Dedicated to Nina Nikolaevna Uraltseva

"Advances in Nonlinear PDEs"
St. Petersburg, September 3-5, 2014

On the Cauchy problem for scalar balance laws in the class of Besicovitch almost periodic functions

Evgeny Panov (Veliky Novgorod)

September 4, 2014

In the half-space $\Pi=\mathbb{R}_{+} \times \mathbb{R}^{n}$ with $\mathbb{R}_{+}=(0,+\infty)$, we consider the Cauchy problem

$$
\begin{gather*}
u_{t}+\operatorname{div}_{x} \varphi(u)=g(t, x, u) \tag{1}\\
u(0, x)=u_{0}(x) \in L^{\infty}\left(\mathbb{R}^{n}\right) \tag{2}
\end{gather*}
$$

We suppose that the flux $\varphi(u)=\left(\varphi_{1}(u), \ldots, \varphi_{n}(u)\right) \in C\left(\mathbb{R}, \mathbb{R}^{n}\right)$, and the source function $g(t, x, u) \in L_{l o c}^{1}(\Pi, C(\mathbb{R}))$ is a Caratheodory function with the following properties:

$$
\begin{aligned}
|g(t, x, u)| & \leq a(t)(1+|u|) \quad \forall u \in \mathbb{R} \\
|g(t, x, u)-g(t, x, v)| & \leq a(t)|u-v| \quad \forall u, v \in \mathbb{R}
\end{aligned}
$$

where $a(t) \in L^{1}\left(\mathbb{R}_{+}\right)$.

Definition 1. (S. N. Kruzhkov)

A bounded measurable function $u=u(t, x) \in L^{\infty}(\Pi)$ is called an e.s. of (1), (2) if for all $k \in \mathbb{R}$

$$
\begin{equation*}
|u-k|_{t}+\operatorname{div}_{x}[\operatorname{sign}(u-k)(\varphi(u)-\varphi(k))]-\operatorname{sign}(u-k) g(t, x, u) \leq 0 \tag{3}
\end{equation*}
$$

in the sense of distributions on Π (in $\mathcal{D}^{\prime}(\Pi)$), and

$$
\underset{t \rightarrow 0}{\operatorname{ess} \lim } u(t, \cdot)=u_{0} \text { in } L_{l o c}^{1}\left(\mathbb{R}^{n}\right)
$$

Definition 1. (S.N. Kruzhkov)

A bounded measurable function $u=u(t, x) \in L^{\infty}(\Pi)$ is called an e.s. of (1), (2) if for all $k \in \mathbb{R}$

$$
\begin{equation*}
|u-k|_{t}+\operatorname{div}_{x}[\operatorname{sign}(u-k)(\varphi(u)-\varphi(k))]-\operatorname{sign}(u-k) g(t, x, u) \leq 0 \tag{3}
\end{equation*}
$$

in the sense of distributions on Π (in $\mathcal{D}^{\prime}(\Pi)$), and

$$
\underset{t \rightarrow 0}{\operatorname{ess} \lim } u(t, \cdot)=u_{0} \text { in } L_{l o c}^{1}\left(\mathbb{R}^{n}\right)
$$

Condition (3) means that $\forall f=f(t, x) \in C_{0}^{1}(\Pi), f \geq 0$

$$
\int_{\Pi}\left[|u-k| f_{t}+\operatorname{sign}(u-k)(\varphi(u)-\varphi(k)) \cdot \nabla_{x} f+\operatorname{sign}(u-k) g(t, x, u) f\right] d t d x \geq 0
$$

Theorem 1.

There exists an e.s. $u=u(t, x)$ of problem (1), (2). Moreover,

$$
|u(t, x)| \leq M \doteq C\left(1+\left\|u_{0}\right\|_{\infty}\right), \quad \text { where } C=e^{\|a\|_{1}}
$$

Introduction

The statement of Theorem 1 readily follows from results of

1. Panov E. Yu. Izvestiya RAN: Ser. Mat. 66:6, 91-136 (2002).

In the case of merely continuous flux vector and $n>1$, an e.s. of (1), (2) may be nonunique, see
2. Kruzhkov S. N., Panov E. Yu. Dokl. Akad. Nauk SSSR, 314:1, $79-84$ (1990).

Nevertheless, if the initial and source functions are space-periodic (at least in $n-1$ independent directions), an e.s. of (1), (2) is unique and space-periodic, cf [1].

Introduction

The statement of Theorem 1 readily follows from results of

1. Panov E. Yu. Izvestiya RAN: Ser. Mat. 66:6, 91-136 (2002).

In the case of merely continuous flux vector and $n>1$, an e.s. of (1), (2) may be nonunique, see
2. Kruzhkov S. N., Panov E. Yu. Dokl. Akad. Nauk SSSR, 314:1, 79-84 (1990).

Nevertheless, if the initial and source functions are space-periodic (at least in $n-1$ independent directions), an e.s. of (1), (2) is unique and space-periodic, cf [1]. We denote

$$
\begin{array}{r}
C_{R}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}| | x\left|\infty=\max _{i=1, \ldots, n}\right| x_{i} \mid \leq R / 2\right\}, \quad R>0 \\
N_{1}(u)=\limsup _{R \rightarrow+\infty} R^{-n} \int_{C_{R}}|u(x)| d x, \quad u(x) \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right) .
\end{array}
$$

Recall that the Besicovitch space $\mathcal{B}^{1}\left(\mathbb{R}^{n}\right)$ is the closure of trigonometric polynomials (i.e., finite sums $\sum a_{\lambda} e^{2 \pi i \lambda \cdot x}$, where $i^{2}=-1, \lambda \in \mathbb{R}^{n}$) in the quotient space $B^{1}\left(\mathbb{R}^{n}\right) / B_{0}^{1}\left(\mathbb{R}^{n}\right)$, where

$$
B^{1}\left(\mathbb{R}^{n}\right)=\left\{u \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right) \mid N_{1}(u)<+\infty\right\}, B_{0}^{1}\left(\mathbb{R}^{n}\right)=N_{1}^{-1}(0)
$$

The space $\mathcal{B}^{1}\left(\mathbb{R}^{n}\right)$ equipped with the norm $\|u\|_{1}=N_{1}(u)$ is a Banach space.

It is known that every function $u \in \mathcal{B}^{1}\left(\mathbb{R}^{n}\right)$ has the mean value

$$
\int_{\mathbb{R}^{n}} u(x) d x \doteq \lim _{R \rightarrow+\infty} R^{-n} \int_{C_{R}} u(x) d x
$$

and, more generally, the Fourier coefficients

$$
a_{\lambda}=\int_{\mathbb{R}^{n}} u(x) e^{-2 \pi i \lambda \cdot x} d x, \quad \lambda \in \mathbb{R}^{n}
$$

The set $\operatorname{Sp}(u)=\left\{\lambda \in \mathbb{R}^{n} \mid a_{\lambda} \neq 0\right\}$ is called the spectrum of an almost periodic function $u(x)$. The spectrum $S p(u)$ is known to be at most countable. We denote by $M(u)$ the additive subgroup of \mathbb{R}^{n}, generated by $S p(u)$.

It is known that every function $u \in \mathcal{B}^{1}\left(\mathbb{R}^{n}\right)$ has the mean value

$$
\int_{\mathbb{R}^{n}} u(x) d x \doteq \lim _{R \rightarrow+\infty} R^{-n} \int_{C_{R}} u(x) d x
$$

and, more generally, the Fourier coefficients

$$
a_{\lambda}=\int_{\mathbb{R}^{n}} u(x) e^{-2 \pi i \lambda \cdot x} d x, \quad \lambda \in \mathbb{R}^{n}
$$

The set $\operatorname{Sp}(u)=\left\{\lambda \in \mathbb{R}^{n} \mid a_{\lambda} \neq 0\right\}$ is called the spectrum of an almost periodic function $u(x)$. The spectrum $S p(u)$ is known to be at most countable. We denote by $M(u)$ the additive subgroup of \mathbb{R}^{n}, generated by $S p(u)$. In the similar way one can define the space $\mathcal{B}^{1}\left(\mathbb{R}^{n}, F\right)$, where F is a separable locally convex space. All the mentioned results remains valid in this general setting.
Let $F=L^{1}\left(\mathbb{R}_{+}, C(\mathbb{R})\right)$ be a locally convex space with the topology generated by seminorms

$$
\|p\|_{1, M}=\int_{0}^{+\infty} \max _{|u| \leq M}|p(t, u)| d t, \quad p=p(t, u) \in F, M>0
$$

It is known that every function $u \in \mathcal{B}^{1}\left(\mathbb{R}^{n}\right)$ has the mean value

$$
\int_{\mathbb{R}^{n}} u(x) d x \doteq \lim _{R \rightarrow+\infty} R^{-n} \int_{C_{R}} u(x) d x
$$

and, more generally, the Fourier coefficients

$$
a_{\lambda}=\int_{\mathbb{R}^{n}} u(x) e^{-2 \pi i \lambda \cdot x} d x, \quad \lambda \in \mathbb{R}^{n}
$$

The set $\operatorname{Sp}(u)=\left\{\lambda \in \mathbb{R}^{n} \mid a_{\lambda} \neq 0\right\}$ is called the spectrum of an almost periodic function $u(x)$. The spectrum $S p(u)$ is known to be at most countable. We denote by $M(u)$ the additive subgroup of \mathbb{R}^{n}, generated by $S p(u)$. In the similar way one can define the space $\mathcal{B}^{1}\left(\mathbb{R}^{n}, F\right)$, where F is a separable locally convex space. All the mentioned results remains valid in this general setting.
Let $F=L^{1}\left(\mathbb{R}_{+}, C(\mathbb{R})\right)$ be a locally convex space with the topology generated by seminorms

$$
\|p\|_{1, M}=\int_{0}^{+\infty} \max _{|u| \leq M}|p(t, u)| d t, \quad p=p(t, u) \in F, M>0
$$

The following statement holds in the general case of arbitrary e.s.

Theorem 2.

Let $u(t, x), v(t, x) \in L^{\infty}(\Pi)$ be e.s. of (1), (2) with initial data $u_{0}(x), v_{0}(x)$, and source functions $g(t, x, u), h(t, x, u)$, respectively. Then for a.e. $t>0$

$$
\begin{equation*}
N_{1}(u(t, \cdot)-v(t, \cdot)) \leq C\left[N_{1}\left(u_{0}-v_{0}\right)+N_{1}\left(\|g(\cdot, x, \cdot)-h(\cdot, x, \cdot)\|_{1, M}\right)\right] \tag{4}
\end{equation*}
$$

where $C=e^{\|a\|_{1}}, M=\|u\|_{\infty}$.

Theorem 2.

Let $u(t, x), v(t, x) \in L^{\infty}(\Pi)$ be e.s. of (1), (2) with initial data $u_{0}(x), v_{0}(x)$, and source functions $g(t, x, u), h(t, x, u)$, respectively. Then for a.e. $t>0$

$$
\begin{equation*}
N_{1}(u(t, \cdot)-v(t, \cdot)) \leq C\left[N_{1}\left(u_{0}-v_{0}\right)+N_{1}\left(\|g(\cdot, x, \cdot)-h(\cdot, x, \cdot)\|_{1, M}\right)\right], \tag{4}
\end{equation*}
$$

where $C=e^{\|a\|_{1}}, M=\|u\|_{\infty}$.
To prove Theorem 2, we utilize the relation

$$
\begin{array}{r}
|u-v|_{t}+\operatorname{div}_{x}[\operatorname{sign}(u-v)(\varphi(u)-\varphi(v))] \leq|g(t, x, u)-h(t, x, v)| \leq \\
\max _{|u| \leq M}|g(t, x, u)-h(t, x, u)|+a(t)|u-v| \text { in } \mathcal{D}^{\prime}(\Pi) \tag{5}
\end{array}
$$

established by Kruzhkov doubling of variables method. Integrating (5) over the parallelepiped $t \in(0, T), x \in C_{R}$, and passing to the limit as $R \rightarrow \infty$, we obtain with the help of Gronwall lemma the required relation: for a.e. $T>0$
$N_{1}(u(T, \cdot)-v(T, \cdot)) \leq C\left[N_{1}\left(u_{0}-v_{0}\right)+N_{1}\left(\|g(\cdot, x, \cdot)-h(\cdot, x, \cdot)\|_{1, M}\right)\right]$.

Theorem 2.

Let $u(t, x), v(t, x) \in L^{\infty}(\Pi)$ be e.s. of (1), (2) with initial data $u_{0}(x), v_{0}(x)$, and source functions $g(t, x, u), h(t, x, u)$, respectively. Then for a.e. $t>0$

$$
\begin{equation*}
N_{1}(u(t, \cdot)-v(t, \cdot)) \leq C\left[N_{1}\left(u_{0}-v_{0}\right)+N_{1}\left(\|g(\cdot, x, \cdot)-h(\cdot, x, \cdot)\|_{1, M}\right)\right] \tag{4}
\end{equation*}
$$

where $C=e^{\|a\|_{1}}, M=\|u\|_{\infty}$.
To prove Theorem 2, we utilize the relation

$$
\begin{array}{r}
|u-v|_{t}+\operatorname{div}_{x}[\operatorname{sign}(u-v)(\varphi(u)-\varphi(v))] \leq|g(t, x, u)-h(t, x, v)| \leq \\
\max _{|u| \leq M}|g(t, x, u)-h(t, x, u)|+a(t)|u-v| \text { in } \mathcal{D}^{\prime}(\Pi) \tag{5}
\end{array}
$$

established by Kruzhkov doubling of variables method. Integrating (5) over the parallelepiped $t \in(0, T), x \in C_{R}$, and passing to the limit as $R \rightarrow \infty$, we obtain with the help of Gronwall lemma the required relation: for a.e. $T>0$
$N_{1}(u(T, \cdot)-v(T, \cdot)) \leq C\left[N_{1}\left(u_{0}-v_{0}\right)+N_{1}\left(\|g(\cdot, x, \cdot)-h(\cdot, x, \cdot)\|_{1, M}\right)\right]$.
Theorem 2 readily implies uniqueness of e.s. $u(t, x)$ to the problem (1), (2), considered in the space $\mathcal{B}^{1}\left(\mathbb{R}^{n}\right)$ (for every fixed $t>0$).

Main results

To establish the existence, we have to assume that the F-valued function $\tilde{g}(x)(t, u)=g(t, x, u)$ belongs to the space $\mathcal{B}^{1}\left(\mathbb{R}^{n}, F\right)$. Denote by M_{0} the additive subgroup of \mathbb{R}^{n} generated by $S p\left(u_{0}\right) \cup S p(\tilde{g})$.

Theorem 3.

Let $u_{0}(x) \in \mathcal{B}^{1}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ be a bounded almost periodic function, and $u(t, x)$ be an e.s. of problem (1), (2). Then, after possible correction on a set of null measure, $u(t, \cdot) \in C\left([0,+\infty), \mathcal{B}^{1}\left(\mathbb{R}^{n}\right)\right) \cap L^{\infty}(\Pi)$, and for all $t>0 M(u(t, \cdot)) \subset M_{0}$.

To establish the existence, we have to assume that the F-valued function $\tilde{g}(x)(t, u)=g(t, x, u)$ belongs to the space $\mathcal{B}^{1}\left(\mathbb{R}^{n}, F\right)$. Denote by M_{0} the additive subgroup of \mathbb{R}^{n} generated by $S p\left(u_{0}\right) \cup S p(\tilde{g})$.

Theorem 3.

Let $u_{0}(x) \in \mathcal{B}^{1}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ be a bounded almost periodic function, and $u(t, x)$ be an e.s. of problem (1), (2). Then, after possible correction on a set of null measure, $u(t, \cdot) \in C\left([0,+\infty), \mathcal{B}^{1}\left(\mathbb{R}^{n}\right)\right) \cap L^{\infty}(\Pi)$, and for all $t>0 M(u(t, \cdot)) \subset M_{0}$.

Theorem 4.

Assume that

$$
\forall \xi \in M_{0}, \xi \neq 0 \text { functions } u \rightarrow \xi \cdot \varphi(u)
$$

are not affine on non-empty intervals

Then for some constant C

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \int_{\mathbb{R}^{n}}|u(t, x)-C| d x=0 \tag{7}
\end{equation*}
$$

Decay property

If the input data $u_{0}(x), g(t, x, u)$ are space-periodic with the common lattice of periods $L \subset \mathbb{R}^{n}$, then the group M_{0} coincides with the dual lattice $L^{\prime}=\left\{\xi \in \mathbb{R}^{n} \mid \xi \cdot x \in \mathbb{Z} \forall x \in L\right\}$. In this case the statement of Theorem 4 reduces to the decay result for periodic e.s. recently established (in the case $g \equiv 0$) in
3. Panov E. Yu. Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 30 997-1007 (2013).

The non-degeneracy condition

$$
\begin{align*}
\forall \xi \in & L^{\prime}, \xi \neq 0 \text { the function } u \rightarrow \xi \cdot \varphi(u) \\
& \text { is not affine on non-empty intervals } \tag{8}
\end{align*}
$$

is necessary and sufficient for the decay of every x-periodic (with the lattice of periods L) e.s. $u(t, x)$:

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \int_{\mathbb{T}^{n}}|u(t, x)-C| d x=0, \quad C=\int_{\mathbb{T}^{n}} u_{0}(x) d x \tag{9}
\end{equation*}
$$

Here $\mathbb{T}^{n}=\mathbb{R}^{n} / L$ ia an n-dimensional torus, $d x$ is a normalized Lebesgue measure on \mathbb{T}^{n}.

Reduction to the periodic case

The proof of the decay property relies on localization principles of H-measures for the scaling sequence $u(k t, k x), k \in \mathbb{N}$, and remains valid for inhomogeneous case as well.

Reduction to the periodic case

The proof of the decay property relies on localization principles of H-measures for the scaling sequence $u(k t, k x), k \in \mathbb{N}$, and remains valid for inhomogeneous case as well. In the general case the input data $u_{0}(x), \tilde{g}(x)(t, u)=g(t, x, u)$ can be approximated in $\mathcal{B}^{1}\left(\mathbb{R}^{n}\right), \mathcal{B}^{1}\left(\mathbb{R}^{n}, F\right)$ by sequences of trigonometric polynomials $u_{0 m}(x), \tilde{g}_{m}(x), m \in \mathbb{N}$, such that $S p\left(u_{0 m}\right) \cup S p\left(\tilde{g}_{m}\right) \subset M_{0}$ (for instance, we may choose the Bochner-Fejér sums). By Theorem 2, it is sufficient to prove the statements of Theorems 3, 4 for input data $u_{0 m}(x), g_{m}(t, x, u)=\tilde{g}_{m}(x)(t, u)$. General case is treated in the limit as $m \rightarrow \infty$ on the base of uniform estimate

$$
N_{1}\left(u(t, \cdot)-u_{m}(t, \cdot)\right) \leq C\left[N_{1}\left(u_{0}-u_{0 m}\right)+N_{1}\left(\left\|\tilde{g}-\tilde{g}_{m}\right\|_{1, M}\right)\right]_{m \rightarrow \infty}^{\rightarrow} 0, M=\|u\|_{\infty}
$$

Reduction to the periodic case

The proof of the decay property relies on localization principles of H-measures for the scaling sequence $u(k t, k x), k \in \mathbb{N}$, and remains valid for inhomogeneous case as well. In the general case the input data $u_{0}(x), \tilde{g}(x)(t, u)=g(t, x, u)$ can be approximated in $\mathcal{B}^{1}\left(\mathbb{R}^{n}\right), \mathcal{B}^{1}\left(\mathbb{R}^{n}, F\right)$ by sequences of trigonometric polynomials $u_{0 m}(x), \tilde{g}_{m}(x), m \in \mathbb{N}$, such that $\operatorname{Sp}\left(u_{0 m}\right) \cup S p\left(\tilde{g}_{m}\right) \subset M_{0}$ (for instance, we may choose the Bochner-Fejér sums). By Theorem 2, it is sufficient to prove the statements of Theorems 3, 4 for input data $u_{0 m}(x), g_{m}(t, x, u)=\tilde{g}_{m}(x)(t, u)$. General case is treated in the limit as $m \rightarrow \infty$ on the base of uniform estimate

$$
N_{1}\left(u(t, \cdot)-u_{m}(t, \cdot)\right) \leq C\left[N_{1}\left(u_{0}-u_{0 m}\right)+N_{1}\left(\left\|\tilde{g}-\tilde{g}_{m}\right\|_{1, M}\right)\right]_{m \rightarrow \infty}^{\rightarrow} 0, M=\|u\|_{\infty} .
$$

Thus, we suppose that $u_{0}(x)=\sum_{\lambda \in \Lambda} a_{\lambda} e^{2 \pi i \lambda \cdot x}, g(t, x, u)=\sum_{\lambda \in \Lambda} b_{\lambda}(t, u) e^{2 \pi i \lambda \cdot x}$ are trigonometric polynomials, the set Λ is finite. The group $M_{0}=M\left(u_{0}\right)$ is a free abelian group (as a finite generated torsion free group). Therefore, we can choose a basis $\lambda_{j} \in M_{0}, j=1, \ldots, m$. Each element $\lambda \in M_{0}$ is uniquely represented as $\lambda=\lambda(\bar{k})=\sum_{j=1}^{m} k_{j} \lambda_{j}, \bar{k}=\left(k_{1}, \ldots, k_{m}\right) \in \mathbb{Z}^{m}$.

Reduction to the periodic case

The proof of the decay property relies on localization principles of H-measures for the scaling sequence $u(k t, k x), k \in \mathbb{N}$, and remains valid for inhomogeneous case as well. In the general case the input data $u_{0}(x), \tilde{g}(x)(t, u)=g(t, x, u)$ can be approximated in $\mathcal{B}^{1}\left(\mathbb{R}^{n}\right), \mathcal{B}^{1}\left(\mathbb{R}^{n}, F\right)$ by sequences of trigonometric polynomials $u_{0 m}(x), \tilde{g}_{m}(x), m \in \mathbb{N}$, such that $S p\left(u_{0 m}\right) \cup S p\left(\tilde{g}_{m}\right) \subset M_{0}$ (for instance, we may choose the Bochner-Fejér sums). By Theorem 2, it is sufficient to prove the statements of Theorems 3, 4 for input data $u_{0 m}(x), g_{m}(t, x, u)=\tilde{g}_{m}(x)(t, u)$. General case is treated in the limit as $m \rightarrow \infty$ on the base of uniform estimate

$$
N_{1}\left(u(t, \cdot)-u_{m}(t, \cdot)\right) \leq C\left[N_{1}\left(u_{0}-u_{0 m}\right)+N_{1}\left(\left\|\tilde{g}-\tilde{g}_{m}\right\|_{1, M}\right)\right]_{m \rightarrow \infty}^{\rightarrow} 0, M=\|u\|_{\infty} .
$$

Thus, we suppose that $u_{0}(x)=\sum_{\lambda \in \Lambda} a_{\lambda} e^{2 \pi i \lambda \cdot x}, g(t, x, u)=\sum_{\lambda \in \Lambda} b_{\lambda}(t, u) e^{2 \pi i \lambda \cdot x}$ are trigonometric polynomials, the set Λ is finite. The group $M_{0}=M\left(u_{0}\right)$ is a free abelian group (as a finite generated torsion free group). Therefore, we can choose a basis $\lambda_{j} \in M_{0}, j=1, \ldots, m$. Each element $\lambda \in M_{0}$ is uniquely represented as $\lambda=\lambda(\bar{k})=\sum_{j=1}^{m} k_{j} \lambda_{j}, \bar{k}=\left(k_{1}, \ldots, k_{m}\right) \in \mathbb{Z}^{m}$. We define the finite set $J=\left\{\bar{k} \in \mathbb{Z}^{m} \mid \lambda(\bar{k}) \in \Lambda\right\}$. The input functions can be represented as

$$
u_{0}(x)=\sum_{\bar{k} \in J} a_{\bar{k}} e^{2 \pi i \sum_{j=1}^{m} k_{j} \lambda_{j} \cdot x}, \quad g(t, x, u)=\sum_{\bar{k} \in J} b_{\bar{k}}(t, u) e^{2 \pi i \sum_{j=1}^{m} k_{j} \lambda_{j} \cdot x},
$$

Reduction to the periodic case

where $a_{\bar{k}} \doteq a_{\lambda(\bar{k})}, b_{\bar{k}}(t, u) \doteq b_{\lambda(\bar{k})}(t, u)$, which implies that $u_{0}(x)=v_{0}(y(x))$, $g(t, x, u)=h(t, y(x), u)$, where

$$
v_{0}(y)=\sum_{\bar{k} \in J} a_{\bar{k}} e^{2 \pi i \bar{k} \cdot y}, \quad h(t, y, u)=\sum_{\bar{k} \in J} b_{\bar{k}}(t, u) e^{2 \pi i \bar{k} \cdot y}
$$

are space-periodic function with the standard lattice of periods \mathbb{Z}^{m} while $y(x)$ is a linear map from \mathbb{R}^{n} into \mathbb{R}^{m} defined by the equalities $y_{j}=\lambda_{j} \cdot x, j=1, \ldots, m$.

Reduction to the periodic case

where $a_{\bar{k}} \doteq a_{\lambda(\bar{k})}, b_{\bar{k}}(t, u) \doteq b_{\lambda(\bar{k})}(t, u)$, which implies that $u_{0}(x)=v_{0}(y(x))$, $g(t, x, u)=h(t, y(x), u)$, where

$$
v_{0}(y)=\sum_{\bar{k} \in J} a_{\bar{k}} e^{2 \pi i \bar{k} \cdot y}, \quad h(t, y, u)=\sum_{\bar{k} \in J} b_{\bar{k}}(t, u) e^{2 \pi i \bar{k} \cdot y}
$$

are space-periodic function with the standard lattice of periods \mathbb{Z}^{m} while $y(x)$ is a linear map from \mathbb{R}^{n} into \mathbb{R}^{m} defined by the equalities $y_{j}=\lambda_{j} \cdot x, j=1, \ldots, m$. Let us consider the balance law

$$
\begin{equation*}
v_{t}+\operatorname{div}_{y} \tilde{\varphi}(v)=h(t, y, v), \quad v=v(t, y), t>0, y \in \mathbb{R}^{m} \tag{10}
\end{equation*}
$$

with the flux functions $\tilde{\varphi}_{j}(v)=\lambda_{j} \cdot \varphi(v), j=1, \ldots, m$.

Reduction to the periodic case

where $a_{\bar{k}} \doteq a_{\lambda(\bar{k})}, b_{\bar{k}}(t, u) \doteq b_{\lambda(\bar{k})}(t, u)$, which implies that $u_{0}(x)=v_{0}(y(x))$, $g(t, x, u)=h(t, y(x), u)$, where

$$
v_{0}(y)=\sum_{\bar{k} \in J} a_{\bar{k}} e^{2 \pi i \bar{k} \cdot y}, \quad h(t, y, u)=\sum_{\bar{k} \in J} b_{\bar{k}}(t, u) e^{2 \pi i \bar{k} \cdot y}
$$

are space-periodic function with the standard lattice of periods \mathbb{Z}^{m} while $y(x)$ is a linear map from \mathbb{R}^{n} into \mathbb{R}^{m} defined by the equalities $y_{j}=\lambda_{j} \cdot x, j=1, \ldots, m$. Let us consider the balance law

$$
\begin{equation*}
v_{t}+\operatorname{div}_{y} \tilde{\varphi}(v)=h(t, y, v), \quad v=v(t, y), t>0, y \in \mathbb{R}^{m} \tag{10}
\end{equation*}
$$

with the flux functions $\tilde{\varphi}_{j}(v)=\lambda_{j} \cdot \varphi(v), j=1, \ldots, m$. Let $v(t, y) \in L^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}^{m}\right)$ be the unique (in view of periodicity of the initial data) e.s. of the Cauchy problem for equation (10) with the initial function $v_{0}(y)$. This solution is y-periodic: $v(t, y+e)=v(t, y)$ a.e. in $\mathbb{R}_{+} \times \mathbb{R}^{m}$ for all $e \in \mathbb{Z}^{m}$. Besides, by results of
5. Panov E. Yu. J. Hyperbolic Differ. Equ. 2, 885-908 (2005), after possible correction on a set of null measure, $v(t, \cdot) \in C\left([0,+\infty), L^{1}\left(\mathbb{T}^{m}\right)\right)$, where $\mathbb{T}^{m}=\mathbb{R}^{m} / \mathbb{Z}^{m}$ is an m-dimensional torus.

Reduction to the periodic case

where $a_{\bar{k}} \doteq a_{\lambda(\bar{k})}, b_{\bar{k}}(t, u) \doteq b_{\lambda(\bar{k})}(t, u)$, which implies that $u_{0}(x)=v_{0}(y(x))$, $g(t, x, u)=h(t, y(x), u)$, where

$$
v_{0}(y)=\sum_{\bar{k} \in J} a_{\bar{k}} e^{2 \pi i \bar{k} \cdot y}, \quad h(t, y, u)=\sum_{\bar{k} \in J} b_{\bar{k}}(t, u) e^{2 \pi i \bar{k} \cdot y}
$$

are space-periodic function with the standard lattice of periods \mathbb{Z}^{m} while $y(x)$ is a linear map from \mathbb{R}^{n} into \mathbb{R}^{m} defined by the equalities $y_{j}=\lambda_{j} \cdot x, j=1, \ldots, m$. Let us consider the balance law

$$
\begin{equation*}
v_{t}+\operatorname{div}_{y} \tilde{\varphi}(v)=h(t, y, v), \quad v=v(t, y), t>0, y \in \mathbb{R}^{m} \tag{10}
\end{equation*}
$$

with the flux functions $\tilde{\varphi}_{j}(v)=\lambda_{j} \cdot \varphi(v), j=1, \ldots, m$. Let $v(t, y) \in L^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}^{m}\right)$ be the unique (in view of periodicity of the initial data) e.s. of the Cauchy problem for equation (10) with the initial function $v_{0}(y)$. This solution is y-periodic: $v(t, y+e)=v(t, y)$ a.e. in $\mathbb{R}_{+} \times \mathbb{R}^{m}$ for all $e \in \mathbb{Z}^{m}$. Besides, by results of
5. Panov E. Yu. J. Hyperbolic Differ. Equ. 2, 885-908 (2005),
after possible correction on a set of null measure, $v(t, \cdot) \in C\left([0,+\infty), L^{1}\left(\mathbb{T}^{m}\right)\right)$, where $\mathbb{T}^{m}=\mathbb{R}^{m} / \mathbb{Z}^{m}$ is an m-dimensional torus. We introduce the function $u(t, z, x)=v(t, z+y(x)) \in L^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}^{m+n}\right)$. Since the linear operator $(z, x) \rightarrow(z+y(x), x)$ on \mathbb{R}^{m+n} is invertible, the function $u(t, z, x)$ is well-defined.

Reduction to the periodic case

Obviously, for every $k \in \mathbb{R}$

$$
\begin{array}{r}
|u-k|_{t}+\operatorname{div}_{x}[\operatorname{sign}(u-k)(\varphi(u)-\varphi(k))]-\operatorname{sign}(u-k) h(t, z+y(x), u)= \\
|v(t, z+y)-k|_{t}+\operatorname{div}_{y}[\operatorname{sign}(v(t, z+y)-k)(\tilde{\varphi}(v(t, z+y))-\tilde{\varphi}(k))] \\
-\operatorname{sign}(v(t, z+y)-k) h(t, z+y, v(t, z+y)) \leq 0 \operatorname{in} \mathcal{D}^{\prime}\left(\mathbb{R}_{+} \times \mathbb{R}^{m+n}\right)
\end{array}
$$

Reduction to the periodic case

Obviously, for every $k \in \mathbb{R}$

$$
\begin{array}{r}
|u-k|_{t}+\operatorname{div}_{x}[\operatorname{sign}(u-k)(\varphi(u)-\varphi(k))]-\operatorname{sign}(u-k) h(t, z+y(x), u)= \\
|v(t, z+y)-k|_{t}+\operatorname{div}_{y}[\operatorname{sign}(v(t, z+y)-k)(\tilde{\varphi}(v(t, z+y))-\tilde{\varphi}(k))] \\
-\operatorname{sign}(v(t, z+y)-k) h(t, z+y, v(t, z+y)) \leq 0 \operatorname{in} \mathcal{D}^{\prime}\left(\mathbb{R}_{+} \times \mathbb{R}^{m+n}\right)
\end{array}
$$

It is also clear that

$$
\lim _{t \rightarrow 0+} u(t, z, x)=u_{0}(z, x) \doteq v_{0}(z+y(x)) \text { in } L_{l o c}^{1}\left(\mathbb{R}^{m+n}\right)
$$

Thus, $u(t, z, x)$ is an e.s. of the problem

$$
u_{t}+\operatorname{div}_{x} \varphi(u)=h(t, z+y(x), u), \quad u(0, z, x)=v_{0}(z+y(x))
$$

in the extended domain $\mathbb{R}_{+} \times \mathbb{R}^{m+n}$.

Reduction to the periodic case

Obviously, for every $k \in \mathbb{R}$

$$
\begin{array}{r}
|u-k|_{t}+\operatorname{div}_{x}[\operatorname{sign}(u-k)(\varphi(u)-\varphi(k))]-\operatorname{sign}(u-k) h(t, z+y(x), u)= \\
|v(t, z+y)-k|_{t}+\operatorname{div}_{y}[\operatorname{sign}(v(t, z+y)-k)(\tilde{\varphi}(v(t, z+y))-\tilde{\varphi}(k))] \\
-\operatorname{sign}(v(t, z+y)-k) h(t, z+y, v(t, z+y)) \leq 0 \operatorname{in} \mathcal{D}^{\prime}\left(\mathbb{R}_{+} \times \mathbb{R}^{m+n}\right)
\end{array}
$$

It is also clear that

$$
\lim _{t \rightarrow 0+} u(t, z, x)=u_{0}(z, x) \doteq v_{0}(z+y(x)) \text { in } L_{l o c}^{1}\left(\mathbb{R}^{m+n}\right)
$$

Thus, $u(t, z, x)$ is an e.s. of the problem

$$
u_{t}+\operatorname{div}_{x} \varphi(u)=h(t, z+y(x), u), \quad u(0, z, x)=v_{0}(z+y(x))
$$

in the extended domain $\mathbb{R}_{+} \times \mathbb{R}^{m+n}$. This readily implies the following statement.

Proposition 1.

There exists a set $E_{1} \subset \mathbb{R}^{m}$ of full measure such that for all $z \in E_{1}$ the function $u(t, z, x)=v(t, z+y(x))$ is an e.s. of (1), (2) with the initial data $v_{0}(z+y(x))$ and the source function $h(t, z+y(x), u)$.

Ergodic property

The additive group \mathbb{R}^{n} acts on the m-dimensional torus $\mathbb{T}^{m}=\mathbb{R}^{m} / \mathbb{Z}^{m}$ by the shift transformations $S_{x} z=z+y(x)$. This action is measure preserving and ergodic (the latter follows from the condition that the vectors $\lambda_{j}, j=1, \ldots, m$, are independent over \mathbb{Z}). By Birkhoff individual ergodic theorem for each $w(y) \in L^{1}\left(\mathbb{T}^{m}\right)$ for a.e. $z \in \mathbb{T}^{m}$

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} w(z+y(x)) d x=\int_{\mathbb{T}^{m}} w(y) d y . \tag{11}
\end{equation*}
$$

Ergodic property

The additive group \mathbb{R}^{n} acts on the m-dimensional torus $\mathbb{T}^{m}=\mathbb{R}^{m} / \mathbb{Z}^{m}$ by the shift transformations $S_{x} z=z+y(x)$. This action is measure preserving and ergodic (the latter follows from the condition that the vectors $\lambda_{j}, j=1, \ldots, m$, are independent over \mathbb{Z}). By Birkhoff individual ergodic theorem for each $w(y) \in L^{1}\left(\mathbb{T}^{m}\right)$ for a.e. $z \in \mathbb{T}^{m}$

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} w(z+y(x)) d x=\int_{\mathbb{T}^{m}} w(y) d y \tag{11}
\end{equation*}
$$

Let

$$
v_{r}(t, y)=\left(v(t, \cdot) * \Phi_{r}\right)(y)=\sum_{\bar{k} \in \mathbb{Z}^{m},|\bar{k}|_{\infty}<r} a_{r \bar{k}}(t) e^{2 \pi i \bar{k} \cdot y}
$$

be the Fejér sums w.r.t. variables $y \in \mathbb{R}^{m}$. Then $v_{r}(t, \cdot) \rightarrow v(t, \cdot)$ as $r \rightarrow \infty$ in $L^{1}\left(\mathbb{T}^{m}\right)$ for all $t \geq 0$. By (11) with $w(y)=\left|v(t, y)-v_{r}(t, y)\right|$ for a.e. $(t, z) \in \mathbb{R}_{+} \times \mathbb{R}^{m}$

$$
\begin{array}{r}
N_{1}\left(u^{z}(t, \cdot)-u_{r}^{z}(t, \cdot)\right)=\int_{\mathbb{R}^{n}}\left|v(t, z+y(x))-v_{r}(t, z+y(x))\right| d x= \\
\quad \int_{\mathbb{T}^{m}}\left|v(t, y)-v_{r}(t, y)\right| d y \quad \forall r \in \mathbb{N}, \tag{12}
\end{array}
$$

where $u_{r}=u_{r}^{z}(t, x)=v_{r}(t, z+y(x)), u=u^{z}(t, x)=v(t, z+y(x))$.

Notice that $u_{r}^{z}(t, x)$ are trigonometric polynomials with spectra contained in M_{0}. In view of (12) there exists a set $E_{2} \subset \mathbb{R}^{m}$ of full measure such that for each $z \in E_{2}$ the function $u^{z}(t, \cdot) \in \mathcal{B}^{1}\left(\mathbb{R}^{n}\right)$ and $M\left(u^{z}(t, \cdot)\right) \subset M_{0}$ for a.e. $t>0$.

Notice that $u_{r}^{z}(t, x)$ are trigonometric polynomials with spectra contained in M_{0}. In view of (12) there exists a set $E_{2} \subset \mathbb{R}^{m}$ of full measure such that for each $z \in E_{2}$ the function $u^{z}(t, \cdot) \in \mathcal{B}^{1}\left(\mathbb{R}^{n}\right)$ and $M\left(u^{z}(t, \cdot)\right) \subset M_{0}$ for a.e. $t>0$. Moreover, from (11) with $w(y)=\left|v_{r}(t, y)-v_{r}\left(t^{\prime}, y\right)\right|$ it follows in the limit as $r \rightarrow \infty$ (with regard to (12)) that for $z \in E_{2}$ for a.e. $t, t^{\prime}>0$

$$
f_{\mathbb{R}^{n}}\left|v\left(t^{\prime}, z+y(x)\right)-v(t, z+y(x))\right| d x=\int_{\mathbb{T}^{m}}\left|v\left(t^{\prime}, y\right)-v(t, y)\right| d y \underset{t^{\prime} \rightarrow t \rightarrow 0}{\rightarrow} 0
$$

(recall that $v(t, y) \in C\left([0,+\infty), L^{1}\left(\mathbb{T}^{m}\right)\right)$). This relation shows that, after possible correction of $u^{z}(t, \cdot)$ on a set of null measure, the function

$$
u^{z}=v(t, z+y(x)) \in C\left([0,+\infty), \mathcal{B}^{1}\left(\mathbb{R}^{n}\right)\right)
$$

Ergodic property

Notice that $u_{r}^{z}(t, x)$ are trigonometric polynomials with spectra contained in M_{0}. In view of (12) there exists a set $E_{2} \subset \mathbb{R}^{m}$ of full measure such that for each $z \in E_{2}$ the function $u^{z}(t, \cdot) \in \mathcal{B}^{1}\left(\mathbb{R}^{n}\right)$ and $M\left(u^{z}(t, \cdot)\right) \subset M_{0}$ for a.e. $t>0$. Moreover, from (11) with $w(y)=\left|v_{r}(t, y)-v_{r}\left(t^{\prime}, y\right)\right|$ it follows in the limit as $r \rightarrow \infty$ (with regard to (12)) that for $z \in E_{2}$ for a.e. $t, t^{\prime}>0$

$$
f_{\mathbb{R}^{n}}\left|v\left(t^{\prime}, z+y(x)\right)-v(t, z+y(x))\right| d x=\int_{\mathbb{T}^{m}}\left|v\left(t^{\prime}, y\right)-v(t, y)\right| d y \underset{t^{\prime} \rightarrow t \rightarrow 0}{\rightarrow} 0
$$

(recall that $v(t, y) \in C\left([0,+\infty), L^{1}\left(\mathbb{T}^{m}\right)\right)$). This relation shows that, after possible correction of $u^{z}(t, \cdot)$ on a set of null measure, the function
$u^{z}=v(t, z+y(x)) \in C\left([0,+\infty), \mathcal{B}^{1}\left(\mathbb{R}^{n}\right)\right)$. We have proved the following

Proposition 2.

There exists a set $E_{2} \in \mathbb{R}^{m}$ of full measure such that for $z \in E_{2}$ the function $u^{z}=v(t, z+y(x)) \in C\left([0,+\infty), \mathcal{B}^{1}\left(\mathbb{R}^{n}\right)\right)$ (after possible correction on a set of null measure).

Now, we choose a sequence $z_{l} \in E_{1} \cap E_{2}, l \in \mathbb{N}$ such that $z_{l} \rightarrow 0$ as $l \rightarrow \infty$. By Proposition $1 u^{z_{l}}(t, x)$ is an e.s. of (1), (2) with the input functions $u_{0}^{z_{l}}(x)=v_{0}\left(z_{l}+y(x)\right), g^{z_{l}}(t, x, u)=h\left(t, z_{l}+y(x), u\right)$. By Theorem 2 for a.e. $t>0$

$$
\begin{align*}
& N_{1}\left(u^{z l}(t, x)-u(t, x)\right) \leq C\left[N_{1}\left(u_{0}^{z_{l}}(x)-u_{0}(x)\right)+N_{1}\left(\left\|g^{z_{l}}(\cdot, x, \cdot)-g(\cdot, x, \cdot)\right\|_{1, M}\right)\right]= \\
& \quad C \int_{\mathbb{T}^{m}}\left[\left|v_{0}\left(z_{l}+y\right)-v_{0}(y)\right|+\int_{0}^{+\infty} \max _{|u| \leq M}\left|h\left(t, z_{l}+y, u\right)-h(t, y, u)\right| d t\right] d y_{l \rightarrow \infty}^{\rightarrow} 0 . \tag{13}
\end{align*}
$$

Here $M=\|u\|_{\infty}, C=e^{\|a\|_{1}}$. Relation (13) implies convergence $u^{z l} \rightarrow u$ in $C\left([0,+\infty), \mathcal{B}^{1}\left(\mathbb{R}^{n}\right)\right)$ and completes the proof of Theorem 3.

Now, we choose a sequence $z_{l} \in E_{1} \cap E_{2}, l \in \mathbb{N}$ such that $z_{l} \rightarrow 0$ as $l \rightarrow \infty$. By Proposition $1 u^{z_{l}}(t, x)$ is an e.s. of (1), (2) with the input functions $u_{0}^{z_{l}}(x)=v_{0}\left(z_{l}+y(x)\right), g^{z_{l}}(t, x, u)=h\left(t, z_{l}+y(x), u\right)$. By Theorem 2 for a.e. $t>0$

$$
\begin{align*}
& N_{1}\left(u^{z_{l}}(t, x)-u(t, x)\right) \leq C\left[N_{1}\left(u_{0}^{z_{l}}(x)-u_{0}(x)\right)+N_{1}\left(\left\|g^{z_{l}}(\cdot, x, \cdot)-g(\cdot, x, \cdot)\right\|_{1, M}\right)\right]= \\
& \quad C \int_{\mathbb{T}^{m}}\left[\left|v_{0}\left(z_{l}+y\right)-v_{0}(y)\right|+\int_{0}^{+\infty} \max _{|u| \leq M}\left|h\left(t, z_{l}+y, u\right)-h(t, y, u)\right| d t\right] d y_{l \rightarrow \infty}^{\rightarrow} 0 . \tag{13}
\end{align*}
$$

Here $M=\|u\|_{\infty}, C=e^{\|a\|_{1}}$. Relation (13) implies convergence $u^{z l} \rightarrow u$ in $C\left([0,+\infty), \mathcal{B}^{1}\left(\mathbb{R}^{n}\right)\right)$ and completes the proof of Theorem 3.
To prove Theorem 4, we notice that for all $\bar{k} \in \mathbb{Z}^{m}, \bar{k} \neq 0$

$$
\bar{k} \cdot \tilde{\varphi}(u)=\sum_{j=1}^{m} \sum_{k=1}^{n} k_{j} \lambda_{j k} \varphi_{k}(u)=\lambda(\bar{k}) \cdot \varphi(u),
$$

where $\lambda(\bar{k})=\sum_{j=1}^{m} k_{j} \lambda_{j} \in M_{0}, \lambda(\bar{k}) \neq 0$. By our condition (6), we find that the functions $u \rightarrow \bar{k} \cdot \tilde{\varphi}(u)$ are not affine on non-empty intervals, that is, condition (8) is satisfied (with $L^{\prime}=L=\mathbb{Z}^{m}$).

Proof of Theorem 3

By the decay result [3], we claim that the periodic e.s. $v(t, y)$ satisfies the decay relation

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \int_{\mathbb{T}^{m}}|v(t, y)-C| d y=0 \tag{14}
\end{equation*}
$$

Proof of Theorem 3

By the decay result [3], we claim that the periodic e.s. $v(t, y)$ satisfies the decay relation

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \int_{\mathbb{T}^{m}}|v(t, y)-C| d y=0 \tag{14}
\end{equation*}
$$

We choose a sequence $z_{l} \in E_{1} \cap E_{2}, z_{l} \rightarrow 0$. In view of (11) with $w(y)=|v(t, y)-C|$ we find

$$
f_{\mathbb{R}^{n}}\left|u^{z_{l}}(t, x)-C\right| d x=\int_{\mathbb{R}^{n}}\left|v\left(t, z_{l}+y(x)\right)-C\right| d x=\int_{\mathbb{T}^{m}}|v(t, y)-C| d y
$$

Proof of Theorem 3

By the decay result [3], we claim that the periodic e.s. $v(t, y)$ satisfies the decay relation

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \int_{\mathbb{T}^{m}}|v(t, y)-C| d y=0 \tag{14}
\end{equation*}
$$

We choose a sequence $z_{l} \in E_{1} \cap E_{2}, z_{l} \rightarrow 0$. In view of (11) with $w(y)=|v(t, y)-C|$ we find

$$
f_{\mathbb{R}^{n}}\left|u^{z_{l}}(t, x)-C\right| d x=\int_{\mathbb{R}^{n}}\left|v\left(t, z_{l}+y(x)\right)-C\right| d x=\int_{\mathbb{T}^{m}}|v(t, y)-C| d y
$$

Passing in this equality to the limit as $l \rightarrow \infty$ and taking into account (13), we obtain that for all $t>0$

$$
\int_{\mathbb{R}^{n}}|u(t, x)-C| d x=\int_{\mathbb{T}^{m}}|v(t, y)-C| d y
$$

Decay property (7) now follows from (14):

$$
\lim _{t \rightarrow+\infty} f_{\mathbb{R}^{n}}|u(t, x)-C| d x=0
$$

The proof of Theorem 4 is complete.

Suppose that $g \equiv 0$ and non-degeneracy condition (6) fails. Then one can find a nonzero vector $\xi \in M_{0}$ such that the function $\xi \cdot \varphi(u)=\tau u+c$ on some segment $[a, b]$, where $\tau, c \in \mathbb{R}$. As is easy to verify, the function

$$
u(t, x)=\frac{a+b}{2}+\frac{b-a}{2} \sin (2 \pi(\xi \cdot x-\tau t))
$$

is an e.s. of (1), (2) with the periodic initial function

$$
u(0, x)=\frac{a+b}{2}+\frac{b-a}{2} \sin (2 \pi(\xi \cdot x))
$$

such that $S p\left(u_{0}\right)=\{-\xi, \xi\} \subset M_{0}$. It is clear that this e.s. does not satisfy the decay property.

Suppose that $g \equiv 0$ and non-degeneracy condition (6) fails. Then one can find a nonzero vector $\xi \in M_{0}$ such that the function $\xi \cdot \varphi(u)=\tau u+c$ on some segment $[a, b]$, where $\tau, c \in \mathbb{R}$. As is easy to verify, the function

$$
u(t, x)=\frac{a+b}{2}+\frac{b-a}{2} \sin (2 \pi(\xi \cdot x-\tau t))
$$

is an e.s. of (1), (2) with the periodic initial function

$$
u(0, x)=\frac{a+b}{2}+\frac{b-a}{2} \sin (2 \pi(\xi \cdot x))
$$

such that $S p\left(u_{0}\right)=\{-\xi, \xi\} \subset M_{0}$. It is clear that this e.s. does not satisfy the decay property.
The detailed proofs of presented results in the case $g \equiv 0$ can be found in recent preprints http://arxiv.org/pdf/1406.4838.pdf
http://arxiv.org/pdf/1408.0658.pdf

Thank you for attention!

