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1. Introduction

Let Ω be a bounded domain in Rn, Q = Ω× (0;∞), u ∈ C2,1(Q̄), uxx be the Hesse matrix
of u in space variables. We denote a p-trace of uxx by Tp[u] = Tp(uxx), 1 ≤ p ≤ n and
introduce p-Hessian evolution operator

Ep[u] := −utTp−1[u] + Tp[u], (x, t) ∈ Q̄T . (1.1)

Notice that by de�nition T0(uxx) ≡ 1, T1(uxx) = ∆u and (1.1) is the heat operator, when
p = 1.

We investigate asymptotic behavior of solutions of the following initial boundary value
problems:

Em[u] = f, u|∂′QT
= ϕ, 1 ≤ m ≤ n, (1.2)

where ∂′QT = Ω× {t = 0} ∪ ∂Ω× [0;T ]. In particular, we have proved

Theorem 1.1. Let f ≥ ν > 0, f ∈ C2,1(Q̄T ) for all T ∈ [0;∞), ϕ ∈ C2,1(∂′QT ), ϕ = 0
on ∂Ω × [0;∞), ∂Ω ∈ C2. Assume that limt→∞ f(x, t) = f̄(x) and there exists a solution
ū ∈ C2(Ω̄) to the Dirichlet problem

Tm[u] = f̄ , u|∂Ω = 0.

Then all solutions u ∈ C2,1(Ω̄× [0;∞)) to the problem (1.2) tend uniformly in C to the
function ū(x), when t→ ∞.

It is of interest the following non existence theorem.

Theorem 1.2. Assume that there are points x0, x1 ∈ Ω such that ϕxx(x0, 0) is (m − 1)-
positive matrix, while ϕxx(x1, 0) is not (m − 1)-positive. Then there are no solutions in
C2,1(Q̄T ) to the problem (1.2), whatever f > 0, ∂Ω, T > 0, ϕ had been.

Eventually, we formulate the existence theorem assuming su�ciently smooth data in
(1.2).

Theorem 1.3. Let f ≥ ν > 0, ∂Ω is (m − 1)-convex hypersurface, ϕ(x, 0) ∈ Km−1(Ω̄).
Assume that compatibility conditions are satis�ed. Then there exists a unique in C2,1(Q̄T )
solution to the problem (1.2).
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2. Notations and de�nitions

We denote the space of N ×N symmetric matrices by Sym(N) and by Tp(S) the p-traces
of S ∈ Sym(N), which are the sum of all principal p-minors of S, 1 ≤ p ≤ N , T0(S) := 1.

De�nition 2.1. A matrix S ∈ Sym(N) is m-positive if S ∈ Km,

Km = {S : Tp(S) > 0, p = 1, . . . ,m}. (2.1)

The cones (2.1),m = 1, . . . , N are the basis of the theory ofm-Hessian partial di�erential
equations and admit di�erent equivalent de�nitions. Constructive De�nition 1.1 has been
introduced in the paper [7].

Our further proceeding will be restricted to the subspace of Sym(N). Namely, we take
into consideration the set

Sev = {Sev = (skl)
n
0 , s00 = 1, s0i = si0 = 0, S = (sij)

n
1 ∈ Sym(n)}. (2.2)

In order to emphasize this restriction we introduce new notations for traces Tp and cones
(2.1) on the subspace (2.2)

Em(s, S) := Tm(Sev) = sTm−1(S) + Tm(S), 1 ≤ m ≤ n, (2.3)

Kev
m = {s, S : Ep(s, S) > 0, p = 1, . . . ,m}. (2.4)

Let Ω ⊂ Rn be a bounded domain, Q = Ω × (0;T ), ∂′′QT = ∂Ω × [0;T ],
∂′QT = (Ω × {0}) ∪ ∂′′QT , u ∈ C2,1(Q̄T ). We introduce functional analogs of (2.2), (2.3),
(2.4): Sev[u] = (s[u] = −ut, S[u]) = uxx),

Em[u] := Tm(Sev[u]) = −utTm−1(uxx)) + Tm(uxx)), 1 ≤ m ≤ n, (2.5)

Kev
m (Q̄T ) = {u ∈ C2,1(Q̄T ) : S

ev[u] ∈ Kev
m , (x, t) ∈ (Q̄T )}, (2.6)

where uxx is Hesse matrix of u.

De�nition 2.2. We say that operator (2.5) is the m-Hessian evolutionary operator and a
function u ∈ Kev

m (Q̄T ) is m-admissible in Q̄T evolution.

The development of the theory of Hessian equations has brought out some new notions
in di�erential geometry and the �rst description of some may be found in [1] as necessary
conditions for admissible solvability of the Dirichlet problems. In the papers [9], [8], [11]
some versions of these requirements were considered independently of di�erential equations
as the set of new geometric notions. Namely, let ∂Ω ∈ Rn be C2-hypersurface with position-
vector X = X(θ) and metric tensor g[∂Ω] = (gij)

n−1
1 , gij = (Xi, Xj), Xi = ∂X/∂θi. In some

vicinity of M0 ∈ ∂Ω we introduce the set of matrices τ = (τ ji )
n−1
1 such that g−1 = τT τ and

denote
X(i) = Xkτ

k
i , X(ij) = Xklτ

k
i τ

l
j , i, j = 1, . . . , n− 1. (2.7)

Notice that (X(i), X(j)) = δij and (2.7) provides Euclidean moving frames for ∂Ω. The
freedom of choice of τ supplies rotations in the tangential plane.

The second item in (2.7) provides the set of symmetric matrices K[∂Ω],

K[∂Ω] = (Kij)
n−1
1 , Kij = (X(ij),n), (2.8)

where n is the interior to ∂Ω normal.
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De�nition 2.3. We say that a matrix (2.8) is the curvature matrix of ∂Ω and functions
kp(M) = Tp(K[∂Ω])(M), p = 1, . . . , n− 1 are the p-curvatures of ∂Ω.

By construction the curvature matrices are geometric invariant in the sense that theirs
eigenvalues are the principal curvatures of ∂Ω. On the other hand, p-curvatures are absolute
geometric invariants admitting natural numbering by p throughout ∂Ω. It is also remarkable
that if ∂Ω is C2+k-smooth, then {kp}n−1

1 are Ck-smooth.
De�nitions 1.1, 1.3 carry out

De�nition 2.4. A closed C2-hypersurface Γ is m-convex at a point M if its curvature
matrix is m-positive at this point.

Notice that m-positiveness of the curvature matrix does not depend on parametrization.
It follows from 2.1 that De�nition 1.3 is equivalent to

De�nition 2.5. A closed C2-hypersurface Γ is m-convex at a point M if the �rst p-
curvatures of Γ are positive up to m at M :

kp[Γ](M) > 0, p = 1, . . . ,m. (2.9)

As to the principal curvatures of Γ ⊂ Rn+1, it is known that at least m of them are
positive in the points of m-convexity but otherwise it is only true for m = n, i.e., for strictly
convex hypersurfaces in common sense.

3. Existence and non-existence theorems

Consider in the cylinder QT the �rst initial boundary value problem for the m-Hessian
evolution equation,

Em[u] = f, u(x, 0) = ψ, u|∂′′QT
= ϕ, 1 ≤ m ≤ n, (3.1)

where ψ, ϕ are su�ciently smooth given functions, satisfying the compatibility conditions

ψ(x) = ϕ(x, 0), ϕt(x, 0) =
Tm(ψxx)− f(x, 0)

Tm−1(ψxx)
, x ∈ ∂Ω. (3.2)

The following proposition is a re�ned version of Theorem 1.2 from the paper [12].

Theorem 3.1. Assume that ∂Ω is an (m−1)-convex hypersurface, ∂Ω ∈ C4+α, f ≥ ν > 0,
f ∈ C2+α,1+α/2, ψ ∈ Km−1(Ω̄) ∩ C4+α(Ω̄), ϕ ∈ C4+α,2+α/2(∂′′QT ) and ψ, ϕ satisfy (3.2).

Then there exists the unique in Kev
m (Q̄T ) solution u to the problem (3.1) and

u ∈ C4+α,2+α/2(Q̄T ).

Restricting ϕ to zero we obtain

Theorem 3.2. Assume that f ≥ ν > 0, f ∈ C(Q̄T ) and in (3.1) ϕ = 0. Then there exists
no more than one solution u ∈ C2,1(Q̄T ) to the problem (3.1) and if u does exist then it
belongs to Kev

m (Q̄T ), i.e., u is an m-admissible evolution.

Theorems 1.2, 1.3 are a consequence of the following non existence theorem.

Theorem 3.3. Let m > 1, ϕ = 0 and all conditions of Theorem 2.1 are satis�ed but (m−1)-
admissibility of ψ, i.e., there is a point x0 ∈ Ω such that ψxx(x0) ∈ Sym(n)\K̄m−1. Then
there are no solutions to the problem (3.1) in C2,1(Q̄T ), whatever small T be.
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4. On asymptotic behavior of m-Hessian evolutions

In the paper [14] N.Trudinger and X.-J.Wang have considered the logarithmic Hessian
evolution operator Pm,l, 0 ≤ l < m ≤ n, which may be written in the form

Pm,l[u] = −ut + log Tm,l(uxx), Tm,l(uxx) =
Tm(uxx)

Tl(uxx)
, u ∈ K(Ω̄). (4.1)

We see that here K(Ω̄) controlled by log(.) is the basis of Pm,l-admissible evolutions and it
is natural to associate with operator (4.1) the set K(Ω̄)×R. We separate Theorem 2.1 from
[14] in two.

Theorem 4.1. Assume that ∂Ω ∈ C4 is (m− 1)-convex, g ∈ C2,1(Q̄T ), ψ ∈ K(Ω̄)∩C4(Ω̄),
ϕ ∈ C4,2(∂′′QT ). Assume also that

ϕ(x, 0) = log Tm,l(uxx)− g(x, 0), x ∈ ∂Ω.

Then there exists a unique solution of the problem

Pm,l[u] = g, u(x, 0) = ψ, u|∂′′QT
= ϕ, 0 ≤ l ≤ m ≤ n, (4.2)

which is Pm,l-admissible evolution.

Theorem 4.2. Let conditions of Theorem 3.1 be satis�ed for all T <∞. Assume in addition
that g(x, t), ϕ(x, t) converge uniformly as t → ∞ to functions ḡ(x), ϕ̄(x). Then Pm,l-
admissible solution to the problem (4.2) converges uniformly to the unique m-admissible
solution ū of the Dirichlet problem

Tm,l[ū] = exp g, x ∈ Ω, ū|∂Ω = ϕ̄. (4.3)

Theorem 2.1 is an analog of Theorem 3.1 for the m-Hessian evolution equations. As to
Theorem 3.2 the following proposition holds for m-Hessian evolutions.

Theorem 4.3. Assume that u = u(x, t) is a m-admissible evolution from Theorem 2.1 in
which conditions are satis�ed for all T < ∞ and assume also that f(x, t), ϕ(x, t) converge
uniformly as t → ∞ to functions f̄(x), ϕ̄(x). Then u(x, t) converges uniformly to the m-
admissible function ū, which is a solution of the Dirichlet problem

Tm[ū] = f, x ∈ Ω, ū|∂Ω = ϕ̄. (4.4)

Notice that in Theorem 2.1 an initial function ψ is not required to be m-admissible.
Comparing (4.3) with (4.4) we see that in contrast to operators (4.1)m-admissible evolutions
may upgrade the rank of admissibility of initial functions.
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