Non-uniqueness
from molecular equations
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weakly.
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Instead of the general theorem we can show, let’s use:

Theorem
Let |x;(0)| < X, |uj(0)] < U, i € N, and such that

(xi(0) = x;(0)) - (ui(0) — u;(0)) = 0,

T any fixed time, —®’ decreasing, and take oy

N
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Then hydrodynamic limits exist.
L1200, (00 ~5(0) - (6(0) ~ ()
N XT +3T2U + 4T3

Accelerations are uniformly bounded in N.
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Condition on op has weakened interaction so much that as
N — oo:

& [ ot fu(ax)
~ [Vl G(t, x) pe(d%)
/ V(R) - (v - GR)(v — G(F))Mi(ci, ov)
In fact, for the M;-measure:

gt/qﬁ(x, v) M; (dx, dv) = /qub(x, v)-v M (dx, dv).



Can solve:

M = (St)4 Mo,
Si(x,v) = (x+tv,v).
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Mt(dxa dV) = (Sf)# MO (dX, dV)
1 1
= 58:(dX) @ (0,0,1) (dV) + 5A-1(dX) @ d(0,0,-1) (AV) .
It gives the macroscopic velocity for > 0:

(07071) (X17X2)€D7 X3 =
u(t,x) =1<(0,0,-1) (x1,x2) € D, x3=—t
0 otherwise.



Not even local uniqueness for

O(upe) +diviu®@ u pt) =0
Orpt + div(u pt) = 0.

(11t not absolutely continuous on R3.)



Compatible with macroscopic definition of initial condition for
weak solutions:

[ ottt (e - /¢> u(0, X)po(dx) =

/ /w u(s, X)s(dx) ds

I|m /(;5 u(t, x)u(dx) = /(;5 u(0, x)po(dx).

given that
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Example: Fluctuations in a cube K of edge length 2/.
Forne Nandfor —n<i jk<n-—1,let

il jl ki
Kk=\nnn

For N = 88 then

’
= N 2 O

iJk
Define

(0,0,c) i+jeven keven

) (0,0,—c) i+jodd Kk even

U (Xik) = (0,0,—c) i+jeven kodd

(0,0,¢) i+jodd kodd.

and denote the corresponding measure in R® with MN (dx, dv).
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Macroscopic initial conditions:



M, (dx, dv) =
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Macroscopic density and velocity are
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. e /
Fluctuations last within time interval 0 < t < S

Non-zero macroscopical velocity is generated immediately after
time 0.
Equations satisfied weakly:

Op(t, x) + div(p(t, x)u(t,x)) =0
Ot(p(t, x)u(t, x)) + div(p(t, x)u(t,x) @ u(t, x)) =
c?(0,0, d3x5,(X))

from averages of fluctuations
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holds.
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Flow under equation for measure M;.
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Infinitely many macroscopic equations.



