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Introduction

In the half-space Π = R+ × Rn with R+ = (0, +∞), we consider the Cauchy
problem

ut + divxϕ(u) = g(t, x, u), (1)

u(0, x) = u0(x) ∈ L∞(Rn). (2)

We suppose that the flux ϕ(u) = (ϕ1(u), . . . , ϕn(u)) ∈ C(R, Rn), and the source
function g(t, x, u) ∈ L1

loc(Π, C(R)) is a Caratheodory function with the following
properties:

|g(t, x, u)| ≤ a(t)(1 + |u|) ∀u ∈ R,

|g(t, x, u)− g(t, x, v)| ≤ a(t)|u− v| ∀u, v ∈ R,

where a(t) ∈ L1(R+).
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Introduction

Definition 1. (S. N. Kruzhkov)

A bounded measurable function u = u(t, x) ∈ L∞(Π) is called an e.s. of (1), (2) if
for all k ∈ R

|u− k|t + divx[sign(u− k)(ϕ(u)− ϕ(k))]− sign(u− k)g(t, x, u) ≤ 0 (3)

in the sense of distributions on Π (in D′(Π)), and

ess lim
t→0

u(t, ·) = u0 in L1
loc(Rn).

Condition (3) means that ∀f = f (t, x) ∈ C1
0(Π), f ≥ 0Z

Π

[|u− k|ft + sign(u− k)(ϕ(u)− ϕ(k)) · ∇xf + sign(u− k)g(t, x, u)f ]dtdx ≥ 0

Theorem 1.

There exists an e.s. u = u(t, x) of problem (1), (2). Moreover,

|u(t, x)| ≤ M .
= C(1 + ‖u0‖∞), where C = e‖a‖1 .
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Introduction

The statement of Theorem 1 readily follows from results of
1. Panov E. Yu. Izvestiya RAN: Ser. Mat. 66:6, 91–136 (2002).

In the case of merely continuous flux vector and n > 1, an e.s. of (1), (2) may be
nonunique, see

2. Kruzhkov S. N., Panov E. Yu. Dokl. Akad. Nauk SSSR, 314:1, 79–84 (1990).

Nevertheless, if the initial and source functions are space-periodic (at least in n− 1
independent directions), an e.s. of (1), (2) is unique and space-periodic, cf [1].

We
denote

CR = { x = (x1, . . . , xn) ∈ Rn | |x|∞ = max
i=1,...,n

|xi| ≤ R/2 }, R > 0;

N1(u) = lim sup
R→+∞

R−n
Z

CR

|u(x)|dx, u(x) ∈ L1
loc(Rn).

Recall that the Besicovitch space B1(Rn) is the closure of trigonometric polynomials
( i.e., finite sums

P
aλe2πiλ·x, where i2 = −1, λ ∈ Rn ) in the quotient space

B1(Rn)/B1
0(Rn), where

B1(Rn) = {u ∈ L1
loc(Rn) | N1(u) < +∞}, B1

0(Rn) = N−1
1 (0).

The space B1(Rn) equipped with the norm ‖u‖1 = N1(u) is a Banach space.
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It is known that every function u ∈ B1(Rn) has the mean value

−
Z

Rn
u(x)dx .

= lim
R→+∞

R−n
Z

CR

u(x)dx

and, more generally, the Fourier coefficients

aλ = −
Z

Rn
u(x)e−2πiλ·xdx, λ ∈ Rn.

The set Sp(u) = { λ ∈ Rn | aλ 6= 0 } is called the spectrum of an almost periodic
function u(x). The spectrum Sp(u) is known to be at most countable. We denote by
M(u) the additive subgroup of Rn, generated by Sp(u).

In the similar way one can
define the space B1(Rn, F), where F is a separable locally convex space. All the
mentioned results remains valid in this general setting.
Let F = L1(R+, C(R)) be a locally convex space with the topology generated by
seminorms

‖p‖1,M =

Z +∞

0
max
|u|≤M

|p(t, u)|dt, p = p(t, u) ∈ F, M > 0.

The following statement holds in the general case of arbitrary e.s.
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Theorem 2.

Let u(t, x), v(t, x) ∈ L∞(Π) be e.s. of (1), (2) with initial data u0(x), v0(x), and
source functions g(t, x, u), h(t, x, u), respectively. Then for a.e. t > 0

N1(u(t, ·)− v(t, ·)) ≤ C [N1(u0 − v0) + N1(‖g(·, x, ·)− h(·, x, ·)‖1,M)] , (4)

where C = e‖a‖1 , M = ‖u‖∞.

To prove Theorem 2, we utilize the relation

|u− v|t + divx[sign(u− v)(ϕ(u)− ϕ(v))] ≤ |g(t, x, u)− h(t, x, v)| ≤
max
|u|≤M

|g(t, x, u)− h(t, x, u)|+ a(t)|u− v| in D′(Π), (5)

established by Kruzhkov doubling of variables method. Integrating (5) over the
parallelepiped t ∈ (0, T), x ∈ CR, and passing to the limit as R →∞, we obtain with
the help of Gronwall lemma the required relation: for a.e. T > 0
N1(u(T, ·)− v(T, ·)) ≤ C[N1(u0 − v0) + N1(‖g(·, x, ·)− h(·, x, ·)‖1,M)] .
Theorem 2 readily implies uniqueness of e.s. u(t, x) to the problem (1), (2),
considered in the space B1(Rn) (for every fixed t > 0).
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Main results

To establish the existence, we have to assume that the F-valued function
g̃(x)(t, u) = g(t, x, u) belongs to the space B1(Rn, F). Denote by M0 the additive
subgroup of Rn generated by Sp(u0) ∪ Sp(g̃).

Theorem 3.

Let u0(x) ∈ B1(Rn) ∩ L∞(Rn) be a bounded almost periodic function, and u(t, x) be
an e.s. of problem (1), (2). Then, after possible correction on a set of null measure,
u(t, ·) ∈ C([0, +∞),B1(Rn)) ∩ L∞(Π), and for all t > 0 M(u(t, ·)) ⊂ M0.

Theorem 4.

Assume that

∀ξ ∈ M0, ξ 6= 0 functions u → ξ · ϕ(u)

are not affine on non-empty intervals (6)

Then for some constant C

lim
t→+∞

−
Z

Rn
|u(t, x)− C|dx = 0. (7)
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Decay property

If the input data u0(x), g(t, x, u) are space-periodic with the common lattice of
periods L ⊂ Rn, then the group M0 coincides with the dual lattice
L′ = { ξ ∈ Rn | ξ · x ∈ Z ∀x ∈ L }. In this case the statement of Theorem 4 reduces
to the decay result for periodic e.s. recently established (in the case g ≡ 0) in

3. Panov E. Yu. Annales de l’Institut Henri Poincare (C) Analyse Non Lineaire, 30 997–1007 (2013).

The non-degeneracy condition

∀ξ ∈ L′, ξ 6= 0 the function u → ξ · ϕ(u)

is not affine on non-empty intervals (8)

is necessary and sufficient for the decay of every x-periodic (with the lattice of
periods L) e.s. u(t, x):

lim
t→+∞

Z
Tn
|u(t, x)− C|dx = 0, C =

Z
Tn

u0(x)dx. (9)

Here Tn = Rn/L ia an n-dimensional torus, dx is a normalized Lebesgue measure on
Tn.
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Reduction to the periodic case

The proof of the decay property relies on localization principles of H-measures for
the scaling sequence u(kt, kx), k ∈ N, and remains valid for inhomogeneous case as
well.

In the general case the input data u0(x), g̃(x)(t, u) = g(t, x, u) can be
approximated in B1(Rn), B1(Rn, F) by sequences of trigonometric polynomials
u0m(x), g̃m(x), m ∈ N, such that Sp(u0m) ∪ Sp(g̃m) ⊂ M0 (for instance, we may
choose the Bochner-Fejér sums). By Theorem 2, it is sufficient to prove the
statements of Theorems 3, 4 for input data u0m(x), gm(t, x, u) = g̃m(x)(t, u). General
case is treated in the limit as m →∞ on the base of uniform estimate

N1(u(t, ·)− um(t, ·)) ≤ C[N1(u0 − u0m) + N1(‖g̃− g̃m‖1,M)] →
m→∞

0, M = ‖u‖∞.

Thus, we suppose that u0(x) =
X
λ∈Λ

aλe2πiλ·x, g(t, x, u) =
X
λ∈Λ

bλ(t, u)e2πiλ·x are

trigonometric polynomials, the set Λ is finite. The group M0 = M(u0) is a free
abelian group (as a finite generated torsion free group). Therefore, we can choose a
basis λj ∈ M0, j = 1, . . . , m. Each element λ ∈ M0 is uniquely represented as

λ = λ(k̄) =

mX
j=1

kjλj, k̄ = (k1, . . . , km) ∈ Zm. We define the finite set

J = { k̄ ∈ Zm | λ(k̄) ∈ Λ }. The input functions can be represented as

u0(x) =
X
k̄∈J

ak̄e2πi
Pm

j=1 kjλj·x, g(t, x, u) =
X
k̄∈J

bk̄(t, u)e2πi
Pm

j=1 kjλj·x,
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Reduction to the periodic case

where ak̄
.
= aλ(̄k), bk̄(t, u)

.
= bλ(̄k)(t, u), which implies that u0(x) = v0(y(x)),

g(t, x, u) = h(t, y(x), u), where

v0(y) =
X
k̄∈J

ak̄e2πīk·y, h(t, y, u) =
X
k̄∈J

bk̄(t, u)e2πīk·y

are space-periodic function with the standard lattice of periods Zm while y(x) is a
linear map from Rn into Rm defined by the equalities yj = λj · x, j = 1, . . . , m.

Let us
consider the balance law

vt + divyϕ̃(v) = h(t, y, v), v = v(t, y), t > 0, y ∈ Rm, (10)

with the flux functions ϕ̃j(v) = λj · ϕ(v), j = 1, . . . , m. Let v(t, y) ∈ L∞(R+ × Rm)
be the unique (in view of periodicity of the initial data) e.s. of the Cauchy problem
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ak̄e2πīk·y, h(t, y, u) =
X
k̄∈J

bk̄(t, u)e2πīk·y
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Reduction to the periodic case

Obviously, for every k ∈ R

|u− k|t + divx[sign(u− k)(ϕ(u)− ϕ(k))]− sign(u− k)h(t, z + y(x), u) =

|v(t, z + y)− k|t + divy[sign(v(t, z + y)− k)(ϕ̃(v(t, z + y))− ϕ̃(k))]

− sign(v(t, z + y)− k)h(t, z + y, v(t, z + y)) ≤ 0 in D′(R+ × Rm+n).

It is also clear that

lim
t→0+

u(t, z, x) = u0(z, x) .
= v0(z + y(x)) in L1

loc(Rm+n).

Thus, u(t, z, x) is an e.s. of the problem

ut + divxϕ(u) = h(t, z + y(x), u), u(0, z, x) = v0(z + y(x))

in the extended domain R+ × Rm+n. This readily implies the following statement.

Proposition 1.

There exists a set E1 ⊂ Rm of full measure such that for all z ∈ E1 the function
u(t, z, x) = v(t, z + y(x)) is an e.s. of (1), (2) with the initial data v0(z + y(x)) and the
source function h(t, z + y(x), u).
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Ergodic property

The additive group Rn acts on the m-dimensional torus Tm = Rm/Zm by the shift
transformations Sxz = z + y(x). This action is measure preserving and ergodic ( the
latter follows from the condition that the vectors λj, j = 1, . . . , m, are independent
over Z ). By Birkhoff individual ergodic theorem for each w(y) ∈ L1(Tm) for a.e.
z ∈ Tm

−
Z

Rn
w(z + y(x))dx =

Z
Tm

w(y)dy. (11)

Let
vr(t, y) = (v(t, ·) ∗ Φr)(y) =

X
k̄∈Zm,|̄k|∞<r

ark̄(t)e2πīk·y

be the Fejér sums w.r.t. variables y ∈ Rm. Then vr(t, ·) → v(t, ·) as r →∞ in
L1(Tm) for all t ≥ 0. By (11) with w(y) = |v(t, y)− vr(t, y)| for a.e.
(t, z) ∈ R+ × Rm

N1(uz(t, ·)− uz
r(t, ·)) = −

Z
Rn
|v(t, z + y(x))− vr(t, z + y(x))|dx =Z

Tm
|v(t, y)− vr(t, y)|dy ∀r ∈ N, (12)

where ur = uz
r(t, x) = vr(t, z + y(x)), u = uz(t, x) = v(t, z + y(x)).
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Ergodic property

Notice that uz
r(t, x) are trigonometric polynomials with spectra contained in M0.

In view of (12) there exists a set E2 ⊂ Rm of full measure such that for each z ∈ E2

the function uz(t, ·) ∈ B1(Rn) and M(uz(t, ·)) ⊂ M0 for a.e. t > 0.

Moreover, from
(11) with w(y) = |vr(t, y)− vr(t′, y)| it follows in the limit as r →∞ ( with regard
to (12) ) that for z ∈ E2 for a.e. t, t′ > 0

−
Z

Rn
|v(t′, z + y(x))− v(t, z + y(x))|dx =

Z
Tm
|v(t′, y)− v(t, y)|dy →

t′−t→0
0

( recall that v(t, y) ∈ C([0, +∞), L1(Tm)) ). This relation shows that, after possible
correction of uz(t, ·) on a set of null measure, the function
uz = v(t, z + y(x)) ∈ C([0, +∞),B1(Rn)). We have proved the following

Proposition 2.

There exists a set E2 ∈ Rm of full measure such that for z ∈ E2 the function
uz = v(t, z + y(x)) ∈ C([0, +∞),B1(Rn)) (after possible correction on a set of null
measure).
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Proof of the main theorems

Now, we choose a sequence zl ∈ E1 ∩ E2, l ∈ N such that zl → 0 as l →∞. By
Proposition 1 uzl(t, x) is an e.s. of (1), (2) with the input functions
uzl

0 (x) = v0(zl + y(x)), gzl(t, x, u) = h(t, zl + y(x), u). By Theorem 2 for a.e. t > 0

N1(uzl(t, x)− u(t, x)) ≤ C [N1(uzl
0 (x)− u0(x)) + N1(‖gzl(·, x, ·)− g(·, x, ·)‖1,M)] =

C
Z

Tm

»
|v0(zl + y)− v0(y)|+

Z +∞

0
max
|u|≤M

|h(t, zl + y, u)− h(t, y, u)|dt
–

dy →
l→∞

0. (13)

Here M = ‖u‖∞, C = e‖a‖1 . Relation (13) implies convergence uzl → u in
C([0, +∞),B1(Rn)) and completes the proof of Theorem 3.

To prove Theorem 4, we notice that for all k̄ ∈ Zm, k̄ 6= 0

k̄ · ϕ̃(u) =

mX
j=1

nX
k=1

kjλjkϕk(u) = λ(k̄) · ϕ(u),

where λ(k̄) =

mX
j=1

kjλj ∈ M0, λ(k̄) 6= 0. By our condition (6), we find that the

functions u → k̄ · ϕ̃(u) are not affine on non-empty intervals, that is, condition (8) is
satisfied (with L′ = L = Zm).
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Proof of Theorem 3

By the decay result [3], we claim that the periodic e.s. v(t, y) satisfies the decay
relation

lim
t→+∞

Z
Tm
|v(t, y)− C|dy = 0, (14)

We choose a sequence zl ∈ E1 ∩ E2, zl →
l→∞

0. In view of (11) with

w(y) = |v(t, y)− C| we find

−
Z

Rn
|uzl(t, x)− C|dx = −

Z
Rn
|v(t, zl + y(x))− C|dx =

Z
Tm
|v(t, y)− C|dy.

Passing in this equality to the limit as l →∞ and taking into account (13), we
obtain that for all t > 0

−
Z

Rn
|u(t, x)− C|dx =

Z
Tm
|v(t, y)− C|dy.

Decay property (7) now follows from (14):

lim
t→+∞

−
Z

Rn
|u(t, x)− C|dx = 0.

The proof of Theorem 4 is complete.
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Necessity of the non-degeneracy condition

Suppose that g ≡ 0 and non-degeneracy condition (6) fails. Then one can find a
nonzero vector ξ ∈ M0 such that the function ξ · ϕ(u) = τu + c on some segment
[a, b], where τ, c ∈ R. As is easy to verify, the function

u(t, x) =
a + b

2
+

b− a
2

sin(2π(ξ · x− τ t))

is an e.s. of (1), (2) with the periodic initial function

u(0, x) =
a + b

2
+

b− a
2

sin(2π(ξ · x))

such that Sp(u0) = {−ξ, ξ} ⊂ M0. It is clear that this e.s. does not satisfy the decay
property.

The detailed proofs of presented results in the case g ≡ 0 can be found in recent
preprints
http://arxiv.org/pdf/1406.4838.pdf
http://arxiv.org/pdf/1408.0658.pdf
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Thank you for attention!
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