),x_{3}=0\right\}.$$

 $N = 4n^2$:

$$x_{ij} = \left(\frac{1}{2n} + \frac{i}{n}, \frac{1}{2n} + \frac{j}{n}, 0\right), -n \le i, j \le n-1$$

and

$$u(0, x_{ij}) = \begin{cases} (0, 0, 1) & \text{if } i + j \text{ even} \\ (0, 0, -1) & \text{if } i + j \text{ odd,} \end{cases}$$

Then

$$M_{0}^{(N)}(dx,dv) \downarrow M_{0}(dx,dv) = \Delta_{0}(dx) \otimes \left(\frac{1}{2}\delta_{(0,0,1)}(dv) + \frac{1}{2}\delta_{(0,0,-1)}(dv)\right)$$

Then

$$M_0^{(N)}(dx,dv) \downarrow M_0(dx,dv) = \Delta_0(dx) \otimes \left(\frac{1}{2}\delta_{(0,0,1)}(dv) + \frac{1}{2}\delta_{(0,0,-1)}(dv)\right)$$

Therefore: initial macroscopical velocity

$$u(0,x)=0.$$

$$\begin{split} M_t(dx,dv) &= \left(\mathcal{S}_t\right)_\# M_0\left(dx,dv\right) \\ &= \frac{1}{2} \Delta_t(dx) \otimes \delta_{(0,0,1)}\left(dv\right) + \frac{1}{2} \Delta_{-t}(dx) \otimes \delta_{(0,0,-1)}\left(dv\right). \end{split}$$

$$\begin{aligned} M_t(dx,dv) &= \left(\mathcal{S}_t\right)_\# M_0\left(dx,dv\right) \\ &= \frac{1}{2} \Delta_t(dx) \otimes \delta_{(0,0,1)}\left(dv\right) + \frac{1}{2} \Delta_{-t}(dx) \otimes \delta_{(0,0,-1)}\left(dv\right). \end{aligned}$$

It gives the macroscopic velocity for t > 0:

$$u(t,x) = \begin{cases} (0,0,1) & (x_1,x_2) \in D, & x_3 = t \\ (0,0,-1) & (x_1,x_2) \in D, & x_3 = -t \\ 0 & \text{otherwise.} \end{cases}$$

Not even local uniqueness for

$$\partial_t(u\mu_t) + \operatorname{div}(u \otimes u \,\mu_t) = 0$$
$$\partial_t \mu_t + \operatorname{div}(u \,\mu_t) = 0.$$

(μ_t not absolutely continuous on \mathbb{R}^3 .)

Compatible with macroscopic definition of initial condition for weak solutions:

$$\int \phi(x)u(t,x)\mu_t(dx) - \int \phi(x)u(0,x)\mu_0(dx) =$$

$$\int_0^t \int \nabla \phi(x) \cdot u(s,x)u(s,x)\mu_s(dx) ds$$

given that

$$\lim_{t\to 0}\int \phi(x)u(t,x)\mu_t(dx)=\int \phi(x)u(0,x)\mu_0(dx).$$

Example: Fluctuations in a cube K of edge length 2l.

Example: Fluctuations in a cube K of edge length 2l. For $n \in \mathbb{N}$ and for $-n \le i, j, k \le n-1$, let

$$x_{ijk} = \left(\frac{il}{n}, \frac{jl}{n}, \frac{kl}{n}\right)$$

Example: Fluctuations in a cube K of edge length 2I. For $n \in \mathbb{N}$ and for $-n \le i, j, k \le n-1$, let

$$x_{ijk} = \left(\frac{il}{n}, \frac{jl}{n}, \frac{kl}{n}\right)$$

For $N = 8n^3$ then

$$\mu_N(dx) = \frac{1}{N} \sum_{i,i,k} \delta_{x_{ijk}}.$$

Example: Fluctuations in a cube K of edge length 2l. For $n \in \mathbb{N}$ and for $-n \le i, j, k \le n-1$, let

$$x_{ijk} = \left(\frac{il}{n}, \frac{jl}{n}, \frac{kl}{n}\right)$$

For $N = 8n^3$ then

$$\mu_N(dx) = \frac{1}{N} \sum_{i,j,k} \delta_{x_{ijk}}.$$

Define

$$u_N(x_{ijk}) = \begin{cases} (0,0,c) & i+j \text{ even } k \text{ even} \\ (0,0,-c) & i+j \text{ odd } k \text{ even} \\ (0,0,-c) & i+j \text{ even } k \text{ odd} \\ (0,0,c) & i+j \text{ odd } k \text{ odd.} \end{cases}$$

and denote the corresponding measure in \mathbb{R}^6 with $M^N(dx, dv)$.

As
$$N \to \infty$$
,
$$M^{N}\left(dx, dv\right) \ \downarrow$$

$$M_{0}\left(dx, dv\right) = \chi_{K}(x)dx \otimes \frac{1}{2}\left(\delta_{(0,0,c)}\left(dv\right) + \delta_{(0,0,-c)}\left(dv\right)\right).$$

As $N o \infty$,

$$M^N(dx, dv)$$
 \downarrow

$$M_0(dx,dv) = \chi_K(x)dx \otimes \frac{1}{2} \left(\delta_{(0,0,c)}(dv) + \delta_{(0,0,-c)}(dv)\right).$$

Macroscopic initial conditions:

$$\begin{cases} \rho(0,x) = \chi_K(x) \\ u(0,x) = 0. \end{cases}$$

$M_t(dx, dv) =$

$$\begin{cases} \frac{1}{2}dx \otimes \delta_{(0,0,-c)}(dv) & 0 \leq t \leq \frac{l}{c} -l - ct \leq x_3 \leq -l + ct \\ \frac{1}{2}dx \otimes \delta_{(0,0,-c)}(dv) & 0 \leq t \leq \frac{l}{c} -l + ct \leq x_3 \leq l - ct \\ \frac{1}{2}dx \otimes \delta_{(0,0,c)}(dv) & 0 \leq t \leq \frac{l}{c} -l + ct \leq x_3 \leq l - ct \\ \frac{1}{2}dx \otimes \delta_{(0,0,c)}(dv) & 0 \leq t \leq \frac{l}{c} -l - ct \leq x_3 \leq l + ct \\ \frac{1}{2}dx \otimes \delta_{(0,0,-c)}(dv) & t \geq \frac{l}{c} -l - ct \leq x_3 \leq l - ct \\ \frac{1}{2}dx \otimes \delta_{(0,0,c)}(dv) & t \geq \frac{l}{c} -l + ct \leq x_3 \leq l + ct \end{cases}$$

Macroscopic density and velocity are

$$\rho(t,x) = \begin{cases} \frac{1}{2} & 0 \le t \le \frac{l}{c} & -l - ct \le x_3 \le -l + ct \\ 1 & 0 \le t \le \frac{l}{c} & -l + ct \le x_3 \le l - ct \\ \frac{1}{2} & 0 \le t \le \frac{l}{c} & l - ct \le x_3 \le l + ct \\ \frac{1}{2} & t \ge \frac{l}{c} & -l - ct \le x_3 \le l - ct \\ \frac{1}{2} & t \ge \frac{l}{c} & -l + ct \le x_3 \le l + ct, \end{cases}$$

$$u(t,x) = \begin{cases} (0,0,-c) & 0 \le t \le \frac{l}{c} & -l-ct \le x_3 \le -l+ct \\ 0 & 0 \le t \le \frac{l}{c} & -l+ct \le x_3 \le l-ct \end{cases}$$

$$u(t,x) = \begin{cases} (0,0,c) & 0 \le t \le \frac{l}{c} & l-ct \le x_3 \le l+ct \\ (0,0,-c) & t \ge \frac{l}{c} & -l-ct \le x_3 \le l-ct \\ (0,0,c) & t \ge \frac{l}{c} & -l+ct \le x_3 \le l+ct. \end{cases}$$

Fluctuations last within time interval $0 \le t \le \frac{1}{c}$.

Fluctuations last within time interval $0 \le t \le \frac{1}{c}$.

Non-zero macroscopical velocity is generated immediately after time 0.

Fluctuations last within time interval $0 \le t \le \frac{1}{c}$.

Non-zero macroscopical velocity is generated immediately after time 0.

Equations satisfied weakly:

$$\partial_t \rho(t,x) + \operatorname{div}(\rho(t,x)u(t,x)) = 0$$

$$\partial_t (\rho(t,x)u(t,x)) + \operatorname{div}(\rho(t,x)u(t,x) \otimes u(t,x)) = -\underbrace{c^2(0,0,\partial_3\chi_{B_t}(x))}_{from\ averages\ of\ fluctuations}$$

$$M_0(dx, dv) = C\rho(x) \left\{ egin{array}{ll} e^{-v^{1/4}} & v > 0 \\ 0 & v \leq 0 \end{array}
ight\} dx dv$$

$$M_0(dx, dv) = C\rho(x) \left\{ egin{array}{ll} e^{-v^{1/4}} & v > 0 \ 0 & v \leq 0 \end{array}
ight\} dx dv$$

and approximate by molecules the same after changing the velocity distribution

$$M_0(dx,dv) = C\rho(x) \left\{ egin{array}{ll} e^{-v^{1/4}} + arepsilon e^{-v^{1/4}} \sin v^{1/4} & v > 0 \ 0 & v \leq 0 \end{array}
ight\} dx dv$$

$$M_0(dx, dv) = C\rho(x) \left\{ egin{array}{ll} e^{-v^{1/4}} & v > 0 \ 0 & v \leq 0 \end{array}
ight\} dxdv$$

and approximate by molecules the same after changing the velocity distribution

$$M_0(dx,dv) = C\rho(x) \left\{ \begin{array}{ll} e^{-v^{1/4}} + \varepsilon e^{-v^{1/4}} \sin v^{1/4} & v > 0 \\ 0 & v \leq 0 \end{array} \right\} dxdv$$

Approximation in such way that same evolution equation for M_t holds.

$$M_0(dx, dv) = C\rho(x) \left\{ egin{array}{ll} e^{-v^{1/4}} & v > 0 \ 0 & v \leq 0 \end{array}
ight\} dxdv$$

and approximate by molecules the same after changing the velocity distribution

$$M_0(dx, dv) = C\rho(x) \left\{ \begin{array}{ll} e^{-v^{1/4}} + \varepsilon e^{-v^{1/4}} \sin v^{1/4} & v > 0 \\ 0 & v \le 0 \end{array} \right\} dxdv$$

Approximation in such way that same evolution equation for M_t holds.

Initial densities, velocities, and all moments: equal at t = 0.

$$M_0(dx, dv) = C\rho(x) \left\{ egin{array}{ll} e^{-v^{1/4}} & v > 0 \ 0 & v \leq 0 \end{array}
ight\} dxdv$$

and approximate by molecules the same after changing the velocity distribution

$$M_0(dx, dv) = C\rho(x) \left\{ \begin{array}{ll} e^{-v^{1/4}} + \varepsilon e^{-v^{1/4}} \sin v^{1/4} & v > 0 \\ 0 & v \le 0 \end{array} \right\} dxdv$$

Approximation in such way that same evolution equation for M_t holds.

Initial densities, velocities, and all moments: equal at t = 0. Flow under equation for measure M_t .

$$M_0(dx, dv) = C\rho(x) \left\{ egin{array}{ll} e^{-v^{1/4}} & v > 0 \ 0 & v \leq 0 \end{array}
ight\} dxdv$$

and approximate by molecules the same after changing the velocity distribution

$$M_0(dx, dv) = C\rho(x) \left\{ \begin{array}{ll} e^{-v^{1/4}} + \varepsilon e^{-v^{1/4}} \sin v^{1/4} & v > 0 \\ 0 & v \le 0 \end{array} \right\} dxdv$$

Approximation in such way that same evolution equation for M_t holds.

Initial densities, velocities, and all moments: equal at t = 0. Flow under equation for measure M_t .

Already velocities at some t > 0 differ.

$$M_0(dx, dv) = C\rho(x) \left\{ egin{array}{ll} e^{-v^{1/4}} & v > 0 \ 0 & v \leq 0 \end{array}
ight\} dxdv$$

and approximate by molecules the same after changing the velocity distribution

$$M_0(dx, dv) = C\rho(x) \left\{ \begin{array}{ll} e^{-v^{1/4}} + \varepsilon e^{-v^{1/4}} \sin v^{1/4} & v > 0 \\ 0 & v \le 0 \end{array} \right\} dxdv$$

Approximation in such way that same evolution equation for M_t holds.

Initial densities, velocities, and all moments: equal at t=0. Flow under equation for measure M_t .

Already velocities at some t > 0 differ.

Infinitely many macroscopic equations.

