Dedicated to Nina Nikolaevna Uraltseva

"Advances in Nonlinear PDEs" St. Petersburg, September 3-5, 2014

On the Cauchy problem for scalar balance laws in the class of Besicovitch almost periodic functions

Evgeny Panov (Veliky Novgorod)

September 4, 2014

In the half-space $\Pi = \mathbb{R}_+ \times \mathbb{R}^n$ with $\mathbb{R}_+ = (0, +\infty)$, we consider the Cauchy problem

$$u_t + \operatorname{div}_x \varphi(u) = g(t, x, u), \tag{1}$$

$$u(0,x) = u_0(x) \in L^{\infty}(\mathbb{R}^n).$$
⁽²⁾

We suppose that the flux $\varphi(u) = (\varphi_1(u), \dots, \varphi_n(u)) \in C(\mathbb{R}, \mathbb{R}^n)$, and the source function $g(t, x, u) \in L^1_{loc}(\Pi, C(\mathbb{R}))$ is a Caratheodory function with the following properties:

$$|g(t, x, u)| \le a(t)(1 + |u|) \quad \forall u \in \mathbb{R}, |g(t, x, u) - g(t, x, v)| \le a(t)|u - v| \quad \forall u, v \in \mathbb{R},$$

where $a(t) \in L^1(\mathbb{R}_+)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Introduction

Definition 1. (S. N. Kruzhkov)

A bounded measurable function $u = u(t, x) \in L^{\infty}(\Pi)$ is called an e.s. of (1), (2) if for all $k \in \mathbb{R}$

 $|u-k|_t + \operatorname{div}_x[\operatorname{sign}(u-k)(\varphi(u) - \varphi(k))] - \operatorname{sign}(u-k)g(t,x,u) \le 0$ (3)

in the sense of distributions on Π (in $\mathcal{D}'(\Pi)$), and

 $\operatorname{ess\,lim}_{t\to 0} u(t,\cdot) = u_0 \text{ in } L^1_{loc}(\mathbb{R}^n).$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Introduction

Definition 1. (S. N. Kruzhkov)

A bounded measurable function $u = u(t, x) \in L^{\infty}(\Pi)$ is called an e.s. of (1), (2) if for all $k \in \mathbb{R}$

 $|u-k|_t + \operatorname{div}_x[\operatorname{sign}(u-k)(\varphi(u) - \varphi(k))] - \operatorname{sign}(u-k)g(t,x,u) \le 0$ (3)

in the sense of distributions on Π (in $\mathcal{D}'(\Pi)$), and

 $\operatorname{ess\,lim}_{t\to 0} u(t,\cdot) = u_0 \text{ in } L^1_{loc}(\mathbb{R}^n).$

Condition (3) means that $\forall f = f(t, x) \in C_0^1(\Pi), f \ge 0$

 $\int_{\Pi} [|u-k|f_t + \operatorname{sign}(u-k)(\varphi(u) - \varphi(k)) \cdot \nabla_x f + \operatorname{sign}(u-k)g(t,x,u)f] dt dx \ge 0$

Theorem 1.

There exists an e.s. u = u(t, x) of problem (1), (2). Moreover,

 $|u(t,x)| \le M \doteq C(1 + ||u_0||_{\infty}), \text{ where } C = e^{||a||_1}.$

Introduction

The statement of Theorem 1 readily follows from results of

1. Panov E. Yu. Izvestiya RAN: Ser. Mat. 66:6, 91–136 (2002).

In the case of merely continuous flux vector and n > 1, an e.s. of (1), (2) may be nonunique, see

2. Kruzhkov S. N., Panov E. Yu. Dokl. Akad. Nauk SSSR, 314:1, 79-84 (1990).

Nevertheless, if the initial and source functions are space-periodic (at least in n - 1 independent directions), an e.s. of (1), (2) is unique and space-periodic, cf [1].

「ア・イヨト・モート」

The statement of Theorem 1 readily follows from results of

1. Panov E. Yu. Izvestiya RAN: Ser. Mat. 66:6, 91–136 (2002).

In the case of merely continuous flux vector and n > 1, an e.s. of (1), (2) may be nonunique, see

2. Kruzhkov S. N., Panov E. Yu. Dokl. Akad. Nauk SSSR, 314:1, 79-84 (1990).

Nevertheless, if the initial and source functions are space-periodic (at least in n - 1 independent directions), an e.s. of (1), (2) is unique and space-periodic, cf [1]. We denote

$$C_{R} = \{ x = (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n} \mid |x|_{\infty} = \max_{i=1,\dots,n} |x_{i}| \le R/2 \}, \quad R > 0;$$
$$N_{1}(u) = \limsup_{R \to +\infty} R^{-n} \int_{C_{R}} |u(x)| dx, \quad u(x) \in L^{1}_{loc}(\mathbb{R}^{n}).$$

Recall that the Besicovitch space $\mathcal{B}^1(\mathbb{R}^n)$ is the closure of trigonometric polynomials (i.e., finite sums $\sum a_{\lambda}e^{2\pi i\lambda \cdot x}$, where $i^2 = -1$, $\lambda \in \mathbb{R}^n$) in the quotient space $B^1(\mathbb{R}^n)/B_0^1(\mathbb{R}^n)$, where

 $B^{1}(\mathbb{R}^{n}) = \{ u \in L^{1}_{loc}(\mathbb{R}^{n}) \mid N_{1}(u) < +\infty \}, \ B^{1}_{0}(\mathbb{R}^{n}) = N^{-1}_{1}(0).$

The space $\mathcal{B}^1(\mathbb{R}^n)$ equipped with the norm $||u||_1 = N_1(u)$ is a Banach space.

It is known that every function $u \in \mathcal{B}^1(\mathbb{R}^n)$ has the mean value

$$\int_{\mathbb{R}^n} u(x) dx \doteq \lim_{R \to +\infty} R^{-n} \int_{C_R} u(x) dx$$

and, more generally, the Fourier coefficients

$$a_{\lambda} = \int_{\mathbb{R}^n} u(x) e^{-2\pi i \lambda \cdot x} dx, \quad \lambda \in \mathbb{R}^n.$$

The set $Sp(u) = \{ \lambda \in \mathbb{R}^n \mid a_\lambda \neq 0 \}$ is called the spectrum of an almost periodic function u(x). The spectrum Sp(u) is known to be at most countable. We denote by M(u) the additive subgroup of \mathbb{R}^n , generated by Sp(u).

何とくほとくほと

It is known that every function $u \in \mathcal{B}^1(\mathbb{R}^n)$ has the mean value

$$\int_{\mathbb{R}^n} u(x) dx \doteq \lim_{R \to +\infty} R^{-n} \int_{C_R} u(x) dx$$

and, more generally, the Fourier coefficients

$$a_{\lambda} = \int_{\mathbb{R}^n} u(x) e^{-2\pi i \lambda \cdot x} dx, \quad \lambda \in \mathbb{R}^n.$$

The set $Sp(u) = \{ \lambda \in \mathbb{R}^n \mid a_\lambda \neq 0 \}$ is called the spectrum of an almost periodic function u(x). The spectrum Sp(u) is known to be at most countable. We denote by M(u) the additive subgroup of \mathbb{R}^n , generated by Sp(u). In the similar way one can define the space $\mathcal{B}^1(\mathbb{R}^n, F)$, where *F* is a separable locally convex space. All the mentioned results remains valid in this general setting.

Let $F = L^1(\mathbb{R}_+, C(\mathbb{R}))$ be a locally convex space with the topology generated by seminorms

$$||p||_{1,M} = \int_0^{+\infty} \max_{|u| \le M} |p(t,u)| dt, \quad p = p(t,u) \in F, \ M > 0.$$

くぼう くほう くほう

It is known that every function $u \in \mathcal{B}^1(\mathbb{R}^n)$ has the mean value

$$\int_{\mathbb{R}^n} u(x) dx \doteq \lim_{R \to +\infty} R^{-n} \int_{C_R} u(x) dx$$

and, more generally, the Fourier coefficients

$$a_{\lambda} = \int_{\mathbb{R}^n} u(x) e^{-2\pi i \lambda \cdot x} dx, \quad \lambda \in \mathbb{R}^n.$$

The set $Sp(u) = \{ \lambda \in \mathbb{R}^n \mid a_\lambda \neq 0 \}$ is called the spectrum of an almost periodic function u(x). The spectrum Sp(u) is known to be at most countable. We denote by M(u) the additive subgroup of \mathbb{R}^n , generated by Sp(u). In the similar way one can define the space $\mathcal{B}^1(\mathbb{R}^n, F)$, where *F* is a separable locally convex space. All the mentioned results remains valid in this general setting.

Let $F = L^1(\mathbb{R}_+, C(\mathbb{R}))$ be a locally convex space with the topology generated by seminorms

$$||p||_{1,M} = \int_0^{+\infty} \max_{|u| \le M} |p(t,u)| dt, \quad p = p(t,u) \in F, \ M > 0.$$

The following statement holds in the general case of arbitrary e.s.

Theorem 2.

Let $u(t, x), v(t, x) \in L^{\infty}(\Pi)$ be e.s. of (1), (2) with initial data $u_0(x), v_0(x)$, and source functions g(t, x, u), h(t, x, u), respectively. Then for a.e. t > 0

 $N_1(u(t,\cdot) - v(t,\cdot)) \le C \left[N_1(u_0 - v_0) + N_1(\|g(\cdot, x, \cdot) - h(\cdot, x, \cdot)\|_{1,M}) \right], \quad (4)$

where $C = e^{\|a\|_1}, M = \|u\|_{\infty}$.

(周) (三) (三) (三) (○)

Theorem 2.

Let $u(t, x), v(t, x) \in L^{\infty}(\Pi)$ be e.s. of (1), (2) with initial data $u_0(x), v_0(x)$, and source functions g(t, x, u), h(t, x, u), respectively. Then for a.e. t > 0

 $N_1(u(t,\cdot) - v(t,\cdot)) \le C \left[N_1(u_0 - v_0) + N_1(\|g(\cdot, x, \cdot) - h(\cdot, x, \cdot)\|_{1,M}) \right], \quad (4)$

where $C = e^{\|a\|_1}, M = \|u\|_{\infty}$.

To prove Theorem 2, we utilize the relation

$$|u - v|_{t} + \operatorname{div}_{x}[\operatorname{sign}(u - v)(\varphi(u) - \varphi(v))] \leq |g(t, x, u) - h(t, x, v)| \leq \max_{|u| \leq M} |g(t, x, u) - h(t, x, u)| + a(t)|u - v| \text{ in } \mathcal{D}'(\Pi),$$
(5)

established by Kruzhkov doubling of variables method. Integrating (5) over the parallelepiped $t \in (0, T)$, $x \in C_R$, and passing to the limit as $R \to \infty$, we obtain with the help of Gronwall lemma the required relation: for a.e. T > 0 $N_1(u(T, \cdot) - v(T, \cdot)) \leq C[N_1(u_0 - v_0) + N_1(||g(\cdot, x, \cdot) - h(\cdot, x, \cdot)||_{1,M})]$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Theorem 2.

Let $u(t, x), v(t, x) \in L^{\infty}(\Pi)$ be e.s. of (1), (2) with initial data $u_0(x), v_0(x)$, and source functions g(t, x, u), h(t, x, u), respectively. Then for a.e. t > 0

 $N_1(u(t,\cdot) - v(t,\cdot)) \le C \left[N_1(u_0 - v_0) + N_1(\|g(\cdot, x, \cdot) - h(\cdot, x, \cdot)\|_{1,M}) \right], \quad (4)$

where $C = e^{\|a\|_1}$, $M = \|u\|_{\infty}$.

To prove Theorem 2, we utilize the relation

$$|u - v|_{t} + \operatorname{div}_{x}[\operatorname{sign}(u - v)(\varphi(u) - \varphi(v))] \leq |g(t, x, u) - h(t, x, v)| \leq \max_{|u| \leq M} |g(t, x, u) - h(t, x, u)| + a(t)|u - v| \text{ in } \mathcal{D}'(\Pi),$$
(5)

established by Kruzhkov doubling of variables method. Integrating (5) over the parallelepiped $t \in (0, T)$, $x \in C_R$, and passing to the limit as $R \to \infty$, we obtain with the help of Gronwall lemma the required relation: for a.e. T > 0 $N_1(u(T, \cdot) - v(T, \cdot)) \leq C[N_1(u_0 - v_0) + N_1(||g(\cdot, x, \cdot) - h(\cdot, x, \cdot)||_{1,M})]$. Theorem 2 readily implies **uniqueness** of e.s. u(t, x) to the problem (1), (2), considered in the space $\mathcal{B}^1(\mathbb{R}^n)$ (for every fixed t > 0).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○○

Main results

To establish the **existence**, we have to assume that the *F*-valued function $\tilde{g}(x)(t, u) = g(t, x, u)$ belongs to the space $\mathcal{B}^1(\mathbb{R}^n, F)$. Denote by M_0 the additive subgroup of \mathbb{R}^n generated by $Sp(u_0) \cup Sp(\tilde{g})$.

Theorem 3.

Let $u_0(x) \in \mathcal{B}^1(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$ be a bounded almost periodic function, and u(t, x) be an e.s. of problem (1), (2). Then, after possible correction on a set of null measure, $u(t, \cdot) \in C([0, +\infty), \mathcal{B}^1(\mathbb{R}^n)) \cap L^{\infty}(\Pi)$, and for all t > 0 $M(u(t, \cdot)) \subset M_0$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Main results

To establish the **existence**, we have to assume that the *F*-valued function $\tilde{g}(x)(t, u) = g(t, x, u)$ belongs to the space $\mathcal{B}^1(\mathbb{R}^n, F)$. Denote by M_0 the additive subgroup of \mathbb{R}^n generated by $Sp(u_0) \cup Sp(\tilde{g})$.

Theorem 3.

Let $u_0(x) \in \mathcal{B}^1(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$ be a bounded almost periodic function, and u(t, x) be an e.s. of problem (1), (2). Then, after possible correction on a set of null measure, $u(t, \cdot) \in C([0, +\infty), \mathcal{B}^1(\mathbb{R}^n)) \cap L^{\infty}(\Pi)$, and for all t > 0 $M(u(t, \cdot)) \subset M_0$.

Theorem 4.

Assume that

$$\forall \xi \in M_0, \xi \neq 0 \text{ functions } u \to \xi \cdot \varphi(u)$$

are not affine on non-empty intervals

(6)

(7)

Then for some constant C

$$\lim_{t\to+\infty}\int_{\mathbb{R}^n}|u(t,x)-C|dx=0.$$

Decay property

If the input data $u_0(x)$, g(t, x, u) are space-periodic with the common lattice of periods $L \subset \mathbb{R}^n$, then the group M_0 coincides with the dual lattice $L' = \{ \xi \in \mathbb{R}^n \mid \xi \cdot x \in \mathbb{Z} \ \forall x \in L \}$. In this case the statement of Theorem 4 reduces to the decay result for periodic e.s. recently established (in the case $g \equiv 0$) in

3. Panov E. Yu. Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 30 997-1007 (2013).

The non-degeneracy condition

$$\forall \xi \in L', \xi \neq 0 \text{ the function } u \to \xi \cdot \varphi(u)$$

is not affine on non-empty intervals (8)

is necessary and sufficient for the decay of every x-periodic (with the lattice of periods L) e.s. u(t, x):

$$\lim_{t \to +\infty} \int_{\mathbb{T}^n} |u(t,x) - C| dx = 0, \quad C = \int_{\mathbb{T}^n} u_0(x) dx.$$
(9)

イロト 不得 とくき とくきとうき

Here $\mathbb{T}^n = \mathbb{R}^n / L$ ia an *n*-dimensional torus, dx is a normalized Lebesgue measure on \mathbb{T}^n .

Reduction to the periodic case

The proof of the decay property relies on localization principles of *H*-measures for the scaling sequence u(kt, kx), $k \in \mathbb{N}$, and remains valid for inhomogeneous case as well.

伺 とく ヨ とく ヨ と

The proof of the decay property relies on localization principles of *H*-measures for the scaling sequence u(kt, kx), $k \in \mathbb{N}$, and remains valid for inhomogeneous case as well. In the general case the input data $u_0(x)$, $\tilde{g}(x)(t, u) = g(t, x, u)$ can be approximated in $\mathcal{B}^1(\mathbb{R}^n)$, $\mathcal{B}^1(\mathbb{R}^n, F)$ by sequences of trigonometric polynomials $u_{0m}(x)$, $\tilde{g}_m(x)$, $m \in \mathbb{N}$, such that $Sp(u_{0m}) \cup Sp(\tilde{g}_m) \subset M_0$ (for instance, we may choose the Bochner-Fejér sums). By Theorem 2, it is sufficient to prove the statements of Theorems 3, 4 for input data $u_{0m}(x)$, $g_m(t, x, u) = \tilde{g}_m(x)(t, u)$. General case is treated in the limit as $m \to \infty$ on the base of uniform estimate

$$N_1(u(t,\cdot) - u_m(t,\cdot)) \le C[N_1(u_0 - u_{0m}) + N_1(\|\tilde{g} - \tilde{g}_m\|_{1,M})] \underset{m \to \infty}{\to} 0, \ M = \|u\|_{\infty}.$$

伺き くほき くほき

The proof of the decay property relies on localization principles of *H*-measures for the scaling sequence u(kt, kx), $k \in \mathbb{N}$, and remains valid for inhomogeneous case as well. In the general case the input data $u_0(x)$, $\tilde{g}(x)(t, u) = g(t, x, u)$ can be approximated in $\mathcal{B}^1(\mathbb{R}^n)$, $\mathcal{B}^1(\mathbb{R}^n, F)$ by sequences of trigonometric polynomials $u_{0m}(x)$, $\tilde{g}_m(x)$, $m \in \mathbb{N}$, such that $Sp(u_{0m}) \cup Sp(\tilde{g}_m) \subset M_0$ (for instance, we may choose the Bochner-Fejér sums). By Theorem 2, it is sufficient to prove the statements of Theorems 3, 4 for input data $u_{0m}(x)$, $g_m(t, x, u) = \tilde{g}_m(x)(t, u)$. General case is treated in the limit as $m \to \infty$ on the base of uniform estimate

$$N_1(u(t,\cdot) - u_m(t,\cdot)) \le C[N_1(u_0 - u_{0m}) + N_1(\|\tilde{g} - \tilde{g}_m\|_{1,M})] \underset{m \to \infty}{\to} 0, \ M = \|u\|_{\infty}.$$

Thus, we suppose that $u_0(x) = \sum_{\lambda \in \Lambda} a_\lambda e^{2\pi i \lambda \cdot x}$, $g(t, x, u) = \sum_{\lambda \in \Lambda} b_\lambda(t, u) e^{2\pi i \lambda \cdot x}$ are trigonometric polynomials, the set Λ is finite. The group $M_0 = M(u_0)$ is a free abelian group (as a finite generated torsion free group). Therefore, we can choose a basis $\lambda_j \in M_0$, $j = 1, \ldots, m$. Each element $\lambda \in M_0$ is uniquely represented as $\lambda = \lambda(\bar{k}) = \sum_{j=1}^m k_j \lambda_j$, $\bar{k} = (k_1, \ldots, k_m) \in \mathbb{Z}^m$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The proof of the decay property relies on localization principles of *H*-measures for the scaling sequence u(kt, kx), $k \in \mathbb{N}$, and remains valid for inhomogeneous case as well. In the general case the input data $u_0(x)$, $\tilde{g}(x)(t, u) = g(t, x, u)$ can be approximated in $\mathcal{B}^1(\mathbb{R}^n)$, $\mathcal{B}^1(\mathbb{R}^n, F)$ by sequences of trigonometric polynomials $u_{0m}(x)$, $\tilde{g}_m(x)$, $m \in \mathbb{N}$, such that $Sp(u_{0m}) \cup Sp(\tilde{g}_m) \subset M_0$ (for instance, we may choose the Bochner-Fejér sums). By Theorem 2, it is sufficient to prove the statements of Theorems 3, 4 for input data $u_{0m}(x)$, $g_m(t, x, u) = \tilde{g}_m(x)(t, u)$. General case is treated in the limit as $m \to \infty$ on the base of uniform estimate

$$N_1(u(t,\cdot) - u_m(t,\cdot)) \le C[N_1(u_0 - u_{0m}) + N_1(\|\tilde{g} - \tilde{g}_m\|_{1,M})] \underset{m \to \infty}{\to} 0, \ M = \|u\|_{\infty}.$$

Thus, we suppose that $u_0(x) = \sum_{\lambda \in \Lambda} a_\lambda e^{2\pi i \lambda \cdot x}$, $g(t, x, u) = \sum_{\lambda \in \Lambda} b_\lambda(t, u) e^{2\pi i \lambda \cdot x}$ are trigonometric polynomials, the set Λ is finite. The group $M_0 = M(u_0)$ is a free abelian group (as a finite generated torsion free group). Therefore, we can choose a basis $\lambda_j \in M_0$, j = 1, ..., m. Each element $\lambda \in M_0$ is uniquely represented as $\lambda = \lambda(\bar{k}) = \sum_{j=1}^m k_j \lambda_j$, $\bar{k} = (k_1, ..., k_m) \in \mathbb{Z}^m$. We define the finite set $J = \{ \bar{k} \in \mathbb{Z}^m \mid \lambda(\bar{k}) \in \Lambda \}$. The input functions can be represented as $u_0(x) = \sum_{\bar{k} \in J} a_{\bar{k}} e^{2\pi i \sum_{j=1}^m k_j \lambda_j \cdot x}$, $g(t, x, u) = \sum_{\bar{k} \in J} b_{\bar{k}}(t, u) e^{2\pi i \sum_{j=1}^m k_j \lambda_j \cdot x}$, where $a_{\bar{k}} \doteq a_{\lambda(\bar{k})}, b_{\bar{k}}(t, u) \doteq b_{\lambda(\bar{k})}(t, u)$, which implies that $u_0(x) = v_0(y(x))$, g(t, x, u) = h(t, y(x), u), where

$$v_0(y) = \sum_{\bar{k} \in J} a_{\bar{k}} e^{2\pi i \bar{k} \cdot y}, \quad h(t, y, u) = \sum_{\bar{k} \in J} b_{\bar{k}}(t, u) e^{2\pi i \bar{k} \cdot y}$$

are space-periodic function with the standard lattice of periods \mathbb{Z}^m while y(x) is a linear map from \mathbb{R}^n into \mathbb{R}^m defined by the equalities $y_j = \lambda_j \cdot x$, j = 1, ..., m.

where $a_{\bar{k}} \doteq a_{\lambda(\bar{k})}, b_{\bar{k}}(t, u) \doteq b_{\lambda(\bar{k})}(t, u)$, which implies that $u_0(x) = v_0(y(x))$, g(t, x, u) = h(t, y(x), u), where

$$v_0(y) = \sum_{\bar{k} \in J} a_{\bar{k}} e^{2\pi i \bar{k} \cdot y}, \quad h(t, y, u) = \sum_{\bar{k} \in J} b_{\bar{k}}(t, u) e^{2\pi i \bar{k} \cdot y}$$

are space-periodic function with the standard lattice of periods \mathbb{Z}^m while y(x) is a linear map from \mathbb{R}^n into \mathbb{R}^m defined by the equalities $y_j = \lambda_j \cdot x, j = 1, ..., m$. Let us consider the balance law

$$v_t + \operatorname{div}_y \tilde{\varphi}(v) = h(t, y, v), \quad v = v(t, y), \ t > 0, \ y \in \mathbb{R}^m,$$
(10)

with the flux functions $\tilde{\varphi}_j(v) = \lambda_j \cdot \varphi(v), j = 1, \dots, m$.

(本間) (本語) (本語) (二語)

where $a_{\bar{k}} \doteq a_{\lambda(\bar{k})}, b_{\bar{k}}(t, u) \doteq b_{\lambda(\bar{k})}(t, u)$, which implies that $u_0(x) = v_0(y(x))$, g(t, x, u) = h(t, y(x), u), where

$$v_0(y) = \sum_{\bar{k} \in J} a_{\bar{k}} e^{2\pi i \bar{k} \cdot y}, \quad h(t, y, u) = \sum_{\bar{k} \in J} b_{\bar{k}}(t, u) e^{2\pi i \bar{k} \cdot y}$$

are space-periodic function with the standard lattice of periods \mathbb{Z}^m while y(x) is a linear map from \mathbb{R}^n into \mathbb{R}^m defined by the equalities $y_j = \lambda_j \cdot x, j = 1, ..., m$. Let us consider the balance law

$$v_t + \operatorname{div}_y \tilde{\varphi}(v) = h(t, y, v), \quad v = v(t, y), \ t > 0, \ y \in \mathbb{R}^m,$$
(10)

with the flux functions $\tilde{\varphi}_j(v) = \lambda_j \cdot \varphi(v), j = 1, \dots, m$. Let $v(t, y) \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^m)$ be the unique (in view of periodicity of the initial data) e.s. of the Cauchy problem for equation (10) with the initial function $v_0(y)$. This solution is *y*-periodic: v(t, y + e) = v(t, y) a.e. in $\mathbb{R}_+ \times \mathbb{R}^m$ for all $e \in \mathbb{Z}^m$. Besides, by results of

5. Panov E. Yu. J. Hyperbolic Differ. Equ. 2, 885-908 (2005),

after possible correction on a set of null measure, $v(t, \cdot) \in C([0, +\infty), L^1(\mathbb{T}^m))$, where $\mathbb{T}^m = \mathbb{R}^m / \mathbb{Z}^m$ is an *m*-dimensional torus.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

where $a_{\bar{k}} \doteq a_{\lambda(\bar{k})}, b_{\bar{k}}(t, u) \doteq b_{\lambda(\bar{k})}(t, u)$, which implies that $u_0(x) = v_0(y(x))$, g(t, x, u) = h(t, y(x), u), where

$$v_0(y) = \sum_{\bar{k} \in J} a_{\bar{k}} e^{2\pi i \bar{k} \cdot y}, \quad h(t, y, u) = \sum_{\bar{k} \in J} b_{\bar{k}}(t, u) e^{2\pi i \bar{k} \cdot y}$$

are space-periodic function with the standard lattice of periods \mathbb{Z}^m while y(x) is a linear map from \mathbb{R}^n into \mathbb{R}^m defined by the equalities $y_j = \lambda_j \cdot x, j = 1, ..., m$. Let us consider the balance law

$$v_t + \operatorname{div}_y \tilde{\varphi}(v) = h(t, y, v), \quad v = v(t, y), \ t > 0, \ y \in \mathbb{R}^m,$$
(10)

with the flux functions $\tilde{\varphi}_j(v) = \lambda_j \cdot \varphi(v), j = 1, \dots, m$. Let $v(t, y) \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^m)$ be the unique (in view of periodicity of the initial data) e.s. of the Cauchy problem for equation (10) with the initial function $v_0(y)$. This solution is *y*-periodic: v(t, y + e) = v(t, y) a.e. in $\mathbb{R}_+ \times \mathbb{R}^m$ for all $e \in \mathbb{Z}^m$. Besides, by results of

5. Panov E. Yu. J. Hyperbolic Differ. Equ. 2, 885-908 (2005),

after possible correction on a set of null measure, $v(t, \cdot) \in C([0, +\infty), L^1(\mathbb{T}^m))$, where $\mathbb{T}^m = \mathbb{R}^m / \mathbb{Z}^m$ is an *m*-dimensional torus. We introduce the function $u(t, z, x) = v(t, z + y(x)) \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^{m+n})$. Since the linear operator $(z, x) \to (z + y(x), x)$ on \mathbb{R}^{m+n} is invertible, the function u(t, z, x) is well-defined. Obviously, for every $k \in \mathbb{R}$

$$\begin{aligned} |u-k|_t + \operatorname{div}_x[\operatorname{sign}(u-k)(\varphi(u) - \varphi(k))] - \operatorname{sign}(u-k)h(t, z+y(x), u) &= \\ |v(t, z+y) - k|_t + \operatorname{div}_y[\operatorname{sign}(v(t, z+y) - k)(\tilde{\varphi}(v(t, z+y)) - \tilde{\varphi}(k))] \\ - \operatorname{sign}(v(t, z+y) - k)h(t, z+y, v(t, z+y)) &\leq 0 \text{ in } \mathcal{D}'(\mathbb{R}_+ \times \mathbb{R}^{m+n}). \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○

æ

Obviously, for every $k \in \mathbb{R}$

$$\begin{aligned} |u-k|_t + \operatorname{div}_x[\operatorname{sign}(u-k)(\varphi(u)-\varphi(k))] - \operatorname{sign}(u-k)h(t,z+y(x),u) &= \\ |v(t,z+y)-k|_t + \operatorname{div}_y[\operatorname{sign}(v(t,z+y)-k)(\tilde{\varphi}(v(t,z+y))-\tilde{\varphi}(k))] \\ - \operatorname{sign}(v(t,z+y)-k)h(t,z+y,v(t,z+y)) &\leq 0 \text{ in } \mathcal{D}'(\mathbb{R}_+ \times \mathbb{R}^{m+n}). \end{aligned}$$

It is also clear that

$$\lim_{t \to 0+} u(t, z, x) = u_0(z, x) \doteq v_0(z + y(x)) \text{ in } L^1_{loc}(\mathbb{R}^{m+n}).$$

Thus, u(t, z, x) is an e.s. of the problem

 $u_t + \operatorname{div}_x \varphi(u) = h(t, z + y(x), u), \quad u(0, z, x) = v_0(z + y(x))$

in the extended domain $\mathbb{R}_+ \times \mathbb{R}^{m+n}$.

・ 御 ト ・ 国 ト ・ 国 ト

3

Obviously, for every $k \in \mathbb{R}$

$$\begin{aligned} |u-k|_t + \operatorname{div}_x[\operatorname{sign}(u-k)(\varphi(u)-\varphi(k))] - \operatorname{sign}(u-k)h(t,z+y(x),u) &= \\ |v(t,z+y)-k|_t + \operatorname{div}_y[\operatorname{sign}(v(t,z+y)-k)(\tilde{\varphi}(v(t,z+y))-\tilde{\varphi}(k))] \\ - \operatorname{sign}(v(t,z+y)-k)h(t,z+y,v(t,z+y)) &\leq 0 \text{ in } \mathcal{D}'(\mathbb{R}_+ \times \mathbb{R}^{m+n}). \end{aligned}$$

It is also clear that

$$\lim_{t \to 0+} u(t, z, x) = u_0(z, x) \doteq v_0(z + y(x)) \text{ in } L^1_{loc}(\mathbb{R}^{m+n}).$$

Thus, u(t, z, x) is an e.s. of the problem

 $u_t + \operatorname{div}_x \varphi(u) = h(t, z + y(x), u), \quad u(0, z, x) = v_0(z + y(x))$

in the extended domain $\mathbb{R}_+ \times \mathbb{R}^{m+n}$. This readily implies the following statement.

Proposition 1.

There exists a set $E_1 \subset \mathbb{R}^m$ of full measure such that for all $z \in E_1$ the function u(t, z, x) = v(t, z + y(x)) is an e.s. of (1), (2) with the initial data $v_0(z + y(x))$ and the source function h(t, z + y(x), u).

< 注 → < 注 →

Ergodic property

The additive group \mathbb{R}^n acts on the *m*-dimensional torus $\mathbb{T}^m = \mathbb{R}^m / \mathbb{Z}^m$ by the shift transformations $S_{xz} = z + y(x)$. This action is measure preserving and ergodic (the latter follows from the condition that the vectors λ_j , j = 1, ..., m, are independent over \mathbb{Z}). By Birkhoff individual ergodic theorem for each $w(y) \in L^1(\mathbb{T}^m)$ for a.e. $z \in \mathbb{T}^m$

$$\int_{\mathbb{R}^n} w(z+y(x))dx = \int_{\mathbb{T}^m} w(y)dy.$$
(11)

個 ト イヨ ト イヨト

Ergodic property

The additive group \mathbb{R}^n acts on the *m*-dimensional torus $\mathbb{T}^m = \mathbb{R}^m / \mathbb{Z}^m$ by the shift transformations $S_{xz} = z + y(x)$. This action is measure preserving and ergodic (the latter follows from the condition that the vectors λ_j , j = 1, ..., m, are independent over \mathbb{Z}). By Birkhoff individual ergodic theorem for each $w(y) \in L^1(\mathbb{T}^m)$ for a.e. $z \in \mathbb{T}^m$

$$\int_{\mathbb{R}^n} w(z+y(x))dx = \int_{\mathbb{T}^n} w(y)dy.$$
 (11)

Let

$$v_r(t, y) = (v(t, \cdot) * \Phi_r)(y) = \sum_{\bar{k} \in \mathbb{Z}^m, |\bar{k}|_{\infty} < r} a_{r\bar{k}}(t) e^{2\pi i \bar{k} \cdot y}$$

be the Fejér sums w.r.t. variables $y \in \mathbb{R}^m$. Then $v_r(t, \cdot) \to v(t, \cdot)$ as $r \to \infty$ in $L^1(\mathbb{T}^m)$ for all $t \ge 0$. By (11) with $w(y) = |v(t, y) - v_r(t, y)|$ for a.e. $(t, z) \in \mathbb{R}_+ \times \mathbb{R}^m$

$$N_1(u^z(t,\cdot) - u^z_r(t,\cdot)) = \int_{\mathbb{R}^n} |v(t,z+y(x)) - v_r(t,z+y(x))| dx = \int_{\mathbb{T}^m} |v(t,y) - v_r(t,y)| dy \quad \forall r \in \mathbb{N},$$
(12)

where $u_r = u_r^z(t, x) = v_r(t, z + y(x)), u = u^z(t, x) = v(t, z + y(x)).$

Notice that $u_r^z(t, x)$ are trigonometric polynomials with spectra contained in M_0 . In view of (12) there exists a set $E_2 \subset \mathbb{R}^m$ of full measure such that for each $z \in E_2$ the function $u^z(t, \cdot) \in \mathcal{B}^1(\mathbb{R}^n)$ and $M(u^z(t, \cdot)) \subset M_0$ for a.e. t > 0.

何とくほとくほと

3

Notice that $u_r^z(t, x)$ are trigonometric polynomials with spectra contained in M_0 . In view of (12) there exists a set $E_2 \subset \mathbb{R}^m$ of full measure such that for each $z \in E_2$ the function $u^z(t, \cdot) \in \mathcal{B}^1(\mathbb{R}^n)$ and $M(u^z(t, \cdot)) \subset M_0$ for a.e. t > 0. Moreover, from (11) with $w(y) = |v_r(t, y) - v_r(t', y)|$ it follows in the limit as $r \to \infty$ (with regard to (12)) that for $z \in E_2$ for a.e. t, t' > 0

$$\int_{\mathbb{R}^n} |v(t', z + y(x)) - v(t, z + y(x))| dx = \int_{\mathbb{T}^m} |v(t', y) - v(t, y)| dy \underset{t' - t \to 0}{\to} 0$$

(recall that $v(t, y) \in C([0, +\infty), L^1(\mathbb{T}^m))$). This relation shows that, after possible correction of $u^z(t, \cdot)$ on a set of null measure, the function $u^z = v(t, z + y(x)) \in C([0, +\infty), \mathcal{B}^1(\mathbb{R}^n)).$

Notice that $u_r^z(t, x)$ are trigonometric polynomials with spectra contained in M_0 . In view of (12) there exists a set $E_2 \subset \mathbb{R}^m$ of full measure such that for each $z \in E_2$ the function $u^z(t, \cdot) \in \mathcal{B}^1(\mathbb{R}^n)$ and $M(u^z(t, \cdot)) \subset M_0$ for a.e. t > 0. Moreover, from (11) with $w(y) = |v_r(t, y) - v_r(t', y)|$ it follows in the limit as $r \to \infty$ (with regard to (12)) that for $z \in E_2$ for a.e. t, t' > 0

$$\int_{\mathbb{R}^n} |v(t', z + y(x)) - v(t, z + y(x))| dx = \int_{\mathbb{T}^m} |v(t', y) - v(t, y)| dy \underset{t' - t \to 0}{\to} 0$$

(recall that $v(t, y) \in C([0, +\infty), L^1(\mathbb{T}^m))$). This relation shows that, after possible correction of $u^z(t, \cdot)$ on a set of null measure, the function $u^z = v(t, z + y(x)) \in C([0, +\infty), \mathcal{B}^1(\mathbb{R}^n))$. We have proved the following

Proposition 2.

There exists a set $E_2 \in \mathbb{R}^m$ of full measure such that for $z \in E_2$ the function $u^z = v(t, z + y(x)) \in C([0, +\infty), \mathcal{B}^1(\mathbb{R}^n))$ (after possible correction on a set of null measure).

(個)((国)((国))) 臣

Now, we choose a sequence $z_l \in E_1 \cap E_2$, $l \in \mathbb{N}$ such that $z_l \to 0$ as $l \to \infty$. By Proposition 1 $u^{z_l}(t, x)$ is an e.s. of (1), (2) with the input functions $u_0^{z_l}(x) = v_0(z_l + y(x)), g^{z_l}(t, x, u) = h(t, z_l + y(x), u)$. By Theorem 2 for a.e. t > 0

$$N_{1}(u^{z_{l}}(t,x) - u(t,x)) \leq C \left[N_{1}(u^{z_{l}}_{0}(x) - u_{0}(x)) + N_{1}(\|g^{z_{l}}(\cdot,x,\cdot) - g(\cdot,x,\cdot)\|_{1,M})\right] = C \int_{\mathbb{T}^{m}} \left[|v_{0}(z_{l}+y) - v_{0}(y)| + \int_{0}^{+\infty} \max_{\|u\| \leq M} |h(t,z_{l}+y,u) - h(t,y,u)| dt\right] dy \underset{l \to \infty}{\to} 0.$$
(13)

Here $M = ||u||_{\infty}$, $C = e^{||a||_1}$. Relation (13) implies convergence $u^{z_l} \to u$ in $C([0, +\infty), \mathcal{B}^1(\mathbb{R}^n))$ and completes the proof of Theorem 3.

Now, we choose a sequence $z_l \in E_1 \cap E_2$, $l \in \mathbb{N}$ such that $z_l \to 0$ as $l \to \infty$. By Proposition 1 $u^{z_l}(t,x)$ is an e.s. of (1), (2) with the input functions $u_0^{z_l}(x) = v_0(z_l + y(x)), g^{z_l}(t,x,u) = h(t,z_l + y(x),u)$. By Theorem 2 for a.e. t > 0

$$N_{1}(u^{z_{l}}(t,x) - u(t,x)) \leq C \left[N_{1}(u^{z_{l}}_{0}(x) - u_{0}(x)) + N_{1}(\|g^{z_{l}}(\cdot,x,\cdot) - g(\cdot,x,\cdot)\|_{1,M})\right] = C \int_{\mathbb{T}^{m}} \left[|v_{0}(z_{l}+y) - v_{0}(y)| + \int_{0}^{+\infty} \max_{\|u\| \leq M} |h(t,z_{l}+y,u) - h(t,y,u)| dt\right] dy \underset{l \to \infty}{\to} 0.$$
(13)

Here $M = ||u||_{\infty}$, $C = e^{||a||_1}$. Relation (13) implies convergence $u^{\overline{c}_l} \to u$ in $C([0, +\infty), \mathcal{B}^1(\mathbb{R}^n))$ and completes the proof of Theorem 3. To prove Theorem 4, we notice that for all $\overline{k} \in \mathbb{Z}^m$, $\overline{k} \neq 0$

$$ar{k}\cdot ilde{arphi}(u)=\sum_{j=1}^m\sum_{k=1}^nk_j\lambda_{jk}arphi_k(u)=\lambda(ar{k})\cdotarphi(u),$$

where $\lambda(\bar{k}) = \sum_{j=1}^{m} k_j \lambda_j \in M_0, \, \lambda(\bar{k}) \neq 0$. By our condition (6), we find that the

functions $u \to \dot{k} \cdot \tilde{\varphi}(u)$ are not affine on non-empty intervals, that is, condition (8) is satisfied (with $L' = L = \mathbb{Z}^m$).

イロト 不得 とくき とくきとうき

By the decay result [3], we claim that the periodic e.s. v(t, y) satisfies the decay relation

$$\lim_{t \to +\infty} \int_{\mathbb{T}^m} |v(t, y) - C| dy = 0,$$
(14)

ヘロト 人間 とくほ とくほとう

æ

By the decay result [3], we claim that the periodic e.s. v(t, y) satisfies the decay relation

$$\lim_{\to +\infty} \int_{\mathbb{T}^m} |v(t, y) - C| dy = 0, \tag{14}$$

We choose a sequence $z_l \in E_1 \cap E_2$, $z_l \xrightarrow[l \to \infty]{} 0$. In view of (11) with w(y) = |v(t, y) - C| we find

$$\int_{\mathbb{R}^n} |u^{z_l}(t,x) - C| dx = \int_{\mathbb{R}^n} |v(t,z_l + y(x)) - C| dx = \int_{\mathbb{T}^m} |v(t,y) - C| dy.$$

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ∽ � � �

By the decay result [3], we claim that the periodic e.s. v(t, y) satisfies the decay relation

$$\lim_{t \to +\infty} \int_{\mathbb{T}^m} |v(t, y) - C| dy = 0,$$
(14)

We choose a sequence $z_l \in E_1 \cap E_2$, $z_l \xrightarrow[l \to \infty]{} 0$. In view of (11) with w(y) = |v(t, y) - C| we find

$$\int_{\mathbb{R}^n} |u^{z_l}(t,x) - C| dx = \int_{\mathbb{R}^n} |v(t,z_l + y(x)) - C| dx = \int_{\mathbb{T}^m} |v(t,y) - C| dy.$$

Passing in this equality to the limit as $l \to \infty$ and taking into account (13), we obtain that for all t > 0

$$\int_{\mathbb{R}^n} |u(t,x) - C| dx = \int_{\mathbb{T}^m} |v(t,y) - C| dy.$$

Decay property (7) now follows from (14):

$$\lim_{t\to+\infty}\int_{\mathbb{R}^n}|u(t,x)-C|dx=0.$$

The proof of Theorem 4 is complete.

(ロ) (四) (三) (三) (三)

Suppose that $g \equiv 0$ and non-degeneracy condition (6) fails. Then one can find a nonzero vector $\xi \in M_0$ such that the function $\xi \cdot \varphi(u) = \tau u + c$ on some segment [a, b], where $\tau, c \in \mathbb{R}$. As is easy to verify, the function

$$u(t,x) = \frac{a+b}{2} + \frac{b-a}{2}\sin(2\pi(\xi \cdot x - \tau t))$$

is an e.s. of (1), (2) with the periodic initial function

$$u(0,x) = \frac{a+b}{2} + \frac{b-a}{2}\sin(2\pi(\xi \cdot x))$$

such that $Sp(u_0) = \{-\xi, \xi\} \subset M_0$. It is clear that this e.s. does not satisfy the decay property.

(個)((国)((国))) 臣

Suppose that $g \equiv 0$ and non-degeneracy condition (6) fails. Then one can find a nonzero vector $\xi \in M_0$ such that the function $\xi \cdot \varphi(u) = \tau u + c$ on some segment [a, b], where $\tau, c \in \mathbb{R}$. As is easy to verify, the function

$$u(t,x) = \frac{a+b}{2} + \frac{b-a}{2}\sin(2\pi(\xi \cdot x - \tau t))$$

is an e.s. of (1), (2) with the periodic initial function

$$u(0,x) = \frac{a+b}{2} + \frac{b-a}{2}\sin(2\pi(\xi \cdot x))$$

such that $Sp(u_0) = \{-\xi, \xi\} \subset M_0$. It is clear that this e.s. does not satisfy the decay property.

The detailed proofs of presented results in the case $g \equiv 0$ can be found in recent preprints

http://arxiv.org/pdf/1406.4838.pdf http://arxiv.org/pdf/1408.0658.pdf

・ 御 ト ・ 国 ト ・ 国 ト

Thank you for attention!

A E A A E A