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✫
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The classical Keller-Segel model for chemotaxis:

u density of cells, v concentration of chemo-attractant

∂tu = ∆u− χ∇ · (u∇v)

∂tv = η∆v + αu− βv

with Neumann boundary conditions on ∂Ω.

χ > 0 is the chemotactic sensitivity.
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Define w̄ = 1
|Ω|

∫

Ω
w dx. Then

ū(t) = ū0 ,
1

η
(∂t + β)v̄ =

α

η
ū =

α

η
ū0

Consider ṽ := v − v̄, then

1

η
(∂t + β)ṽ = ∆ṽ +

α

η
(u− ū0)

For large diffusion of the chemo-attractant we obtain the approxi-

mating system

∂tu = ∆u− χ∇ · (u∇v)

0 = ∆ṽ + α
η u− α

η ū0

The last equation can be further rescaled:

0 = ∆v + u− 1
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Jäger/Luckhaus, ’92, proved rigorously:

For Ω ⊂ R
2 open and bounded there exist a critical number c(Ω)

such that for αū0χ < c(Ω)

there exists a unique, smooth, positive solution for all times.

For a disk Ω there exist c∗ > 0 such that for αū0χ > c∗

radially symmetric positive initial data can be constructed such

that blow-up happens in the center of the disc in finite time.
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✫

✩
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Haptotaxis and Trail Following:

Consider a Keller-Segel model with non-diffusive memory, namely

∂tu = ∆u−∇ · (u∇ log(v)) , ∂tv = uvλ .

Earlier results:

λ = 0 global solutions (Chen Hua et al),

λ = 1 blow-up for specific initial data (Levine and Sleeman).
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✬

✫

✩

✪

For w = log v we obtain:

∂tu = ∆u−∇ · (u∇w) , ∂tw = uwλ−1

Let θ = 1
1−λ and z = 1

1−λv
(1−λ) = θv

1
θ , then

∂tu = ∆u− θ∇ · (u∇ log(z)) , ∂tz = u , θ ∈ (0,∞)
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✬

✫

✩
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[Kang - S.- Velázquez]:

Space Dimension 1: periodic boundary conditions.

For θ = 1, i.e. λ = 0 formally every space dependent function

is asymptotically a steady state for t→ ∞.

It was shown, that the long time dynamics

are strongly dependent on the initial data.

For 1 < θ < 3, i.e. 0 < λ < 2
3 it was rigorously proved

that solutions converge to a Dirac mass for t→ ∞.
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✫

✩

✪

First we give a heuristic argument:

Let I = [−1, 1] ,
∫

I
u dx = m. Consider

z̄t =
z̄θ

∫

I
z̄θdx

,

which results from the quasisteady approximation

0 = ∇ · (∇u− θu∇ log(z))

∂tz = u

Assume that this is a good approximation

for the original problem for t→ ∞.
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✬
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✪

For z̄(0, 0) > z̄(0, x) we obtain

z̄1−θ(t, x) = z̄1−θ(0, x)− (θ − 1)
∫ t

0
ds

∫

I
z̄θ(s,x)dx

Assume the following expansion:

z̄1−θ(0, x) = z̄1−θ(0, 0) +Bx2 + h.o.t. for x→ 0.

Thus z̄1−θ(t, x) ≈ z̄1−θ(0, 0) + Bx2 − (θ − 1)
∫ t

0
ds

∫

I
z̄θ(s,x)dx

.

So z̄1−θ(t, x) :≈ Bx2 + ψ(t), therefore z̄(t, x) ≈ (Bx2 + ψ(t))
1

1−θ .

Explicit calculations show that

1−θ
ψ′(t) ≈

∫

I
dx

(Bx2+ψ(t))
θ

θ−1
, and

ψ′(t) ≈ −Kψ
θ+1

2(θ−1) (t), so ψ(t) ≈ At
2(1−θ)
3−θ .
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✬

✫

✩

✪

With this we can calculate, that

z̄(t, x) ≈ t
2

3−θ

(

Bx2t
2(θ−1)
3−θ +A

)
1

θ−1

Theorem:

There exist a family of initial data (u0, z0) ∈ C2,α such that

the corresponding solutions (u, z) of our system satisfy

u(t, x) → mδ(x) and

z̄(t, x) ≈
t

2
3−θ

(

Bx2t
2(θ−1)
3−θ + A

)
1

θ−1

for t→ ∞, and where A,B are constants,

which depend on the initial data.
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✫

✩

✪

Proof:

• Eigenvalue problem for the steady state eqn. in u.

Az(f) = fxx − θ(fzx/z)x = λ̃f

• This operator is self-adjoined w.r.t. the weighted integral

with weight dx/zθ.

• Negative upper bound for second eigenvalue of Az(.) for all t.

• Sobolev inequality with weighted norm by adaptation of a result

by Maz’ja (using the reformulation by Horiuchi) for z̃ behaving

like a power law similar to the law in our Theorem.

(
∫ 1

0

z̃(p−1)θ|ζ|pdx

)1/p

≤ C

(
∫ 1

0

z̃θ|ζx|
2dx

)1/2

for p =
6θ − 2

θ + 1
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✬

✫

✩

✪

• Since z does not behave like a power law everywhere,

the estimate can not be used directly.

Additionally a boundary layer estimate has to be introduced.

• A priori estimates for z and v = u− zθ/
∫

I
zθdx.

• Existence of u, z which fulfill assumptions

by methods of Herrero/Velazquez.
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✬

✫

✩

✪

Asymptotic Results (S.-Velázquez)

∂tu = ∆u−∇
(

u∇v
v

)

∂tv = uvλ

for x ∈ R
n, t > 0, and suitable initial conditions for u and v.

Depending on the space dimension n, the growth exponent λ

and the regularity properties of the initial conditions,

blow-up in finite time, mass aggregation in infinite time,

or mass spreading can be observed.
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✬

✫

✩

✪

1 Intuitive Understanding of the Model in R
d

The exponent λmeasures the strength of the localized reinforcement,

thus the tendency for aggregation increases with larger values of λ,

respectively larger values of θ.

The dynamics of the cells are described by random motility

and by chemotactic drift towards higher concentrations of v.

The number of times that a brownian particle approaches a given

point in space depends very strongly on the space dimension.

Thus the environment, where the cells move, is modified stronger in

lower dimensions than it is in higher dimensions. So in this model

the tendency to aggregate increases for smaller spatial dimension.

In contrast to this, in the original Keller-Segel model with diffusion

finite time blow-up is more likely in higher dimensions.
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✬

✫

✩

✪

Regular initial data, n = 1:

• For λ > 2
3 we observe blow-up in finite time.

• For 0 < λ < 2
3 we observe blow-up in infinite time.

The rate of growth is a power law.

• For λ = 2
3 also blow-up in infinite time can be observed.

The rate of growth is exponential.

• For λ = 0 the solution is highly sensitive on the initial data.

These play an important role for the diffusive tails of the

solution.

• For λ < 0 self-similar behavior can be observed.

The reinforcement plays a non-trivial role.

The solution behaves non-diffusive.
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✬

✫

✩

✪

Regular initial data, n = 2:

• For λ > 1− 1
1+ 2

n

= 1
2 we observe blow-up in finite time.

• For 0 < λ ≤ 1− 1
1+ 2

n

= 1
2 we observe blow-up in infinite time.

• For λ ≤ 0 non-diffusive self-similar behavior

without mass aggregation can be observed.
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✬

✫

✩

✪

Regular initial data, n ≥ 3

• For λ ≥ 2
n both, finite time blow-up without mass aggregation

and diffusive self-similar behavior without mass aggregation

can be observed.

• For 1 − 1
1+ 2

n

< λ < 2
n blow-up in infinite time and diffusive

self-similar behavior without mass aggregation can be observed.

• For λ ≤ 1− 1
1+ 2

n

diffusive self-similar behavior

without mass aggregation can be observed.

Further, the size of the region w.r.t. time was calculated,

where an amount of mass of order one is distributed

during the aggregation process.
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✬

✫
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✪

The classical Keller-Segel model.

d = 1 d = 2 d ≥ 3

No singularities

Mass aggregation

in finite time

for M > Mcrit

Mass aggregation

in finite time

with arbitrary mass

Non-diffusive self-

similar behavior

for M < Mcrit

Singularity formation

without mass aggregation

in finite time

Diffusive self-similar

behavior without

mass aggregation
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✫

✩
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• The classical Keller-Segel system for chemotaxis behaves

in a different way than the PDE-ODE-system presented.

The later one behaves ‘more hyperbolic’.

The reaction to an attractive but non-diffusive signal

creates a different long time behavior

in comparison to attractive diffusible signals.
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Dear Nina,

Happy Birthday!

And many more healthy

and happy years to come!
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