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Navier-Stokes Equations (NSE)

ov(t,x) — Av+ (v, V)v+ Vp(t,z) = 0,
divv = 0,
v(t,...,x;...) =v(t, ..., z;4+27,...), 1 =1,2,3,

v(t, 2)]t=0 = vo(z)

Here v(t,z) = (v1,vp,v3) is a fluid velocity,
p(t, ) is a pressure.

Energy inequality:

t
/T3 |’U(t,az)|2d:v + 2/0 /11‘3 |Va;v(7',:13)\2d:1:d7' <

|, leo(@)Pde

Where T3 = (R/27Z3 is 3D torus. Image of
nonlinear operator (v, V)v at each point v €
> ={u € Ly ||ul|f, = 1} is tangent to the
sphere X, i.e. v L, (v, V)v



Helmholtz Equations

Curl of velocity

w(t,z) = curl v(t,z) =

Well-known formulas

2
(U,V)vzwxv—FV%,

curl (wxv) = (v, V)w—(w, V)v, ifdivv =divw =10

System of equations for curl

ow(t,z) — Aw~+ (v, V)w — (w,V)v =0

w(t, z)|t=0 = wo(z)

where wg = curlug



System of normal type and its derivation

Function spaces
VM — Vm(T3) —
= {v(z) € (H™(T3))3 : divv = 0, /]F?)v(a:)d:c = 0}

where H™(T3) - is the Sobolev space. Using
decomposition in Fourier series

o) = Y a(k)e ™k, H(k) = /T

keZ3

where z -k = Z?:

v(x)

—ix-k
. (27_‘_)_36 dx,

1517jkj> k = (kl,kQ,k:g) and

the formula curl curl v = —Av, when divev =
0, we get
kx w(k) .
curl tw(z) =i > ka( )e”"k
kez3\{0} i

Therefore operator
curl : V1 — Vo

realizes isomorphism of the spaces.



Nonlinear term in Helmholtz equations

B(w) = (v, V)w — (w, V)v

The following formula holds

3
(B(w),w)y0 = _/IF3 > w;j0jvpwrdr 7 O
k=1
and therefore

B(w) = Bn(w) + Br(w),

where By (w) is the component orthogonal to
the sphere

o ={uecV’:|lullyo = [wlyo}

at the point w, and the vector B, (w) is tangent

to >, at w. It is clear that Bp(w) = P (w)w
where ®© is unknown functional, that is determined
from equation

/1T3d>(w)w(a:).w(a;)d:c = /T?)(w(aﬁ),V)v(:U)-w(w)da:

and has the form



Jp3(w(x), V)curl “1u(2) - w(z)dz
Jp3 |w(x) |2 dx |

d(w) = 0, w=0

d(w) = w #= 0O,

Normal parabolic system (NPS)

Ow(t,z) — Aw — P(w)w =0, divw=0 (1)
w(t,)|t=0 = wo(x) (2)
Exact formula for NPS solution

Theorem 1. Let S(¢,z,yg) - be solving operator
for the Stokes system with periodic boundary
conditions:

8ty - Ay — Oa dlvy — Oa y|t=0 — Y0, (3)

i.e. S(t,z,yp) = y(t,x). (We assume that divyg =
0). Then solution of the problem (1),(2) has
the form

S(t,z, wo)

1 — féCD(S(T,:c;wO))dT (4)

w(t, z; wg) =



Unique solvability of NPS and continuity
of solutions on initial conditions

Lemma1.3¢>0, Vu e V/2  ®(u) < cllullz/,
Lemma 2.V <1/2 Jc; >0 Vyoe VA(T),

t
/O ®(S(t, -, y0))dt < e1llyoll_g

Let Q7 = (0,7) xT3, T">0 or T = co. The
space of solutions for NPS:

vE2ED(Qr) = Lo(0, T, V) N HYN (0, T3 V)
Moreover, we look for solutions w(t, x; wg) satisfying

Condition 1. If initial condition wg € VO\ {0}
and solution w(t,z;wg) € V2= (Qs) then

Theorem 2. For each wg € VO there exists

T > 0 such that there exists unique solution
w(t,z;wo) € VI2(=1(Qr) of the problem (1),(2)
satisfying Condition 1.

Theorem 3. The solution w(t, z; wg) € V121 (Qr)
of the problem (1),(2) depends continuously
on initial condition wg € V9.



Structure of dynamical flow for NPS
VO(T3) = VO is phase space for problem (1),(2).

Definition 1. The set M_ C VY of wg, such
that for solution w(t, x; wg) of problem (1),(2)
satisfies inequality

lw(t, - wo)llo < aflwolloe ™2 VE>0 (%)

IS called the set of stability. Here a > 1 is a
fixed number depending on ||lwol|o-

M_(a) = {wg € M_; w(t,-; wp) satisfies (*)}

where o > 1 is fixed. Then M_ = U,>1M_(«)

If for wg € V9 the bound

a—1

t
sup | P(S(T,-;wo))dr <
tGR_l_ 0

holds then wg € M_(«).



Definition 2. The set My C VO of wp, such
that the corresponding solution w(t, x; wg) exists
only on a finite time interval t € (0,ty), and
blows up at t = tg is called the set of explosions.

The formula holds:

t
My = {wp € VO: 3tg >0 /OO d(S(r, ;wp))dr = 1}

Definition 3. The set My C V0 of wg, such
that the corresponding solution w(t, x; wg) exists
for time t € Ry, and |jw(t, z;,wo)|lo — oo as

t — oo is called the set of growing.

Lemma 4. Sets M_, M, My are not empty,
and M_ UM, UMg=V0



Some subsets of unit sphere from 178%

Unit sphere: = = {v € VO : |wllg = 1}.
Subsets

t
A()={vex: /O (S (r,v))dr < 0},

t
Ao(t) = fv e = /O d(S(r,v))dr = 0}
A =M>0A-(t), Ag = Ni>0Ap(2)

B_|_:Z\A_E

t
—{vex: 3ty>0 /OO d(S(r,v))dr > 0},
t
OB =f{veEX: V> o/o S (S(r,v))dr < 0

W3t >0 /Oto ®(S(r,v))dr = 0}
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On a structure of phase space

Important function on sphere >_:
t
By 3 v - b(v) = max /o S(S(r,v))dr (5)

Evidently, b(v) >0 n b(v) =+ 0 as v — 0B
Let define the map ' (v):

By sv—=T(v)= ve VO (6)

1
b(v)
It is clear that || (v)||o =+ o0 as v — 0B.
The set '(B,) divides V9 on two parts:

VO={veVvP: [0,0]nT(BL) =0},
V2 ={veVv?: [0,v)NT(Bg) # 0}
Let By = By fU B4 o Where

By r={ve€ By : maxin (5) achives att < oo}

By o ={v € By : max in (5) does not achive at
t < oo}

Theorem 4. M_ =V, M =VPUB, y, My =

By o
11



Burgers equation

aty(taaj) T aCUCCy T 8$y2 — Oa S (_7-‘-77-‘-)7 (7)

y(ta X + 27T> — y(ta $>, y‘tzo — yO(x>7 (8)
considered in phase space

vl ={yoe H'(-mm): [ yola)ds =0},

where ||y|ly1 = [[yz L,-

Nonlinearity of normal type

Differentiation (7) on x yields
O — Ozav — B(y) =0, B(y) = 2v° + 2yvy

where v = 0,y. Let us decompose

B(y) = Bn(y) + Br(y),

where Bn(y) L S(Y1), B-(y) touches S(Y1)
and S(Y1) ={yeY!:|ylly1 =1} Then

™ v3da

Bn(y) = ®(Yz)yz, P(v)= ffﬁ v2dzx
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Equation with normal nonlinearity

Ot — Ogzv — ©(v)v = 0, (9)

U(ta T + 27T) — U(ta x)a v|t=0 — ,UO(:C) (10)
Phase space:

Lg = {v € Lo(—m,7) : /:Tv(:c)d:c = 0}

Definition 1.The set M_ C LY, of all initial
conditions vg for problem (9),(10) whose solutions
satisfy

lo(v, )7, < ce™?

with a certain o« = o(vg) > 0 is called set of
stability.

Definition 2.The set My C L9 of all initial
conditions vg for problem (9),(10) whose solutions
blow up during finite time is called the set of
explosions.

Definition 3.The set My = LY\ (M- U M)
is called the set of grouth.
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Denote S(t,z,vg) = w(t,z) where w is the
solution of the problem

atw — agcajw — O,
w(t7 T + 27T) — w(t7 x)) wlt:O — UO(:E)

Formula for solution of (9),(10):

S(t, x,vg)

1 —fécb(S(T,',’Uo))dT (11)

v(t, z,vg) =

Lemma 1. M_#0, My #= 0, Mg #= 0.

Lemma 2. For initial conditions vg € My the
solution v(t,x,vg) of problem (9),(10) with
normal nonlinearity satisfies

||U(t7 '7UO)||L2 — 0 as t— oo

14



Feedback stabilization of equation with
normal nonlinearity.

We consider stabilization problem

Ov—0pzv—P(v)v =0, v|t=g = vo(z)+ug(x)

on circumference, where vg(x) is a given function
and u(x) is a starting control supported on a
segment [—p, p] C [—7, 7] with arbitrary prescribed
p > 0.

We look for universal stabilizing control

ug(x) = Mu(z), NeR (12)
with

u(x) = &p(x)(cos2px 4+ cos4px) (13)

where p is a natural number satisfying n/(2p) <
p, and &,(x) is characteristic function of segment

[—m/(2p), ™/(2p)].

Theorem. Given vg € M UMy, p > 0 is small
and fixed. There exists ug € L3 of the form
(12), (13) such that vg+ug € M_.

15



The main step of proof consists of establishing
inequality

/7T S3(t, z,u)dx > Be 0! (14)

—7T
with a positive 8 where S(¢, z,u) is the solution
of heat equation with periodic boundary condition
and initial condition u(x) defined in (13).

Using (14) it is possible to prove that

Vipe My UMy da>1, Ag>1 VA > )Xo

1—/()t(1>(5(t,:13,v0—|—)\u)d:132 1/ (1)

In virtue of explicit formula (11) for solution
of NPE (9) we get that

lo(t, ;v + M7, < ce™

This proves Theorem.
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Remark Using result obtained in the Theorem
one can prove nonlocal stabilization of differentiated
Burgers equation by feedback impulse control

N
O —0zzv—P(v)v+Br(v) = > Aju(x)d(t—t;),
=1

’U|t=0 = vo(x)

where Br(v) is tangential part of nonlinear
operator for differentiated Burgers equation.
Here constants A; and time moments t; are
selected in dependence on some conditions
connected with behavior of solution v(t,-).
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On one estimate for certain solution of
NPE

Define the cone

T
K={ypoeV: [ (S(twy0)de <0,
—TT

[ (St 200 2dal > pemo)
= ol

Then solution y(t,-; yg) of NPE with yg € K
satisfies

lyol|Ze=2t
ly(t, - yo) 5 < ¢
(14 |lyollB(1 — e—41))2
—2t
e Vi > 0

< 52(1 _ €—4t)2
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Thank you

for attention
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