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Dear Nina,

Many happy returns of the day!
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This talk is based on the papers

V. Maz’ya
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operator

Dokl. Akad. Nauk SSSR 1962 144, 721–722.
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3. Form boundedness of the general second order differential
operator

Comm. Pure Appl. Math., 2006, 59:9, 1286–1329

Jaye, B. J., Maz’ya, V. G., Verbitsky, I. E.

Existence and regularity of positive solutions of elliptic equations of
Schrödinger type
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Wiener capacity

The notion of capacity appeared first in electrostatics and was
introduced to mathematics by N. Wiener in the 1920s. Since then
several generalizations and modifications of Wiener’s capacity
appeared: Riesz, Bessel, polyharmonic capacities, p-capacity and
others. They are of use in potential theory, probability, function
theory and partial differential equations. The capacities provide
adequate terms to describe sets of discontinuities of Sobolev
functions, removable singularities of solutions to partial differential
equations, sets of uniqueness for analytic functions, regular
boundary points in the Wiener sense, divergence sets for
trigonometric series, etc.
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Let Ω be an open set in Rn and let F be a compact subset of Ω.
The Wiener (harmonic) capacity of F with respect to Ω is defined
as the number

capΩF = inf
{∫

Ω
|∇ u|2dx : u ∈ C∞0 (Ω), u ≥ 1 on F

}
. (1)

We shall use the simplified notation capF if Ω = Rn. The capacity
capΩF can be defined equivalently as the least upper bound of
ν(F ) over the set of all measures ν supported by F and satisfying
the condition ∫

Ω
G (x , y) dν(y) ≤ 1,

where G is the Green function of the domain Ω. If Ω = R3 then it
is just the electrostatic capacity of F .
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It follows from the definition (1) that the capacity is a
nondecreasing function of F and a nonincreasing one of Ω. We
have Choquet’s inequality

capΩ(F1 ∩ F2) + capΩ(F1 ∪ F2) ≤ capΩ F1 + capΩ F2

for arbitrary compact sets F1 and F2 in Ω [?]. It is easy to check
that the Wiener capacity is continuous from the right. This means
that for each ε > 0 there exists a neighborhood G ,
F ⊂ G ⊂ G ⊂ Ω such that for each compact set F1 with
F ⊂ F1 ⊂ G the inequality

capΩ F1 ≤ capΩ F + ε

holds.
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Let E be an arbitrary subset of Ω. The inner and the outer
capacities are defined as numbers

cap
Ω
E = sup

F⊂E
capΩ F , F compact in Ω,

capΩ E = inf
G⊃E

capΩ G , G open in Ω.

It follows from the general Choquet theory that for each Borel set
both capacities coincide. Their common value is called the Wiener
(harmonic) capacity and will be denoted by capΩ E .
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By vn we denote the volume of the unit ball in Rn and let mesnF
stand for the n-dimensional Lebesgue measure of F . By the
classical isoperimetric inequality, the following isocapacitary
inequalities hold

capΩ F ≥ nv
2/n
n (n−2) |(mesn Ω)(2−n)/n−(mesn F )(2−n)/n|−1 if n > 2

(2)
and

capΩF ≥ 4π
(

log
mes2 Ω

mes2 F

)−1
if n = 2. (3)

In particular, if n > 2 then

capF ≥ nv
2/n
n (n − 2)(mesn F )(n−2)/n. (4)

If Ω and F are concentric balls, then the three preceding estimates
come as identities.
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Using Wiener’s capacity, one can obtain two-sided estimates for
the best constant in the Friedrichs inequality

‖u‖L2(B1) ≤ C ‖∇u‖L2(B1), (5)

where B1 is a unit open ball and u is an arbitrary function in
C∞(B1) vanishing on a compact subset F of B1.
Proposition. The best constant C in (5) satisfies

C ≤ c(n)
(
capF

)−1/2
, (6)

where c(n) depends only on n.
Proposition. Let

capF ≤ γ capB1, (7)

where γ ∈ (0, 1). Then any constant C in (5) satisfies

C ≥ c(n, γ)
(
capF

)−1/2
. (8)
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Positivity of the Schrödinger operator with negative
potential

Theorem 1. [Maz. 1,2] Let Ω be an open set in Rn, n ≥ 1, and let
V be a nonnegative Radon measure in Ω. The inequality∫

Ω
|u|2 V(dx) ≤

∫
Ω
|∇ u|2 dx (9)

holds for every u ∈ C∞0 (Ω) provided

V(F )

capΩF
≤ 1

4
(10)

for all compact sets F ⊂ Ω.
A necessary condition for (9) is

V(F )

capΩF
≤ 1, (11)
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Corollary The trace inequality∫
Ω
|u|2 V(dx) ≤ C

∫
Ω
|∇ u|2 dx (12)

holds for every u ∈ C∞0 (Ω) if and only if

sup
F⊂Ω

V(F )

capΩF
<∞.

The bounds 1/4 and 1 in (10) and (11) are sharp. The gap
between these sufficient and necessary conditions is the same as in
Hille’s non-oscillation criteria for the operator

−u′′ − V u, V ≥ 0,

on the positive semiaxis R1
+:

x V((x ,∞)) ≤ 1/4 and x V((x ,∞)) ≤ 1 (13)

for all x ≥ 0. By the way, conditions (13) are particular cases of
(10) and (11) with n = 1 and Ω = R1

+.
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Combining Theorem 1 with isocapacitary inequalities (2)–(4), we
arrive at sufficient conditions for (9) whose formulations involve no
capacity. For example, in the two-dimensional case, (9) is
guaranteed by the inequality

V(F ) ≤ 4π

log
mes2 Ω

mes2 F

.

The sharpness of this condition can be easily checked by analyzing
the well known Hardy-type inequality∫

Ω

|u(x)|2

|x |2(log |x |)2
dx ≤ 4

∫
Ω
|∇ u(x)|2 dx ,

where u ∈ C∞0 (Ω) and Ω is the unit disc.
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Here is a dual assertion to Theorem 1 which is stated in terms of
the Green function G of Ω and does not depend on the notion of
capacity.
Theorem 2.
Let VF be the restriction of the measure V to a compact set
F ⊂ Ω. Inequality (9) holds for every u ∈ C∞0 (Ω) provided∫

Ω

∫
Ω
G (x , y)VF (dx)VF (dy) ≤ 1

4
V(F ) (14)

for all F . Conversely, inequality (9) implies∫
Ω

∫
Ω
G (x , y)VF (dx)VF (dy) ≤ V(F ). (15)

14



Sketch of the proof. Let u be a nonnegative function in C∞0 (Ω)
such that u ≥ 1 on F . Then

V(F ) ≤
∫

Ω
u(x)VF (dx) ≤

(∫
Ω

∫
Ω
G (x , y)VF (dx)VF (dy)

)1/2
‖∇ u‖L2(Ω)

which in combination with (14) gives (10). The reference to
Theorem 1 gives the sufficiency of (14).
Let (9) hold. Then∣∣∣∫

Ω
uVF (dx)

∣∣∣2 ≤ V(F ) ‖∇u‖2
L2(Ω).

Omitting a standard approximation argument, we put

u(x) =

∫
Ω
G (x , y)VF (dy)

and the necessity of (15) results.
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The next assertion follows directly from Theorem 2.

Corollary The trace inequality (12) holds if and only if there exists
a constant C > 0 such that∫

F

∫
F
G (x , y)VF (dx)VF (dy) ≤ C V(F ) (16)

for all compact sets F in Ω.

16



Trace inequality for Ω = Rn

Inequality ∫
Rn

|u|2 V(dx) ≤ C

∫
Rn

|∇ u|2 dx (17)

deserves to be discussed in more detail. First, (17) for n = 2
implies V = 0 . Let n > 2. Needless to say, by Theorem ?? the
condition

sup
F

V(F )

capF
<∞, (18)

where the supremum is taken over all compact sets F in Rn, is
necessary and sufficient for (17). Restricting ourselves to arbitrary
balls B in Rn, we have by (18) the obvious necessary condition

sup
B

V(B)

(mesnB)1−2/n
<∞. (19)
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On the other hand, using the isocapacitary inequality (4), we
obtain the sufficient condition

sup
F

V(F )

(mesnF )1−2/n
<∞, (20)

where the supremum is taken over all compact sets F in Rn.
Moreover, the best value of C in (17) satisfies

C ≤ 4v
−2/n
n

n(n − 2)
sup
F

V(F )

(mesnF )1−2/n

and the constant factor in front of the supremum is sharp.
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Although (19) and (20) look similar, they are not equivalent in
general. In other words, one cannot replace arbitrary sets F in (18)
by balls. Paradoxically, the situation with the criterion (16) in the
case Ω = Rn is different. In fact, Kerman and Sawyer, 1986,
showed that the trace inequality (17) holds if and only if for all
balls B in Rn ∫

B

∫
B

V(dx)V(dy)

|x − y |n−2
≤ C V(B). (21)

Maz’ya and Verbitsky, 1995, gave another necessary and sufficient
condition for (17):

sup
x

I1(I1V)2(x)

I1 V(x)
<∞, (22)

where Is is the Riesz potential of order s, i.e.

IsV(x) :=

∫
Rn

V(dy)

|x − y |n−s
.
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We observe that the multiplicative inequality∫
Rn

u2 V(dx) ≤ C
(∫

Rn

|∇ u|2dx
)τ(∫

Rn

u2 dx
)1−τ

, 0 ≤ τ < 1,

(23)
is equivalent to

sup
B

VB
(mesnB)1−2τ/n

<∞ (24)

(V. Maz’ya, Sobolev Spaces).
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Relative form boundedness and form compactness

Maz’ya and Verbitsky [MV1] gave necessary and sufficient
conditions for the inequality∣∣∣∣∫

Rn

|u(x)|2 V (x) dx

∣∣∣∣ ≤ C

∫
Rn

|∇u(x)|2 dx , u ∈ C∞0 (Rn) (25)

to hold. Here the “indefinite weight” V may change sign, or even
be a complex-valued distribution on Rn, n ≥ 3. (In the latter case,
the left-hand side of (25) is understood as | < Vu, u > |, where
< V ·, · > is the quadratic form associated with the corresponding
multiplication operator V .) An analogous inequality for the
Sobolev space W 1

2 (Rn), n ≥ 1 was also characterized in [1]:∣∣∣∣∫
Rn

|u(x)|2 V (x) dx

∣∣∣∣ ≤ C

∫
Rn

(
|∇u(x)|2+|u(x)|2

)
dx , u ∈ C∞0 (Rn).

(26)
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Such inequalities are used extensively in spectral and scattering
theory of the Schrödinger operator HV = −∆ + V and its
higher-order analogs, especially in questions of self-adjointness,
resolvent convergence, estimates for the number of bound states,
Schrödinger semigroups, etc.

It is worthwhile to observe that the usual “näıve” approach is to
decompose V into its positive and negative parts: V = V+ − V−,
and to apply the just mentioned results to both V+ and V−.
However, this procedure drastically diminishes the class of
admissible weights V by ignoring a possible cancellation between
V+ and V−.
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The following result obtained in [MV1] reflects a general principle
which has much wider range of applications.
Theorem 3. Let V be a complex-valued distribution on Rn, n ≥ 3.
Then (25) holds if and only if V is the divergence of a vector-field
~Γ : Rn → Cn such that∫

Rn

|u(x)|2 |~Γ(x)|2 dx ≤ const

∫
Rn

|∇u(x)|2 dx , (27)

where the constant is independent of u ∈ C∞0 (Rn). The

vector-field ~Γ ∈ L2(Rn, loc) can be chosen as ~Γ = ∇∆−1V .
Equivalently, the Schrödinger operator HV acting from L̊1

2(Rn) to
L−1

2 (Rn) is bounded if and only if (27) holds. Furthermore, the
corresponding multiplication operator V : L̊1

2(Rn)→ L−1
2 (Rn) is

compact if and only if the embedding

L̊1
2(Rn) ⊂ L2(Rn, |~Γ|2 dx)

is compact.

23



As a corollary, one obtains a necessary condition for (25) in terms
of Morrey spaces of negative order.

Corollary 1. If (25) holds, then, for every ball Br (x0) of radius r ,∫
Br (x0)

|∇∆−1V (x)|2 dx ≤ C rn−2,

where the constant does not depend on x0 ∈ Rn and r > 0.

Corollary 2. In the statements of Theorem 3 and Corollary 1, one

can put the scalar function (−∆)−
1
2V in place of ~Γ = ∇∆−1V . In

particular, (27) is equivalent to the inequality:∫
Rn

|u(x)|2 |(−∆)−
1
2V (x)|2 dx ≤ C

∫
Rn

|∇u(x)|2 dx , (28)

for all u ∈ C∞0 (Rn).
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To clarify the multi-dimensional characterizations for “indefinite
weights” V presented above, we state an elementary analog of
Theorem 3 for the Sturm-Liouville operator HV = − d2

dx2 + V on
the half-line.
Theorem 4. The inequality∣∣∣∣∫

R+

|u(x)|2 V (x) dx

∣∣∣∣ ≤ C

∫
R+

|u′(x)|2 dx , (29)

holds for all u ∈ C∞0 (R+) if and only if

sup
a>0

a

∫ ∞
a

∣∣∣∣∫ ∞
x

V (t) dt

∣∣∣∣2 dx <∞, (30)

where Γ(x) =

∫ ∞
x

V (t) dt is understood in terms of distributions.
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Equivalently, HV : L̊1
2(R+)→ L−1

2 (R+) is bounded if and only if
(30) holds. Moreover, the corresponding multiplication operator V
is compact if and only if

a

∫ ∞
a
|Γ(x)|2 dx = o (1), where a→ 0+ and a→ +∞.

(31)
For nonnegative V , condition (30) is easily seen to be equivalent
to the standard Hille condition:

sup
a>0

a

∫ ∞
a

V (x) dx <∞. (32)

A similar statement is true for the compactness criterion (31).

26



Semi-boundedness of the Schrödinger operator

In [JMV] we obtained a characterization of potentials σ ∈ D′(Ω)
satisfying the semi-boundedness property of the operator:
H = −div(A∇·)− σ

〈σ, h2〉 ≤
∫

Ω
(A∇h) · ∇h dx , for all h ∈ C∞0 (Ω). (33)

In the case of the Laplacian, it means

〈σ, h2〉 ≤
∫

Ω
|∇h|2 dx , for all h ∈ C∞0 (Ω). (34)

Theorem 5. A real-valued distribution σ ∈ D′(Ω) satisfies (34) if
and only if there exists ~Γ ∈ L2

loc(Ω)n, so that

σ ≤ div(~Γ)− |~Γ|2 in D′(Ω). (35)

The inequality in (35) can not in general be strengthened to an
equality.
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It had been conjectured that a condition characterizing (34) was
the following:

σ ≤ div(~Φ), where

∫
Ω
|h|2|~Φ|2dx ≤ C

∫
Ω
|∇h|2dx , for all h ∈ C∞0 (Ω),

(36)
for some ~Φ ∈ L2

loc(Ω)n and C > 0.
However, for any C > 0, condition (36) is not necessary for (34)
to hold, although it is obviously sufficient when C = 1

4 .
Proposition. Let Ω = Rn, n ≥ 1. Let σ be the radial potential
defined by

σ = cos r +
n − 1

r
sin r − sin2 r ,

where r = |x |. Then σ satisfies (34), but cannot be represented in
the form (36).
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Infinitesimal form boundedness

In [MV2], we characterized the class of potentials V ∈ D′(Rn)
which are −∆-form bounded with relative bound zero, i.e., for
every ε > 0, there exists C (ε) > 0 such that

|〈Vu, u〉| ≤ ε ||∇u||2L2(Rn) +C (ε) ||u||2L2(Rn), ∀u ∈ C∞0 (Rn). (37)

In other words, we found necessary and sufficient conditions for the
infinitesimal form boundedness of the potential energy operator V
with respect to the kinetic energy operator H0 = −∆ on L2(Rn).
Here V is an arbitrary real- or complex-valued potential (possibly a
distribution). This notion appeared in relation to the KLMN
theorem and has become an indispensable tool in mathematical
quantum mechanics and PDE theory.
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The preceding inequality ensures that, in case V is real-valued, a
semi-bounded self-adjoint Schrödinger operator HV = H0 + V can
be defined on L2(Rn) so that the domain of Q[u, u] coincides with
W 1

2 (Rn). For complex-valued V , it follows that HV is an
m-sectorial operator on L2(Rn) with Dom(HV ) ⊂W 1

2 (Rn).
The characterization of (37) found in [MV2] uses only the
functions |∇(1−∆)−1 V | and |(1−∆)−1 V |, and is based on the
representation:

V = div~Γ + γ, ~Γ(x) = −∇(1−∆)−1 V , γ = (1−∆)−1 V .
(38)

In particular, it is shown that, necessarily,
~Γ ∈ L2(Rn, loc)n, γ ∈ L1(Rn, loc), and, when n ≥ 3,

lim
δ→+0

sup
x0∈Rn

δ2−n
∫
Bδ(x0)

(
|~Γ(x)|2 + |γ(x)|

)
dx = 0, (39)

once (37) holds.
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In the one-dimensional case, the infinitesimal form boundedness of
the Sturm-Liouville operator HV = −d2/dx2 + V on L2(R1) is
actually a consequence of the form boundedness.
Theorem 6. Let V ∈ D′(R1). Then the following statements are
equivalent.
(i) V is infinitesimally form bounded with respect to −d2/dx2.
(ii) V is form bounded with respect to −d2/dx2, i.e.,

|〈V u, u〉| ≤ C ||u||2W 1
2 (R1), ∀u ∈ C∞0 (R1).

(iii) V can be represented in the form V = dΓ/dx + γ, where

sup
x∈R1

∫ x+1

x

(
|Γ(x)|2 + |γ(x)|

)
dx < +∞. (40)

(iv) Condition (40) holds where

Γ(x) =

∫
R1

sign (x−t) e−|x−t| V (t) dt, γ(x) =

∫
R1

e−|x−t| V (t) dt

are understood in the distributional sense.
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Trudinger’s subordination for the Schrödinger operator

In [MV2] inequality (37) is studied also under the assumption that
C (ε) has power growth, i.e., there exists ε0 > 0 such that

|〈Vu, u〉| ≤ ε ||∇u||2L2(Rn) + c ε−β ||u||2L2(Rn), ∀u ∈ C∞0 (Rn),
(41)

for every ε ∈ (0, ε0), where β > 0. Such inequalities appear in
studies of elliptic PDE with measurable coefficients, and have been
used extensively in spectral theory of the Schrödinger operator.
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As it turns out, it is still possible to characterize (41) using only |~Γ|
and |γ| defined by (38), provided β > 1. It is shown in [MV2] that
in this case (41) holds if and only if both of the following
conditions hold:

sup
x0∈Rn

0<δ<δ0

δ
2β−1
β+1
−n
∫
Bδ(x0)

|~Γ(x)|2 dx < +∞, (42)

sup
x0∈Rn

0<δ<δ0

δ
2β
β+1
−n
∫
Bδ(x0)

|γ(x)| dx < +∞, (43)

for some δ0 > 0. However, in the case β ≤ 1 this is no longer true.
For β = 1, (42) has to be replaced with the condition that ~Γ is in
the local BMO space, or respectively is Hölder-continuous of order
(1− β)/(1 + β) if 0 < β < 1.
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