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1. Introduction

Let Q be a bounded domain in R", Q = Q x (0;00), u € C*'(Q), uy, be the Hesse matrix
of u in space variables. We denote a p-trace of ugz, by Tplu] = Tp(ugs), 1 < p < n and
introduce p-Hessian evolution operator

Eylu] = —wTp1[u] + Tpu], (z,t) € Qr. (1.1)

Notice that by definition Tg(ugz) = 1, T1(uge) = Au and (1.1) is the heat operator, when
p=1.
We investigate asymptotic behavior of solutions of the following initial boundary value
problems:
Eplul=f, ulogr=¢, 1<m<m, (1.2)

where &'Qr = Q x {t = 0} U9Q x [0;T]. In particular, we have proved

Theorem 1.1. Let f > v > 0, f € C*Y(Qr) for all T € [0;00), ¢ € C?>1(0'Qr), ¢ =0
on 9Q x [0;00), 90 € C?. Assume that limy o0 f(x,t) = f(2) and there ezists a solution
u € C%(Q) to the Dirichlet problem

Tm[u] = fv u|3§2 =0.

Then all solutions u € C*1(Q x [0;00)) to the problem (1.2) tend uniformly in C to the
function a(x), when t — co.

It is of interest the following non existence theorem.

Theorem 1.2. Assume that there are points xo,x1 € Q such that ¢u.(x0,0) is (m — 1)-
positive matriz, while ¢,.(v1,0) is not (m — 1)-positive. Then there are no solutions in
C?1(Q7) to the problem (1.2), whatever f >0, 0Q, T > 0, ¢ had been.

Eventually, we formulate the existence theorem assuming sufficiently smooth data in
(1.2).

Theorem 1.3. Let f > v > 0, 0Q is (m — 1)-convex hypersurface, ¢(x,0) € K;—1($2).
Assume that compatibility conditions are satisfied. Then there exists a unique in C**(Qr)
solution to the problem (1.2).



2. Notations and definitions

We denote the space of N x N symmetric matrices by Sym(N) and by T,,(S) the p-traces
of S € Sym(N), which are the sum of all principal p-minors of S, 1 <p < N, Tp(S) := 1.

Definition 2.1. A matrix S € Sym(N) is m-positive if S € K,,,
K, ={S:T,(5)>0, p=1,...,m}. (2.1)

The cones (2.1), m = 1,..., N are the basis of the theory of m-Hessian partial differential
equations and admit different equivalent definitions. Constructive Definition 1.1 has been
introduced in the paper [7].

Our further proceeding will be restricted to the subspace of Sym(N). Namely, we take
into consideration the set

S = {Sev = (Skl)g, So0 = 1, S0i = Si0 = O, S = (Sij)? S S’ym(n)} (22)

In order to emphasize this restriction we introduce new notations for traces 7, and cones
(2.1) on the subspace (2.2)

E.(s,8) :=Tn(S) = sTyn_1(S) + Tn(S), 1<m<n, (2.3)
K ={s,5:Ey(s,5)>0, p=1,...,m}. (2.4)

m

Let © C R"™ be a bounded domain, @ = Q x (0;7), "Qr = 0Q x [0;T],
IQr = (2 x {0}) U d'Qr, u € C*Y(Qr). We introduce functional analogs of (2.2), (2.3),
(2.4): 5[u] = (s[u] = —ue, S[u]) = tas),

B[] = T (S°[u]) = Tt () + T (tzs)), 1< m <n, (2.5)
K;)(Qr) = {ue C*1(Qr) : S[u] € K}, (2,1) € (Qr)}, (2.6)

where u,, is Hesse matrix of u.

Definition 2.2. We say that operator (2.5) is the m-Hessian evolutionary operator and a
function u € K& (Qr) is m-admissible in Qr evolution.

m

The development of the theory of Hessian equations has brought out some new notions
in differential geometry and the first description of some may be found in [1] as necessary
conditions for admissible solvability of the Dirichlet problems. In the papers [9], [8], [11]
some versions of these requirements were considered independently of differential equations
as the set of new geometric notions. Namely, let 9Q € R™ be C?-hypersurface with position-
vector X = X (#) and metric tensor g[0Q] = (g;;)7 ", 9i; = (Xi, X;), Xi = 0X/06". In some
vicinity of My € 99 we introduce the set of matrices 7 = (7)1 ™" such that g=' = 777 and
denote

Xy =Xerl, Xgjy=Xurlth, dj=1...,n—-1 (2.7)
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Notice that (X, X(;)) = di; and (2.7) provides Euclidean moving frames for 9€2. The
freedom of choice of T supplies rotations in the tangential plane.
The second item in (2.7) provides the set of symmetric matrices K[0€],

where n is the interior to 92 normal.



Definition 2.3. We say that a matrix (2.8) is the curvature matrix of 09 and functions
k, (M) =T,(K[0Q))(M), p=1,...,n— 1 are the p-curvatures of 0.

By construction the curvature matrices are geometric invariant in the sense that theirs
eigenvalues are the principal curvatures of 9. On the other hand, p-curvatures are absolute
geometric invariants admitting natural numbering by p throughout 0€). It is also remarkable
that if 9Q is C***-smooth, then {k,}} ™" are C*-smooth.

Definitions 1.1, 1.3 carry out

Definition 2.4. A closed C%-hypersurface I' is m-convex at a point M if its curvature
matrix is m-positive at this point.

Notice that m-positiveness of the curvature matrix does not depend on parametrization.
It follows from 2.1 that Definition 1.3 is equivalent to

Definition 2.5. A closed C%-hypersurface I' is m-convex at a point M if the first p-
curvatures of I' are positive up to m at M:

k,I|(M)>0, p=1,...,m. (2.9)

As to the principal curvatures of I' C R™!, it is known that at least m of them are
positive in the points of m-convexity but otherwise it is only true for m = n, i.e., for strictly
convex hypersurfaces in common sense.

3. Existence and non-existence theorems

Consider in the cylinder Qr the first initial boundary value problem for the m-Hessian
evolution equation,

Em[u] = f7 U(.I‘, O) = Q/)7 u|(’9”QT = (ba 1 <m< n, (31)
where 1, ¢ are sufficiently smooth given functions, satisfying the compatibility conditions

Tm(wzx) — f('rv 0)
Tmfl(wzx) ’

The following proposition is a refined version of Theorem 1.2 from the paper [12].

Theorem 3.1. Assume that 0Q is an (n}f 1)-convex hypersurface, 9Q € C4t f > v >0,
feorettel2 y e K, 1(Q) N CH0(Q), ¢ € Ot Qr) and v, ¢ satisfy (3.2).

Then there exists the unique in K (Qr) solution u to the problem (3.1) and
u € CH2+e/2(Qr).

Restricting ¢ to zero we obtain

Theorem 3.2. Assume that f > v >0, f € C(Qr) and in (3.1) ¢ = 0. Then there exists
no more than one solution u € C*'(Qr) to the problem (3.1) and if u does ewist then it
belongs to K&V (Qr), i.e., u is an m-admissible evolution.

Theorems 1.2, 1.3 are a consequence of the following non existence theorem.

Theorem 3.3. Letm > 1, ¢ = 0 and all conditions of Theorem 2.1 are satisfied but (m—1)-
admissibility of 1, i.e., there is a point o € Q such that Yea(x0) € Sym(n)\K,—1. Then
there are no solutions to the problem (3.1) in C%1(QT), whatever small T be.



4. On asymptotic behavior of m-Hessian evolutions

In the paper [14] N.Trudinger and X.-J.Wang have considered the logarithmic Hessian
evolution operator Py, ;, 0 <1 < m < n, which may be written in the form

T (Uszr)
Ti(tzz)

We see that here K() controlled by log(.) is the basis of P, ;-admissible evolutions and it

is natural to associate with operator (4.1) the set K(£2) x R. We separate Theorem 2.1 from
[14] in two.

Poalu] = —w +1log Ty i (Upe), Tt (Ugy) = u € K(Q). (4.1)

Theorem 4.1. Assume that 00 € C* is (m —1)-conver, g € C*1(Qr), ¥ € K(Q)NC4(Q),
¢ € CY2(0"Qr). Assume also that

#(x,0) =log Tpy 1 (uge) — g(z,0), x € 0.
Then there exists a unique solution of the problem
Proiul=g9, u(x,0)=1v, ulogrg,=¢ 0<1<m<n, (4.2)
which is Py, ;-admissible evolution.

Theorem 4.2. Let conditions of Theorem 3.1 be satisfied for all T < co. Assume in addition
that g(z,t), ¢(x,t) converge uniformly as t — oo to functions g(x), ¢(x). Then P, -
admissible solution to the problem (4.2) converges uniformly to the unique m-admissible
solution u of the Dirichlet problem

Toalu) = expg, €9, iloo =9 (4.3)

Theorem 2.1 is an analog of Theorem 3.1 for the m-Hessian evolution equations. As to
Theorem 3.2 the following proposition holds for m-Hessian evolutions.

Theorem 4.3. Assume that u = u(x,t) is a m-admissible evolution from Theorem 2.1 in
which conditions are satisfied for all T < oo and assume also that f(z,t), ¢(x,t) converge
uniformly as t — oo to functions f(x), é(x). Then u(x,t) converges uniformly to the m-
admissible function @, which is a solution of the Dirichlet problem

Tm[ﬂ] =f x€, ﬂ‘ag = qg (44)

Notice that in Theorem 2.1 an initial function ¢ is not required to be m-admissible.
Comparing (4.3) with (4.4) we see that in contrast to operators (4.1) m-admissible evolutions
may upgrade the rank of admissibility of initial functions.
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