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The thin obstacle problem

1 Ω open domain in Rn

2 Γ ⊂ Rn a hyper surface
3 aij Lipschitz continuous positive definite
4 φ ∈ C1,1(Γ)
5 u : Ω→ R a local minimizer of∫ ∑

i,j

aij∂iu∂judx

with the constraint u ≥ φ on Σ, i.e. for all x ∈ Ω there exists r > 0
such that

Br(x) ∈ Ω
for all v ∈ H1(Br(x)) with v ≥ φ for y ∈ Br(x) ∩ Σ and v = u on
∂Br(x) ∫

Br(x)

n∑
i,j=1

aij∂iv∂jvdx ≥
∫
Br(x)

n∑
i,j=1

aij∂iu∂judx
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General existence and regularity results

Functional analysis: Existence of minimizers for Ω bounded and suitable
Dirichlet conditions at ∂Ω.
Regularity theory: u ∈ C1,s for (some) s ∈ (0, 12 ] if φ ∈ C2. (Caffarelli
1979, Arkhipova & Uralceva 87& 89, s = 1

2 Athanasapoulos & Caffarelli
04, Laplacian, half space, zero obstacle, Garofalo & Smets Vega Garcia 14,
general).
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The boundary thin obstacle problem

Study local minimizers of
∫
B+

1
|∇u|2dx subject to u(x1, . . . , xn−1, 0) ≥ 0.

The contact set Λ = {y ∈ Rn−1 : |y| < 1, u(y, 0) = 0}
The positivity set Ω = {y ∈ Rn−1 : |y| < 1, u(y, 0) > 0}
The free boundary Γ = ∂Λ ∩B1(0)

The quantity

Nx(u, r) =
r
∫
B+

r (x) |∇u|
2dx∫

(∂Br(x))
|u|2dHn−1

is non decreasing and the limit

κ(x) = lim
r→0

Nx(u, r)

is upper semi continuous.
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Blow-up

The functions

ur =
u(x/r)

‖u(./r)‖L2(B1(0))

are compact in L2(B1(0)) and of norm 1. By the monotonictiy formula
any blow-up is a homogeneous solution to the thin obstacle problem of
homogeneity κ(x). They are partly classified: If x ∈ Γ then either κ ≥ 2,
or κ = 3

2 . In the second case the homogeneous solution is unique, up to
symmetries, and given by

u0(x) = Re(xn−1 + ixn)3/2

The subset of Γ with κ = 3
2 is called the regular part of Γ. It is open in Γ

by the semi continuity of κ.
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Result

Theorem (K, Petrosyan, Shi 2014)

The regular part of Γ is analytic, i.e. it is the level set of a non degenerate
analytic function.
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The Grushin Laplacian

Consider harmonic functions in the slit domain, i.e. in the unit ball, outside

Λ0 = {x ∈ Rn : xn = 0, xn−1 ≤ 0}

where we require u to be 0. We introduce new variables

xn−1 =
1

2

(
y2n − y2n−1

)
, xn = ynyn−1, yi = xi for i ≤ n− 2.

Then

(x21 + x22)
1
2 ∆xu =

[
∂2yn + ∂2yn−1

+ (y2n−1 + y2n)
n−2∑
i=1

∂2yi

]
u =: ∆Grushinu

in yn > 0 with the boundary condition u(y) = 0 on {yn = 0}.
Alternatively we may neglect the boundary condition and consider odd
functions on Rn.
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Facts

1 The Grushin Laplacian falls into Hörmander’s theory of squares of
vector fields.

2 It is hypo elliptic and analytic hypo elliptic

3 The full Calderon-Zygmund theory holds, with the proper formulation.

Consider
∆u = ∇F in Rn\Γ0, u = 0 on Γ0.

Theorem

‖|x|s∇u‖Lp ≤ c‖|x|sF‖Lp

for s = 1
2 −

1
p , or, more generally, if

1

2
− 2

p
< s <

3

2
− 2

p
.
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The partial Hodograph transform

Suppose that (after even reflection)

lim
r→0

ur → u0.

We define the map

x→ (x1, . . . xn−2, ∂n−1u, ∂nu)

and define the Legendre function of u by

v(y) = u(x)− xn−1yn−1 − xnyn.

The free boundary is the graph of the function

f(x1, . . . , xn−2) = −∂yn−1v(x1, . . . xn−2, 0, 0).

Theorem

The function v is analytic.
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The function v

The function v satisfies the Monge-Ampere type equation

0 = vn−1,n−1 + vnn −
n−2∑
i=1

det

 vii vi,n−1 vin
vn−1,i vn−1,n−1 vn−1,n
vni vnn−1 vnn

 . (1)

The determinants are the Hessian determinants of v restricted to three
dimensional subspaces given by the ith, the n− 1 and the nth coordinate.
The Legendre function of u0 is (up to constants)

v(y) = y3n−1 − 3yn−1y
2
n.

It satisfies the homogeneous Grushin Laplace equation.
To prove Theorem 3 we prove that solutions to (1) coming from the
construction above are analytic. Symmetries, structure depends on third
order derivatives.
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Steps of the proof

1 Γ is a Lipschitz graph.

2 There exists s > 0 such that Γ is a graph of a C1,s function.

3 There is a unique blow-up without normalization. It depends
continuously on x ∈ Γ. (KPS, Monotonicity formulas, approximation
by polynomials, .. De Silva, Savin smoothness 14))

4 The blow up converges in high norms away from the free boundary.

5 The nonlinear equation is a perturbation of the Grushin Laplacian.
Finite differences give higher regularity. (KPS)
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Extensions, work in progress (K,Rüland, Shi)

Lipschitz coefficients, C1,1 surface, nonzero obstacle

1 Carleman inequality instead of frequency function (Compactness of
blow up, blow up is a homogeneous solution).

2 ’second term’

3 Higher regularity / analyticity of regular part for analytic data
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