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Navier-Stokes Equations (NSE)

∂tv(t, x)−∆v + (v,∇)v +∇p(t, x) = 0,

divv = 0,

v(t, . . . , xi, . . .) = v(t, . . . , xi+2π, . . .), i = 1,2,3,

v(t, x)|t=0 = v0(x)

Here v(t, x) = (v1, v2, v3) is a �uid velocity,

p(t, x) is a pressure.

Energy inequality:∫
T3
|v(t, x)|2dx+ 2

∫ t

0

∫
T3
|∇xv(τ, x)|2dxdτ ≤

∫
T3
|v0(x)|2dx

Where T3 = (R/2πZ3 is 3D torus. Image of

nonlinear operator (v,∇)v at each point v ∈
Σ ≡ {u ∈ L2 : ‖u‖L2

= 1} is tangent to the

sphere Σ, i.e. v ⊥L2
(v,∇)v
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Helmholtz Equations

Curl of velocity

ω(t, x) = curl v(t, x) =

= (∂x2v3−∂x3v2, ∂x3v1−∂x1v3, ∂x1v2−∂x2v1)

Well-known formulas

(v,∇)v = ω × v +∇
|v|2

2
,

curl (ω×v) = (v,∇)ω−(ω,∇)v, if div v = divω = 0

System of equations for curl

∂tω(t, x)−∆ω + (v,∇)ω − (ω,∇)v = 0

ω(t, x)|t=0 = ω0(x)

where ω0 = curlv0
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System of normal type and its derivation

Function spaces

V m = V m(T3) =

= {v(x) ∈ (Hm(T3))3 : div v = 0,
∫
T3
v(x)dx = 0}

where Hm(T3) - is the Sobolev space. Using

decomposition in Fourier series

v(x) =
∑
k∈Z3

v̂(k)eix·k, v̂(k) =
∫
T3

v(x)

(2π)−3
e−ix·kdx,

where x · k =
∑3
j=1 xjkj, k = (k1, k2, k3) and

the formula curl curl v = −∆v, when div v =

0, we get

curl−1ω(x) = i
∑

k∈Z3\{0}

k × ω̂(k)

|k|2
eix·k

Therefore operator

curl : V 1 −→ V 0

realizes isomorphism of the spaces.
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Nonlinear term in Helmholtz equations

B(ω) = (v,∇)ω − (ω,∇)v

The following formula holds

(B(ω), ω)V 0 = −
∫
T3

3∑
j,k=1

ωj∂jvkωkdx 6= 0

and therefore

B(ω) = Bn(ω) +Bτ(ω),

where Bn(ω) is the component orthogonal to

the sphere

Σω = {u ∈ V 0 : ‖u‖V 0 = ‖ω‖V 0}

at the point ω, and the vector Bτ(ω) is tangent

to Σω at ω. It is clear that Bn(ω) = Φ(ω)ω

where Φ is unknown functional, that is determined

from equation∫
T3

Φ(ω)ω(x)·ω(x)dx =
∫
T3

(ω(x),∇)v(x)·ω(x)dx

and has the form
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Φ(ω) =

∫
T3(ω(x),∇)curl −1ω(x) · ω(x)dx∫

T3 |ω(x)|2dx
, ω 6= 0,

Φ(ω) = 0, ω ≡ 0

Normal parabolic system (NPS)

∂tω(t, x)−∆ω −Φ(ω)ω = 0, divω = 0 (1)

ω(t, x)|t=0 = ω0(x) (2)

Exact formula for NPS solution

Theorem 1. Let S(t, x, y0) - be solving operator
for the Stokes system with periodic boundary

conditions:

∂ty −∆y = 0, div y = 0, y|t=0 = y0, (3)

i.e. S(t, x, y0) = y(t, x). (We assume that div y0 =
0). Then solution of the problem (1),(2) has

the form

ω(t, x;ω0) =
S(t, x;ω0)

1−
∫ t
0 Φ(S(τ, x;ω0))dτ

(4)
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Unique solvability of NPS and continuity

of solutions on initial conditions

Lemma 1. ∃c > 0, ∀u ∈ V 1/2 Φ(u) ≤ c‖u‖3/2

Lemma 2. ∀β < 1/2 ∃c1 > 0 ∀y0 ∈ V −β(T3),∫ t

0
Φ(S(t, ·, y0))dt ≤ c1‖y0‖−β

Let QT = (0, T ) × T3, T > 0 or T = ∞. The

space of solutions for NPS:

V 1,2(−1)(QT ) = L2(0, T ;V 1) ∩H1(0, T ;V −1)

Moreover, we look for solutions ω(t, x;ω0) satisfying

Condition 1. If initial condition ω0 ∈ V 0\{0}
and solution ω(t, x;ω0) ∈ V 1,2(−1)(QT ) then

ω(t, ·, ω0) 6= 0 ∀t ∈ [0, T ]

Theorem 2. For each ω0 ∈ V 0 there exists

T > 0 such that there exists unique solution

ω(t, x;ω0) ∈ V 1,2(−1)(QT ) of the problem (1),(2)

satisfying Condition 1.

Theorem 3. The solution ω(t, x;ω0) ∈ V 1,2(−1)(QT )
of the problem (1),(2) depends continuously

on initial condition ω0 ∈ V 0.
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Structure of dynamical �ow for NPS

V 0(T3) ≡ V 0 is phase space for problem (1),(2).

De�nition 1. The set M− ⊂ V 0 of ω0, such

that for solution ω(t, x;ω0) of problem (1),(2)

satis�es inequality

‖ω(t, ·;ω0)‖0 ≤ α‖ω0‖0e−t/2 ∀t > 0 (∗)

is called the set of stability. Here α > 1 is a

�xed number depending on ‖ω0‖0.

M−(α) = {ω0 ∈M−; ω(t, ·;ω0) satis�es (*)}

where α ≥ 1 is �xed. Then M− = ∪α≥1M−(α)

If for ω0 ∈ V 0 the bound

sup
t∈R+

∫ t

0
Φ(S(τ, ·;ω0))dτ ≤

α− 1

α

holds then ω0 ∈M−(α).
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De�nition 2. The set M+ ⊂ V 0 of ω0, such

that the corresponding solution ω(t, x;ω0) exists

only on a �nite time interval t ∈ (0, t0), and

blows up at t = t0 is called the set of explosions.

The formula holds:

M+ = {ω0 ∈ V 0 : ∃t0 > 0
∫ t0

0
Φ(S(τ, ·;ω0))dτ = 1}

De�nition 3. The set Mg ⊂ V 0 of ω0, such

that the corresponding solution ω(t, x;ω0) exists

for time t ∈ R+, and ‖ω(t, x;ω0)‖0 → ∞ as

t→∞ is called the set of growing.

Lemma 4. Sets M−,M+,Mg are not empty,

and M− ∪M+ ∪Mg = V 0
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Some subsets of unit sphere from V 0

Unit sphere: Σ = {v ∈ V 0 : ‖v‖0 = 1}.
Subsets

A−(t) = {v ∈ Σ :
∫ t

0
Φ(S(τ, v))dτ ≤ 0},

A0(t) = {v ∈ Σ :
∫ t

0
Φ(S(τ, v))dτ = 0}

A− = ∩t≥0A−(t), A0 = ∩t≥0A0(t)

B+ = Σ \A− ≡

≡ {v ∈ Σ : ∃t0 > 0
∫ t0

0
Φ(S(τ, v))dτ > 0},

∂B+ = {v ∈ Σ : ∀t > 0
∫ t

0
Φ(S(τ, v))dτ ≤ 0

è ∃t0 > 0 :
∫ t0

0
Φ(S(τ, v))dτ = 0}
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On a structure of phase space

Important function on sphere Σ:

B+ 3 v → b(v) = max
t≥0

∫ t

0
Φ(S(τ, v))dτ (5)

Evidently, b(v) > 0 è b(v)→ 0 as v → ∂B+.

Let de�ne the map Γ(v):

B+ 3 v → Γ(v) =
1

b(v)
v ∈ V 0 (6)

It is clear that ‖Γ(v)‖0 →∞ as v → ∂B+.

The set Γ(B+) divides V 0 on two parts:

V 0
− = {v ∈ V 0 : [0, v] ∩ Γ(B+) = ∅},

V 0
+ = {v ∈ V 0 : [0, v) ∩ Γ(B+) 6= ∅}

Let B+ = B+,f ∪B+,∞ where

B+,f = {v ∈ B+ : max in (5) achives at t <∞}

B+,∞ = {v ∈ B+ : max in (5) does not achive at

t <∞}

Theorem 4.M− = V 0
− , M+ = V 0

+∪B+,f , Mg =
B+,∞
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Burgers equation

∂ty(t, x)− ∂xxy − ∂xy2 = 0, x ∈ (−π, π), (7)

y(t, x+ 2π) = y(t, x), y|t=0 = y0(x), (8)

considered in phase space

Y 1 = {y0 ∈ H1(−π, π) :
∫ π

−π
y0(x)dx = 0},

where ‖y‖Y 1 = ‖yx‖L2
.

Nonlinearity of normal type

Di�erentiation (7) on x yields

∂tv − ∂xxv −B(y) = 0, B(y) = 2v2 + 2yvx

where v = ∂xy. Let us decompose

B(y) = Bn(y) +Bτ(y),

where Bn(y) ⊥ S(Y 1), Bτ(y) touches S(Y 1)
and S(Y 1) = {y ∈ Y 1 : ‖y‖Y 1 = 1} Then

Bn(y) = Φ(yx)yx, Φ(v) =

∫ π
−π v

3dx∫ π
−π v2dx
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Equation with normal nonlinearity

∂tv − ∂xxv −Φ(v)v = 0, (9)

v(t, x+ 2π) = v(t, x), v|t=0 = v0(x) (10)

Phase space:

L0
2 = {v ∈ L2(−π, π) :

∫ π

−π
v(x)dx = 0}

De�nition 1.The set M− ⊂ L0
2, of all initial

conditions v0 for problem (9),(10) whose solutions

satisfy

‖v(v, ·)‖2L2
≤ αe−t

with a certain α = α(v0) > 0 is called set of

stability.

De�nition 2.The set M+ ⊂ L0
2 of all initial

conditions v0 for problem (9),(10) whose solutions

blow up during �nite time is called the set of

explosions.

De�nition 3.The set Mg = L0
2 \ (M− ∪M+)

is called the set of grouth.
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Denote S(t, x, v0) = w(t, x) where w is the

solution of the problem

∂tw − ∂xxw = 0,

w(t, x+ 2π) = w(t, x), w|t=0 = v0(x)

Formula for solution of (9),(10):

v(t, x, v0) =
S(t, x, v0)

1−
∫ t
0 Φ(S(τ, ·, v0))dτ

(11)

Lemma 1. M− 6= ∅, M+ 6= ∅, Mg 6= ∅.

Lemma 2. For initial conditions v0 ∈Mg the

solution v(t, x, v0) of problem (9),(10) with

normal nonlinearity satis�es

‖v(t, ·, v0)‖L2
→∞ as t→∞
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Feedback stabilization of equation with

normal nonlinearity.

We consider stabilization problem

∂tv−∂xxv−Φ(v)v = 0, v|t=0 = v0(x)+u0(x)

on circumference, where v0(x) is a given function

and u(x) is a starting control supported on a

segment [−ρ, ρ] ⊂ [−π, π] with arbitrary prescribed

ρ > 0.

We look for universal stabilizing control

u0(x) = λu(x), λ ∈ R (12)

with

u(x) = ξp(x)(cos 2px+ cos 4px) (13)

where p is a natural number satisfying π/(2p) ≤
ρ, and ξp(x) is characteristic function of segment

[−π/(2p), π/(2p)].

Theorem. Given v0 ∈M+∪Mg, ρ > 0 is small

and �xed. There exists u0 ∈ L0
2 of the form

(12), (13) such that v0 + u0 ∈M−.
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The main step of proof consists of establishing

inequality

∫ π

−π
S3(t, x, u)dx ≥ βe−6t (14)

with a positive β where S(t, x, u) is the solution

of heat equation with periodic boundary condition

and initial condition u(x) de�ned in (13).

Using (14) it is possible to prove that

∀v0 ∈M+ ∪Mg ∃α > 1, λ0 � 1 ∀|λ| ≥ λ0

1−
∫ t

0
Φ(S(t, x, v0 + λu)dx ≥ 1/α (1)

In virtue of explicit formula (11) for solution

of NPE (9) we get that

‖v(t, ·; v0 + λu)‖2L2
≤ αe−t

This proves Theorem.
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Remark Using result obtained in the Theorem

one can prove nonlocal stabilization of di�erentiated

Burgers equation by feedback impulse control

∂tv−∂xxv−Φ(v)v+Bτ(v) =
N∑
j=1

λju(x)δ(t−tj),

v|t=0 = v0(x)

where Bτ(v) is tangential part of nonlinear

operator for di�erentiated Burgers equation.

Here constants λj and time moments tj are

selected in dependence on some conditions

connected with behavior of solution v(t, ·).
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On one estimate for certain solution of

NPE

De�ne the cone

K = {y0 ∈ V 0 :
∫ π

−π
(S(t, x; y0))3dx < 0,

|
∫ π

−π
(S(t, x;

y0

‖y0‖
))3dx| ≥ βe−6t}

Then solution y(t, ·; y0) of NPE with y0 ∈ K
satis�es

‖y(t, ·; y0)‖20 ≤ c
‖y0‖20e

−2t

(1 + ‖y0‖β(1− e−4t))2

<
ce−2t

β2(1− e−4t)2
∀t > 0
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Thank you

for attention
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