Homogenization of Periodic Elliptic Operators: Error Estimates in Dependence of the Spectral Parameter

T. Suslina

St. Petersburg State University

Advances in Nonlinear PDEs in honor of Nina N. Uraltseva
St. Petersburg, September 2014
Plan

- Introduction
- Statement of the problem
- The effective operator
- Main results
- Survey
- Method of investigation
- Application to parabolic problems
Homogenization theory studies the properties of solutions of differential equations with periodic rapidly oscillating coefficients. It is a wide area of theoretical and applied science.
Homogenization theory studies the properties of solutions of differential equations with periodic rapidly oscillating coefficients. It is a wide area of theoretical and applied science.

Books on homogenization theory:

We study the *operator error estimates* in homogenization theory. Such estimates were intensively studied during the last 10–12 years by many authors: Birman, Suslina, Zhikov, Pastukhova, Griso, Kenig, Lin, Shen, others (more detailed survey will be given later on).
We study the *operator error estimates* in homogenization theory. Such estimates were intensively studied during the last 10–12 years by many authors: Birman, Suslina, Zhikov, Pastukhova, Griso, Kenig, Lin, Shen, others (more detailed survey will be given later on).

In this talk we present some recent results on the operator error estimates.
We study the *operator error estimates* in homogenization theory. Such estimates were intensively studied during the last 10–12 years by many authors: Birman, Suslina, Zhikov, Pastukhova, Griso, Kenig, Lin, Shen, others (more detailed survey will be given later on).

In this talk we present some recent results on the operator error estimates.

- We study homogenization problems for a wide class of the second order *matrix elliptic operators* A_ε, both in \mathbb{R}^d and in a bounded domain with the Dirichlet or Neumann boundary conditions. The coefficients of A_ε are periodic and depend on \mathbf{x}/ε.
Introduction

We study the *operator error estimates* in homogenization theory. Such estimates were intensively studied during the last 10–12 years by many authors: Birman, Suslina, Zhikov, Pastukhova, Griso, Kenig, Lin, Shen, others (more detailed survey will be given later on).

In this talk we present some recent results on the operator error estimates.

- We study homogenization problems for a wide class of the second order *matrix elliptic operators* A_ε, both in \mathbb{R}^d and in a bounded domain with the Dirichlet or Neumann boundary conditions. The coefficients of A_ε are periodic and depend on x/ε.
- We obtain approximations of the resolvent $(A_\varepsilon - \zeta I)^{-1}$ of an operator A_ε in a regular point ζ in different operator norms.
We study the *operator error estimates* in homogenization theory. Such estimates were intensively studied during the last 10–12 years by many authors: Birman, Suslina, Zhikov, Pastukhova, Griso, Kenig, Lin, Shen, others (more detailed survey will be given later on).

In this talk we present some recent results on the operator error estimates.

- We study homogenization problems for a wide class of the second order *matrix elliptic operators* A_ε, both in \mathbb{R}^d and in a bounded domain with the Dirichlet or Neumann boundary conditions. The coefficients of A_ε are periodic and depend on x/ε.

- We obtain approximations of the resolvent $(A_\varepsilon - \zeta I)^{-1}$ of an operator A_ε in a regular point ζ in different operator norms.

- We find *twoparametric operator error estimates* in dependence of ε and ζ.
Statement of the problem

Let \(\Gamma \) be a lattice in \(\mathbb{R}^d \), let \(\Omega \) be the cell of \(\Gamma \).

Example: \(\Gamma = \mathbb{Z}^d, \quad \Omega = (-\frac{1}{2}, \frac{1}{2})^d \).
Statement of the problem

Let Γ be a lattice in \mathbb{R}^d, let Ω be the cell of Γ.

Example: $\Gamma = \mathbb{Z}^d$, $\Omega = \left(-\frac{1}{2}, \frac{1}{2}\right)^d$.

We use the notation $\phi^\varepsilon(x) = \phi\left(\frac{x}{\varepsilon}\right)$, $\varepsilon > 0$.
Statement of the problem

Let Γ be a lattice in \mathbb{R}^d, let Ω be the cell of Γ.

Example: $\Gamma = \mathbb{Z}^d$, $\Omega = (-\frac{1}{2}, \frac{1}{2})^d$.

We use the notation $\phi^\varepsilon(x) = \phi\left(\frac{x}{\varepsilon}\right)$, $\varepsilon > 0$.

We study $(n \times n)$-matrix elliptic second order DO

$$b(D)^* g^\varepsilon(x) b(D)$$

in \mathbb{R}^d and in a bounded domain $\mathcal{O} \subset \mathbb{R}^d$.
Statement of the problem

Let Γ be a lattice in \mathbb{R}^d, let Ω be the cell of Γ.

Example: $\Gamma = \mathbb{Z}^d$, $\Omega = \left(-\frac{1}{2}, \frac{1}{2}\right)^d$.

We use the notation $\phi^\varepsilon(x) = \phi\left(\frac{x}{\varepsilon}\right)$, $\varepsilon > 0$.

We study $(n \times n)$-matrix elliptic second order DO

$$b(D)^*g^\varepsilon(x)b(D)$$

in \mathbb{R}^d and in a bounded domain $\mathcal{O} \subset \mathbb{R}^d$. Here $g(x)$ is a Γ-periodic $(m \times m)$-matrix-valued function such that

$$g, g^{-1} \in L_\infty; \quad g(x) > 0.$$
Statement of the problem

Let Γ be a lattice in \mathbb{R}^d, let Ω be the cell of Γ.

Example: $\Gamma = \mathbb{Z}^d$, $\Omega = (-\frac{1}{2}, \frac{1}{2})^d$.

We use the notation $\phi^\varepsilon(x) = \phi\left(\frac{x}{\varepsilon}\right)$, $\varepsilon > 0$.

We study $(n \times n)$-matrix elliptic second order DO

$$b(D)^* g^\varepsilon(x) b(D)$$

in \mathbb{R}^d and in a bounded domain $\mathcal{O} \subset \mathbb{R}^d$. Here $g(x)$ is a Γ-periodic $(m \times m)$-matrix-valued function such that

$$g, g^{-1} \in L_\infty; \quad g(x) > 0.$$

The operator

$$b(D) = \sum_{j=1}^{d} b_j D_j$$

is a first order $(m \times n)$-matrix DO; b_j are constant matrices, and $m \geq n$.
Statement of the problem

The symbol \(b(\xi) = \sum_{j=1}^{d} b_j \xi_j \) is such that

\[
\text{rank } b(\xi) = n, \quad 0 \neq \xi \in \mathbb{R}^d, \quad (1_D)
\]

for the problem in \(\mathbb{R}^d \) and for the case of the Dirichlet condition, or

\[
\text{rank } b(\xi) = n, \quad 0 \neq \xi \in \mathbb{C}^d, \quad (1_N)
\]

for the case of the Neumann condition.
Statement of the problem

The symbol $b(\xi) = \sum_{j=1}^{d} b_j \xi_j$ is such that

$$\text{rank } b(\xi) = n, \quad 0 \neq \xi \in \mathbb{R}^d,$$ \hspace{1cm} (1\text{D})

for the problem in \mathbb{R}^d and for the case of the Dirichlet condition, or

$$\text{rank } b(\xi) = n, \quad 0 \neq \xi \in \mathbb{C}^d,$$ \hspace{1cm} (1\text{N})

for the case of the Neumann condition.

Examples. 1) The acoustics operator $A_\varepsilon = -\text{div} \, g^\varepsilon(x) \nabla = D^* g^\varepsilon(x)D$.
2) The operator of elasticity theory.
Statement of the problem

The symbol \(b(\xi) = \sum_{j=1}^{d} b_j \xi_j \) is such that

\[
\text{rank } b(\xi) = n, \quad 0 \neq \xi \in \mathbb{R}^d,
\]

for the problem in \(\mathbb{R}^d \) and for the case of the Dirichlet condition, or

\[
\text{rank } b(\xi) = n, \quad 0 \neq \xi \in C^d,
\]

for the case of the Neumann condition.

Examples. 1) The acoustics operator \(A_\varepsilon = -\nabla g_\varepsilon(x) \nabla = D^* g_\varepsilon(x) D \).
2) The operator of elasticity theory.

Let \(\mathcal{O} \subset \mathbb{R}^d \) be a bounded domain with the boundary \(\partial \mathcal{O} \in C^{1,1} \).
Statement of the problem

Main objects

- **By** A_ε **we denote the operator in** $L_2(\mathbb{R}^d; \mathbb{C}^n)$ **given by**
 \[b(D)^* g^\varepsilon(x) b(D). \]
Statement of the problem

Main objects

1. By A_ε we denote the operator in $L_2(\mathbb{R}^d; \mathbb{C}^n)$ given by $b(D)^*g^\varepsilon(x)b(D)$.

2. By $A_{D,\varepsilon}$ we denote the operator in $L_2(\mathcal{O}; \mathbb{C}^n)$ given by $b(D)^*g^\varepsilon(x)b(D)$ with the Dirichlet boundary condition.

Precise definitions are given in terms of the corresponding quadratic forms. Under our assumptions, the operators A_ε, $A_{D,\varepsilon}$, $A_{N,\varepsilon}$ are strongly elliptic; the corresponding quadratic forms satisfy the coercivity conditions.
Main objects

- **By** A_{ε} **we denote the operator in** $L_2(\mathbb{R}^d; \mathbb{C}^n)$ **given by** $b(D) \ast g^\varepsilon(x) b(D)$.

- **By** $A_{D,\varepsilon}$ **we denote the operator in** $L_2(\mathcal{O}; \mathbb{C}^n)$ **given by** $b(D) \ast g^\varepsilon(x) b(D)$ **with the Dirichlet boundary condition**.

- **By** $A_{N,\varepsilon}$ **we denote the operator in** $L_2(\mathcal{O}; \mathbb{C}^n)$ **given by** $b(D) \ast g^\varepsilon(x) b(D)$ **with the Neumann boundary condition**.

Precise definitions are given in terms of the corresponding quadratic forms. Under our assumptions, the operators $A_{\varepsilon}, A_{D,\varepsilon}, A_{N,\varepsilon}$ are strongly elliptic; the corresponding quadratic forms satisfy the coercivity conditions.
Statement of the problem

Main objects

- By A_ε we denote the operator in $L_2(\mathbb{R}^d; \mathbb{C}^n)$ given by $b(D)\ast g_\varepsilon(x)b(D)$.
- By $A_{D,\varepsilon}$ we denote the operator in $L_2(\mathcal{O}; \mathbb{C}^n)$ given by $b(D)\ast g_\varepsilon(x)b(D)$ with the Dirichlet boundary condition.
- By $A_{N,\varepsilon}$ we denote the operator in $L_2(\mathcal{O}; \mathbb{C}^n)$ given by $b(D)\ast g_\varepsilon(x)b(D)$ with the Neumann boundary condition.

Precise definitions are given in terms of the corresponding quadratic forms. Under our assumptions, the operators A_ε, $A_{D,\varepsilon}$, $A_{N,\varepsilon}$ are strongly elliptic; the corresponding quadratic forms satisfy the coercivity conditions.
The problem is to study the behavior of the resolvents

\[(A_\varepsilon - \zeta I)^{-1}, \ (A_{D,\varepsilon} - \zeta I)^{-1}, \ (A_{N,\varepsilon} - \zeta I)^{-1}\]

in dependence of \(\varepsilon\) and \(\zeta\). We wish to find two-parametric approximations for these resolvents in the \(L_2 \to L_2\) and \(L_2 \to H^1\) operator norms.
In order to formulate the results, we define the effective operator with constant coefficients:

\[b(D)^* g^0 b(D), \]

where \(g^0 \) is a constant positive matrix called the effective matrix.
In order to formulate the results, we define the effective operator with constant coefficients:

\[b(\mathbf{D})^* g^0 b(\mathbf{D}), \]

where \(g^0 \) is a constant positive matrix called the effective matrix.

Definition of the effective matrix:

Let \(\Lambda(x) \) be the \((n \times m)\)-matrix-valued \(\Gamma \)-periodic solution of the equation

\[b(\mathbf{D})^* g(x)(b(\mathbf{D})\Lambda(x) + \mathbf{1}_m) = 0, \quad \int_{\Omega} \Lambda(x) \, dx = 0. \]
In order to formulate the results, we define the effective operator with constant coefficients:

\[b(D)^* g^0 b(D), \]

where \(g^0 \) is a constant positive matrix called the effective matrix.

Definition of the effective matrix:
Let \(\Lambda(x) \) be the \((n \times m)\)-matrix-valued \(\Gamma \)-periodic solution of the equation

\[
\int_{\Omega} \Lambda(x) \, dx = 0.
\]

Then \(g^0 \) is an \((m \times m)\)-matrix given by

\[
g^0 = |\Omega|^{-1} \int_{\Omega} g(x)(b(D)\Lambda(x) + 1_m) \, dx.
\]
By A^0 we denote the operator in $L_2(\mathbb{R}^d; \mathbb{C}^n)$ given by $b(D)^* g^0 b(D)$. Its domain is $H^2(\mathbb{R}^d; \mathbb{C}^n)$.
By A^0 we denote the operator in $L_2(\mathbb{R}^d; \mathbb{C}^n)$ given by $b(D)^*g^0b(D)$. Its domain is $H^2(\mathbb{R}^d; \mathbb{C}^n)$.

By A^0_D we denote the operator in $L_2(\mathcal{O}; \mathbb{C}^n)$ given by $b(D)^*g^0b(D)$ with the Dirichlet boundary condition. Its domain is $H^2(\mathcal{O}; \mathbb{C}^n) \cap H^1_0(\mathcal{O}; \mathbb{C}^n)$.

By A^0_N we denote the operator in $L_2(\mathcal{O}; \mathbb{C}^n)$ given by $b(D)^*g^0b(D)$ with the Neumann boundary condition. Its domain is $H^2(\mathcal{O}; \mathbb{C}^n) \cap H^1_0(\mathcal{O}; \mathbb{C}^n)$.

By A^0_D we denote the operator in $L_2(\mathcal{O}; \mathbb{C}^n)$ given by $b(D)^*g^0b(D)$ with the Dirichlet boundary condition. Its domain is $H^2(\mathcal{O}; \mathbb{C}^n) \cap H^1_0(\mathcal{O}; \mathbb{C}^n)$.

By A^0_N we denote the operator in $L_2(\mathcal{O}; \mathbb{C}^n)$ given by $b(D)^*g^0b(D)$ with the Neumann boundary condition. Its domain is $H^2(\mathcal{O}; \mathbb{C}^n) \cap H^1_0(\mathcal{O}; \mathbb{C}^n)$.

By A^0_D we denote the operator in $L_2(\mathcal{O}; \mathbb{C}^n)$ given by $b(D)^*g^0b(D)$ with the Dirichlet boundary condition. Its domain is $H^2(\mathcal{O}; \mathbb{C}^n) \cap H^1_0(\mathcal{O}; \mathbb{C}^n)$.

By A^0_N we denote the operator in $L_2(\mathcal{O}; \mathbb{C}^n)$ given by $b(D)^*g^0b(D)$ with the Neumann boundary condition. Its domain is $H^2(\mathcal{O}; \mathbb{C}^n) \cap H^1_0(\mathcal{O}; \mathbb{C}^n)$.

By A^0_D we denote the operator in $L_2(\mathcal{O}; \mathbb{C}^n)$ given by $b(D)^*g^0b(D)$ with the Dirichlet boundary condition. Its domain is $H^2(\mathcal{O}; \mathbb{C}^n) \cap H^1_0(\mathcal{O}; \mathbb{C}^n)$.

By A^0_N we denote the operator in $L_2(\mathcal{O}; \mathbb{C}^n)$ given by $b(D)^*g^0b(D)$ with the Neumann boundary condition. Its domain is $H^2(\mathcal{O}; \mathbb{C}^n) \cap H^1_0(\mathcal{O}; \mathbb{C}^n)$.

By A^0_D we denote the operator in $L_2(\mathcal{O}; \mathbb{C}^n)$ given by $b(D)^*g^0b(D)$ with the Dirichlet boundary condition. Its domain is $H^2(\mathcal{O}; \mathbb{C}^n) \cap H^1_0(\mathcal{O}; \mathbb{C}^n)$.

By A^0_N we denote the operator in $L_2(\mathcal{O}; \mathbb{C}^n)$ given by $b(D)^*g^0b(D)$ with the Neumann boundary condition. Its domain is $H^2(\mathcal{O}; \mathbb{C}^n) \cap H^1_0(\mathcal{O}; \mathbb{C}^n)$.

By A^0_D we denote the operator in $L_2(\mathcal{O}; \mathbb{C}^n)$ given by $b(D)^*g^0b(D)$ with the Dirichlet boundary condition. Its domain is $H^2(\mathcal{O}; \mathbb{C}^n) \cap H^1_0(\mathcal{O}; \mathbb{C}^n)$.

By A^0_N we denote the operator in $L_2(\mathcal{O}; \mathbb{C}^n)$ given by $b(D)^*g^0b(D)$ with the Neumann boundary condition. Its domain is $H^2(\mathcal{O}; \mathbb{C}^n) \cap H^1_0(\mathcal{O}; \mathbb{C}^n)$.
The effective operator

- By \mathcal{A}^0 we denote the operator in $L_2(\mathbb{R}^d; \mathbb{C}^n)$ given by $b(\mathbf{D})^* g^0 b(\mathbf{D})$. Its domain is $H^2(\mathbb{R}^d; \mathbb{C}^n)$.

- By \mathcal{A}^0_D we denote the operator in $L_2(\mathcal{O}; \mathbb{C}^n)$ given by $b(\mathbf{D})^* g^0 b(\mathbf{D})$ with the Dirichlet boundary condition. Its domain is $H^2(\mathcal{O}; \mathbb{C}^n) \cap H^1_0(\mathcal{O}; \mathbb{C}^n)$.

- By \mathcal{A}^0_N we denote the operator in $L_2(\mathcal{O}; \mathbb{C}^n)$ given by $b(\mathbf{D})^* g^0 b(\mathbf{D})$ with the Neumann boundary condition. Its domain is $\{ \mathbf{u} \in H^2(\mathcal{O}; \mathbb{C}^n) : \partial^0_\nu \mathbf{u} |_{\partial \mathcal{O}} = 0 \}$.
Main results in the whole space

We start with the results in \mathbb{R}^d. A point $\zeta \in \mathbb{C} \setminus [0, \infty)$ is regular both for A_ϵ and A^0.

Theorem 1 [T. Suslina, 2014]

Let $\zeta = |\zeta| e^{i\phi} \in \mathbb{C} \setminus [0, \infty)$. Then for $\epsilon > 0$ we have

$$
\| (A_\epsilon - \zeta I) - 1 - (A^0 - \zeta I) - 1 \|_{L^2(\mathbb{R}^d)} \leq C(\phi) \epsilon |\zeta|^{1/2}.
$$

(2)

Inequality (2) is uniform with respect to ϕ in any sector $\phi \in [\phi_0, 2\pi - \phi_0]$, i.e., $C(\phi) \leq C(\phi_0)$ in this sector.
We start with the results in \mathbb{R}^d. A point $\zeta \in \mathbb{C} \setminus [0, \infty)$ is regular both for \mathcal{A}_ε and \mathcal{A}^0.

Theorem 1 [T. Suslina, 2014]

Let $\zeta = |\zeta|e^{i\varphi} \in \mathbb{C} \setminus [0, \infty)$. Then for $\varepsilon > 0$ we have

$$\| (\mathcal{A}_\varepsilon - \zeta I)^{-1} - (\mathcal{A}^0 - \zeta I)^{-1} \|_{L_2(\mathbb{R}^d) \to L_2(\mathbb{R}^d)} \leq C(\varphi) \frac{\varepsilon}{|\zeta|^{1/2}}.$$ \hspace{1cm} (2)
Main results in the whole space

We start with the results in \mathbb{R}^d. A point $\zeta \in \mathbb{C} \setminus [0, \infty)$ is regular both for A_ε and A^0.

Theorem 1 [T. Suslina, 2014]

Let $\zeta = |\zeta|e^{i\varphi} \in \mathbb{C} \setminus [0, \infty)$. Then for $\varepsilon > 0$ we have

$$
\| (A_\varepsilon - \zeta I)^{-1} - (A^0 - \zeta I)^{-1} \|_{L_2(\mathbb{R}^d) \rightarrow L_2(\mathbb{R}^d)} \leq C(\varphi) \frac{\varepsilon}{|\zeta|^{1/2}}. \quad (2)
$$

Inequality (2) is uniform with respect to φ in any sector $\varphi \in [\varphi_0, 2\pi - \varphi_0]$, i.e., $C(\varphi) \leq C(\varphi_0)$ in this sector.
Main results in the whole space

In order to approximate the resolvent in the $L_2 \rightarrow H^1$ norm, we need to introduce a corrector

$$K(\varepsilon; \zeta) = \Lambda^\varepsilon S_\varepsilon b(D)(A^0 - \zeta I)^{-1}.$$
Main results in the whole space

In order to approximate the resolvent in the $L_2 \rightarrow H^1$ norm, we need to introduce a corrector

$$K(\varepsilon; \zeta) = \Lambda^\varepsilon S_\varepsilon b(\mathbf{D})(A^0 - \zeta I)^{-1}.$$

Here S_ε is the Steklov smoothing operator defined by

$$(S_\varepsilon v)(x) = |\Omega|^{-1} \int_\Omega v(x - \varepsilon z) \, dz.$$

The operator $K(\varepsilon; \zeta)$ is continuous from $L_2(\mathbb{R}^d; \mathbb{C}^n)$ to $H^1(\mathbb{R}^d; \mathbb{C}^n)$.

Remark. In some cases $\Lambda \in L_\infty$ automatically. In particular, 1) if $d = 2$; 2) for the acoustics operator $-\text{div} g(\varepsilon)\nabla$ (and any d).
Main results in the whole space

In order to approximate the resolvent in the $L_2 \to H^1$ norm, we need to introduce a corrector

$$K(\varepsilon; \zeta) = \Lambda^\varepsilon S_\varepsilon b(D)(A^0 - \zeta I)^{-1}.$$

Here S_ε is the Steklov smoothing operator defined by

$$(S_\varepsilon v)(x) = |\Omega|^{-1} \int_\Omega v(x - \varepsilon z) \, dz.$$

The operator $K(\varepsilon; \zeta)$ is continuous from $L_2(\mathbb{R}^d; \mathbb{C}^n)$ to $H^1(\mathbb{R}^d; \mathbb{C}^n)$. In the case where $\Lambda \in L_\infty$ we can use the standard corrector

$$K^0(\varepsilon; \zeta) = \Lambda^\varepsilon b(D)(A^0 - \zeta I)^{-1},$$

which in this case is a continuous mapping of $L_2(\mathbb{R}^d; \mathbb{C}^n)$ to $H^1(\mathbb{R}^d; \mathbb{C}^n)$.

Remark. In some cases $\Lambda \in L_\infty$ automatically. In particular, 1) if $d = 2$; 2) for the acoustics operator $-\text{div} g\varepsilon \nabla$ (and any d).
In order to approximate the resolvent in the $L_2 \to H^1$ norm, we need to introduce a corrector

$$K(\varepsilon; \zeta) = \Lambda^\varepsilon S_\varepsilon b(D)(A^0 - \zeta I)^{-1}.$$

Here S_ε is the Steklov smoothing operator defined by

$$(S_\varepsilon v)(x) = |\Omega|^{-1} \int_{\Omega} v(x - \varepsilon z) \, dz.$$

The operator $K(\varepsilon; \zeta)$ is continuous from $L_2(\mathbb{R}^d; \mathbb{C}^n)$ to $H^1(\mathbb{R}^d; \mathbb{C}^n)$. In the case where $\Lambda \in L_\infty$ we can use the standard corrector

$$K^0(\varepsilon; \zeta) = \Lambda^\varepsilon b(D)(A^0 - \zeta I)^{-1},$$

which in this case is a continuous mapping of $L_2(\mathbb{R}^d; \mathbb{C}^n)$ to $H^1(\mathbb{R}^d; \mathbb{C}^n)$.

Remark. In some cases $\Lambda \in L_\infty$ automatically. In particular, 1) if $d = 2$; 2) for the acoustics operator $-\text{div} \, g^\varepsilon \nabla$ (and any d).
Main results in the whole space

Theorem 2 [T. Suslina, 2014]

For $\zeta \in \mathbb{C} \setminus [0, \infty)$ and $\varepsilon > 0$ we have

$$
\| (A_\varepsilon - \zeta I)^{-1} - (A^0 - \zeta I)^{-1} - \varepsilon K(\varepsilon; \zeta) \|_{L^2(\mathbb{R}^d) \to H^1(\mathbb{R}^d)} \leq C(\varphi)(1 + |\zeta|^{-1/2})\varepsilon.
$$

(3)
Main results in the whole space

Theorem 2 [T. Suslina, 2014]

For $\zeta \in \mathbb{C} \setminus [0, \infty)$ *and* $\varepsilon > 0$ *we have*

$$
\|(A_\varepsilon - \zeta I)^{-1} - (A^0 - \zeta I)^{-1} - \varepsilon K(\varepsilon; \zeta)\|_{L^2(\mathbb{R}^d) \to H^1(\mathbb{R}^d)} \leq C(\varphi)(1 + |\zeta|^{-1/2})\varepsilon.
$$

(3)

In the case where $\Lambda \in L_\infty$ *the same is true with* $K(\varepsilon; \zeta)$ *replaced by* $K^0(\varepsilon; \zeta)$.
Theorem 2 [T. Suslina, 2014]

For $\zeta \in \mathbb{C} \setminus [0, \infty)$ and $\varepsilon > 0$ we have

$$\| (A_\varepsilon - \zeta I)^{-1} - (A^0 - \zeta I)^{-1} - \varepsilon K(\varepsilon; \zeta) \|_{L^2(\mathbb{R}^d) \rightarrow H^1(\mathbb{R}^d)} \leq C(\varphi)(1 + |\zeta|^{-1/2})\varepsilon. \quad (3)$$

In the case where $\Lambda \in L^\infty$ the same is true with $K(\varepsilon; \zeta)$ replaced by $K^0(\varepsilon; \zeta)$.

Estimate (3) is uniform with respect to φ in any sector $\varphi \in [\varphi_0, 2\pi - \varphi_0]$, i.e., $C(\varphi) \leq C(\varphi_0)$ in this sector.
Main results in a bounded domain

Now we formulate the results for $A_{D,\varepsilon}$ and $A_{N,\varepsilon}$. First, we assume in addition that $|\zeta| \geq 1$.

Theorem 3 \cite{T. Suslina, 2014}

Let $\zeta = |\zeta| e^{i\phi} \in \mathbb{C} \setminus [0, \infty)$ and $|\zeta| \geq 1$. Then there exists a number ε_0 (depending only on O and Γ) such that for $0 < \varepsilon \leq \varepsilon_0$ we have

$$
\| (A_{D,\varepsilon} - \zeta I) - 1 - (A_{0,\varepsilon} - \zeta I) - 1 \|_{L^2(O) \to L^2(O)} \leq C(\phi)^{(\varepsilon |\zeta| - 1/2 + \varepsilon^2)}.
$$

Here $\flat = D, N$. Estimate (4) is uniform with respect to ϕ in any domain \{$\zeta \in \mathbb{C}: |\zeta| \geq 1, \phi \in [\phi_0, 2\pi - \phi_0]$\}, i.e., $C(\phi) \leq C(\phi_0)$ in this domain.
Now we formulate the results for $A_{D,\varepsilon}$ and $A_{N,\varepsilon}$. First, we assume in addition that $|\zeta| \geq 1$.

Theorem 3 [T. Suslina, 2014]

Let $\zeta = |\zeta| e^{i\varphi} \in \mathbb{C} \setminus [0, \infty)$ and $|\zeta| \geq 1$. Then there exists a number ε_0 (depending only on \mathcal{O} and Γ) such that for $0 < \varepsilon \leq \varepsilon_0$ we have

$$
\|(A_{b,\varepsilon} - \zeta I)^{-1} - (A_{b}^0 - \zeta I)^{-1}\|_{L_2(\mathcal{O}) \rightarrow L_2(\mathcal{O})} \leq C(\varphi) \left(\frac{\varepsilon}{|\zeta|^{1/2}} + \varepsilon^2 \right). \quad (4)
$$

Here $b = D, N$. Estimate (4) is uniform with respect to φ in any domain $\{\zeta \in \mathbb{C} : |\zeta| \geq 1, \varphi \in [\varphi_0, 2\pi - \varphi_0]\}$, i.e., $C(\varphi) \leq C(\varphi_0)$ in this domain.
Main results in a bounded domain

In order to approximate the resolvent in the $L_2 \rightarrow H^1$ norm, we need to introduce a corrector

$$K_b(\varepsilon; \zeta) = \Lambda^\varepsilon S_\varepsilon b(D) P_O (A_0^b - \zeta I)^{-1}, \quad b = D, N.$$
Main results in a bounded domain

In order to approximate the resolvent in the $L_2 \to H^1$ norm, we need to introduce a corrector

$$K_b(\varepsilon; \zeta) = \Lambda^\varepsilon S_\varepsilon b(D)P_O(A_b^0 - \zeta I)^{-1}, \quad b = D, N.$$

Here

$$P_O : H^s(O; \mathbb{C}^n) \to H^s(\mathbb{R}^d; \mathbb{C}^n), \quad s = 0, 1, 2,$$

is a linear continuous extension operator.
Main results in a bounded domain

In order to approximate the resolvent in the $L_2 \to H^1$ norm, we need to introduce a corrector

$$K_b(\varepsilon; \zeta) = \Lambda^\varepsilon S_\varepsilon b(D)P_\mathcal{O}(A^0_b - \zeta I)^{-1}, \ b = D, N.$$

Here

$$P_\mathcal{O} : H^s(\mathcal{O}; \mathbb{C}^n) \to H^s(\mathbb{R}^d; \mathbb{C}^n), \ s = 0, 1, 2,$$

is a linear continuous extension operator. The operator $K_b(\varepsilon; \zeta)$ is continuous from $L_2(\mathcal{O}; \mathbb{C}^n)$ to $H^1(\mathcal{O}; \mathbb{C}^n)$.
Main results in a bounded domain

In order to approximate the resolvent in the $L_2 \rightarrow H^1$ norm, we need to introduce a corrector

$$K_b(\varepsilon; \zeta) = \Lambda^\varepsilon S_\varepsilon b(D)P_{\mathcal{O}}(A^0_b - \zeta I)^{-1}, \ b = D, N.$$

Here

$$P_{\mathcal{O}} : H^s(\mathcal{O}; \mathbb{C}^n) \rightarrow H^s(\mathbb{R}^d; \mathbb{C}^n), \ s = 0, 1, 2,$$

is a linear continuous extension operator. The operator $K_b(\varepsilon; \zeta)$ is continuous from $L_2(\mathcal{O}; \mathbb{C}^n)$ to $H^1(\mathcal{O}; \mathbb{C}^n)$.

In the case where $\Lambda \in L_\infty$ we can use the standard corrector

$$K^0_b(\varepsilon; \zeta) = \Lambda^\varepsilon b(D)(A^0_b - \zeta I)^{-1}, \ b = D, N,$$

which in this case is a continuous mapping of $L_2(\mathcal{O}; \mathbb{C}^n)$ to $H^1(\mathcal{O}; \mathbb{C}^n)$.
Main results in a bounded domain

Theorem 4 [T. Suslina, 2014]

Let \(\zeta = |\zeta|e^{i\varphi} \in \mathbb{C} \setminus [0, \infty) \) and \(|\zeta| \geq 1 \). Then there exists a number \(\varepsilon_0 \) (depending only on \(O \) and \(\Gamma \)) such that for \(0 < \varepsilon \leq \varepsilon_0 \) we have

\[
\| (A_b, \varepsilon - \zeta I)^{-1} - (A^0_b - \zeta I)^{-1} - \varepsilon K_b(\varepsilon; \zeta) \|_{L^2(O) \to H^1(O)} \leq C(\varphi) \left(\frac{\varepsilon^{1/2}}{|\zeta|^{1/4}} + \varepsilon \right).
\]

(5)

Here \(b = D, N \). In the case where \(\Lambda \in L_\infty \) the same is true with \(K_b(\varepsilon; \zeta) \) replaced by \(K^0_b(\varepsilon; \zeta) \).

Estimate (5) is uniform with respect to \(\varphi \) in any domain \(\{ \zeta \in \mathbb{C} : |\zeta| \geq 1, \ \varphi \in [\varphi_0, 2\pi - \varphi_0] \} \), i.e., \(C(\varphi) \leq C(\varphi_0) \) in this domain.
Main results in a bounded domain: a different approximation of the resolvent

Also, we find a different approximation of the resolvent for a wider domain of ζ. Let us formulate this result for the Dirichlet case.

Theorem 5 [T. Suslina, 2014]

Let $c_* > 0$ be a common lower bound of the operators $A_{D, \varepsilon}$ and A^0_D. Let $\zeta \in \mathbb{C} \setminus [c_*, \infty)$. We put $\zeta - c_* = |\zeta - c_*| e^{i\psi}$. There exists a number ε_0 such that for $0 < \varepsilon \leq \varepsilon_0$ we have

$$\| (A_{D, \varepsilon} - \zeta I)^{-1} - (A^0_D - \zeta I)^{-1} \|_{L_2(\mathcal{O}) \rightarrow L_2(\mathcal{O})} \leq \rho(\zeta) \varepsilon,$$

(6)

$$\rho(\zeta) = \begin{cases} c(\psi)|\zeta - c_*|^{-2}, & |\zeta - c_*| < 1, \\ c(\psi), & |\zeta - c_*| \geq 1. \end{cases}$$
Main results in a bounded domain:
a different approximation of the resolvent

Also, we find a different approximation of the resolvent for a wider domain of ζ. Let us formulate this result for the Dirichlet case.

Theorem 5 [T. Suslina, 2014]

Let $c_* > 0$ be a common lower bound of the operators $A_{D,\varepsilon}$ and A^0_D. Let $\zeta \in \mathbb{C} \setminus [c_*, \infty)$. We put $\zeta - c_* = |\zeta - c_*| e^{i\psi}$. There exists a number ε_0 such that for $0 < \varepsilon \leq \varepsilon_0$ we have

$$\| (A_{D,\varepsilon} - \zeta I)^{-1} - (A^0_D - \zeta I)^{-1} \|_{L^2(\Omega) \to L^2(\Omega)} \leq \rho(\zeta) \varepsilon, \quad (6)$$

$$\rho(\zeta) = \begin{cases}
 c(\psi) |\zeta - c_*|^{-2}, & |\zeta - c_*| < 1, \\
 c(\psi), & |\zeta - c_*| \geq 1.
\end{cases}$$

Inequality (6) is uniform with respect to ψ in any sector $\psi \in [\psi_0, 2\pi - \psi_0]$.
Main results in a bounded domain: a different approximation of the resolvent

Theorem 6 [T. Suslina, 2014]

Under the assumptions of Theorem 5 for $0 < \varepsilon \leq \varepsilon_0$ we have

$$
\|(A_{D,\varepsilon} - \zeta I)^{-1} - (A_D^0 - \zeta I)^{-1} - \varepsilon K_D(\varepsilon; \zeta)\|_{L_2(O) \to H^1(O)} \leq \rho(\zeta)\varepsilon^{1/2}. \quad (7)
$$

Here

$$
\rho(\zeta) = \begin{cases}
c(\psi)|\zeta - c_*|^{-2}, & |\zeta - c_*| < 1,
c(\psi), & |\zeta - c_*| \geq 1.
\end{cases}
$$

In the case where $\Lambda \in L_\infty$ the same is true with $K_D(\varepsilon; \zeta)$ replaced by $K_D^0(\varepsilon; \zeta)$.

Estimate (7) is uniform with respect to ψ in any sector $\psi \in [\psi_0, 2\pi - \psi_0]$, i.e., $c(\psi) \leq c(\psi_0)$ in this sector.
Main results in a bounded domain: a different approximation of the resolvent

Theorem 6 [T. Suslina, 2014]

Under the assumptions of Theorem 5 for $0 < \varepsilon \leq \varepsilon_0$ we have

\[
\|(A_{D,\varepsilon} - \zeta I)^{-1} - (A_D^0 - \zeta I)^{-1} - \varepsilon K_D(\varepsilon; \zeta)\|_{L^2(O) \to H^1(O)} \leq \rho(\zeta)\varepsilon^{1/2}. \tag{7}
\]

Here

\[
\rho(\zeta) = \begin{cases}
 c(\psi)|\zeta - c_*|^{-2}, & |\zeta - c_*| < 1, \\
 c(\psi), & |\zeta - c_*| \geq 1.
\end{cases}
\]

In the case where $\Lambda \in L_\infty$ the same is true with $K_D(\varepsilon; \zeta)$ replaced by $K_D^0(\varepsilon; \zeta)$.

Estimate (7) is uniform with respect to ψ in any sector $\psi \in [\psi_0, 2\pi - \psi_0]$, i.e., $c(\psi) \leq c(\psi_0)$ in this sector.

Analogs of Theorems 5 and 6 are obtained also for $A_{N,\varepsilon}$:
Estimates of the form (2)–(7) are called the *operator error estimates in homogenization theory*. Before such estimates were studied for a fixed regular point ζ.
Estimates of the form (2)–(7) are called the *operator error estimates in homogenization theory*. Before such estimates were studied for a fixed regular point ζ.

- In a series of papers by M. Birman and T. Suslina (2001–2006), operator error estimates for homogenization problems in \mathbb{R}^d were obtained by the *operator-theoretic method*.
Estimates of the form (2)–(7) are called the operator error estimates in homogenization theory. Before such estimates were studied for a fixed regular point ζ.

In a series of papers by M. Birman and T. Suslina (2001–2006), operator error estimates for homogenization problems in \mathbb{R}^d were obtained by the operator-theoretic method. In particular, for the operator A_ε estimates (2) and (3) were proved in the case $\zeta = -1$:

$$
\|(A_\varepsilon + I)^{-1} - (A^0 + I)^{-1}\|_{L_2(\mathbb{R}^d) \to L_2(\mathbb{R}^d)} \leq C\varepsilon, \quad (8)
$$

$$
\|(A_\varepsilon + I)^{-1} - (A^0 + I)^{-1} - \varepsilon K(\varepsilon)\|_{L_2(\mathbb{R}^d) \to H^1(\mathbb{R}^d)} \leq \tilde{C}\varepsilon. \quad (9)
$$
A different approach. V. V. Zhikov and S. E. Pastukhova (2005, 2006) studied the acoustics operator \(A_\varepsilon = -\text{div} \, g(\varepsilon) \nabla \) and the operator of elasticity theory. The results similar to (8) and (9) in \(\mathbb{R}^d \) were obtained by "the modified method of the first approximation". Also, they studied the Dirichlet and Neumann problems for the same operators in a bounded domain. They obtained estimate

\[
\|A_\varepsilon - 1 - (A_0 - 1 - \varepsilon K)(\varepsilon)\|_{L^2(O)} \rightarrow H^1(O) \leq C \varepsilon^{1/2}.
\]

The error becomes worse because of the boundary influence. As a consequence, they obtained estimate

\[
\|A_\varepsilon - 1 - (A_0 - 1)\|_{L^2(O)} \leq C \varepsilon^{1/2}.
\] (10)

The improvement of estimate (10) was a natural problem. In the Dirichlet problem for the acoustics equation, using the maximum principle, Zhikov and Pastukhova obtained estimate of order \(O(\varepsilon^{d/(2d-2)}) \) for \(d \geq 3 \) and \(O(\varepsilon |\log \varepsilon|) \) for \(d = 2 \).
A different approach. V. V. Zhikov and S. E. Pastukhova (2005, 2006) studied the acoustics operator $A_{\varepsilon} = -\text{div } g^{\varepsilon}(x) \nabla$ and the operator of elasticity theory. The results similar to (8) and (9) in \mathbb{R}^d were obtained by "the modified method of the first approximation". The error becomes worse because of the boundary influence. As a consequence, they obtained estimate $\|A_{\varepsilon} - 1 - (A_0 - 1)(\varepsilon K)\|_{L^2(\Omega)} \leq C\varepsilon^{1/2}$.
A different approach. V. V. Zhikov and S. E. Pastukhova (2005, 2006) studied the acoustics operator $\mathcal{A}_\varepsilon = -\text{div} \ g^\varepsilon(x) \nabla$ and the operator of elasticity theory. The results similar to (8) and (9) in \mathbb{R}^d were obtained by ”the modified method of the first approximation”. Also, they studied the Dirichlet and Neumann problems for the same operators in a bounded domain. They obtained estimate

$$\|A_{b,\varepsilon}^{-1} - (A_0^{-1} - \varepsilon K_b(\varepsilon))\|_{L^2(\Omega) \to H^1(\Omega)} \leq C\varepsilon^{1/2}.$$

The error becomes worse because of the boundary influence.
A different approach. V. V. Zhikov and S. E. Pastukhova (2005, 2006) studied the acoustics operator $A_\varepsilon = -\text{div} \ g_\varepsilon(x) \nabla$ and the operator of elasticity theory. The results similar to (8) and (9) in \mathbb{R}^d were obtained by “the modified method of the first approximation”. Also, they studied the Dirichlet and Neumann problems for the same operators in a bounded domain. They obtained estimate

$$\|A_{b,\varepsilon}^{-1} - (A_b^0)^{-1} - \varepsilon K_b(\varepsilon)\|_{L^2(\Omega) \to H^1(\Omega)} \leq C\varepsilon^{1/2}.$$

The error becomes worse because of the boundary influence. As a consequence, they obtained estimate

$$\|A_{b,\varepsilon}^{-1} - (A_b^0)^{-1}\|_{L^2(\Omega) \to L^2(\Omega)} \leq C\varepsilon^{1/2}. \quad (10)$$
A different approach. V. V. Zhikov and S. E. Pastukhova (2005, 2006) studied the acoustics operator \(\mathcal{A}_\varepsilon = -\text{div} \, g^\varepsilon(x) \nabla \) and the operator of elasticity theory. The results similar to (8) and (9) in \(\mathbb{R}^d \) were obtained by ”the modified method of the first approximation”. Also, they studied the Dirichlet and Neumann problems for the same operators in a bounded domain. They obtained estimate

\[
\| \mathcal{A}_b,\varepsilon^{-1} - (\mathcal{A}_b^0)^{-1} - \varepsilon K_b(\varepsilon) \|_{L^2(\mathcal{O}) \rightarrow H^1(\mathcal{O})} \leq C \varepsilon^{1/2}.
\]

The error becomes worse because of the boundary influence. As a consequence, they obtained estimate

\[
\| \mathcal{A}_b,\varepsilon^{-1} - (\mathcal{A}_b^0)^{-1} \|_{L^2(\mathcal{O}) \rightarrow L^2(\mathcal{O})} \leq C \varepsilon^{1/2}. \tag{10}
\]

The improvement of estimate (10) was a natural problem. In the Dirichlet problem for the acoustics equation, using the maximum principle, Zhikov and Pastukhova obtained estimate of order \(O(\varepsilon^{d/(2d-2)}) \) for \(d \geq 3 \) and \(O(\varepsilon | \log \varepsilon |) \) for \(d = 2 \).
Similar results were obtained by G. Griso (2004, 2006) by the unfolding method.
Similar results were obtained by G. Griso (2004, 2006) by the unfolding method. He studied the acoustics operator

\[A_\varepsilon = -\text{div } g^\varepsilon(x) \nabla \]

and obtained sharp order estimate

\[\| A_{\varepsilon}^{-1} - (A_0^b)^{-1} \|_{L_2(\mathcal{O}) \rightarrow L_2(\mathcal{O})} \leq C\varepsilon, \quad b = D, N. \] (11)
Similar results were obtained by G. Griso (2004, 2006) by the unfolding method. He studied the acoustics operator
\[A_\varepsilon = -\text{div} \, g_\varepsilon(x) \nabla \]
and obtained sharp order estimate
\[\| A_{b, \varepsilon}^{-1} - (A_b^0)^{-1} \|_{L_2(\mathcal{O}) \to L_2(\mathcal{O})} \leq C \varepsilon, \quad b = D, N. \]

(11)

Until recent time, the problem of proving estimate (11) for matrix elliptic operators remained open.
Similar results were obtained by G. Griso (2004, 2006) by the unfolding method. He studied the acoustics operator \(A_\varepsilon = - \text{div} g^\varepsilon(x) \nabla \) and obtained sharp order estimate

\[
\| A_{b,\varepsilon}^{-1} - (A_b^0)^{-1} \|_{L_2(\mathcal{O}) \to L_2(\mathcal{O})} \leq C \varepsilon, \quad b = D, N. \tag{11}
\]

Until recent time, the problem of proving estimate (11) for matrix elliptic operators remained open.

In the recent paper by C. Kenig, F. Lin and Z. Shen (2012) a sharp order estimate (11) was obtained for uniformly elliptic systems. However, they assume that the coefficients are real-valued and Hölder continuous.
Similar results were obtained by G. Griso (2004, 2006) by the unfolding method. He studied the acoustics operator $A_\varepsilon = -\text{div} g^\varepsilon(x)\nabla$ and obtained sharp order estimate

$$\|A_{b,\varepsilon}^{-1} - (A_b^0)^{-1}\|_{L_2(\mathcal{O}) \rightarrow L_2(\mathcal{O})} \leq C\varepsilon, \quad b = D, N. \quad (11)$$

Until recent time, the problem of proving estimate (11) for matrix elliptic operators remained open.

In the recent paper by C. Kenig, F. Lin and Z. Shen (2012) a sharp order estimate (11) was obtained for uniformly elliptic systems. However, they assume that the coefficients are real-valued and Hölder continuous.

Note that the class of operators A_ε that we consider is wider than the class studied by Kenig, Lin and Shen. Also, we do not impose any smoothness conditions on coefficients.
The operators $A_{D,\varepsilon}$ and $A_{N,\varepsilon}$ that we consider have been studied in recent papers (2012–2014) by the author; one paper (about $L_2 \rightarrow H^1$ approximation of $A_{D,\varepsilon}^{-1}$) is joint with M. Pakhnin. First, the results for a fixed ζ were obtained, and in 2014 the two-parametric estimates presented above have been proved.
Let us discuss the method of investigation. Theorems 1 and 2 (about the operator A_ε in $L_2(\mathbb{R}^d; \mathbb{C}^n)$) can be easily deduced from the known results of Birman and Suslina for $\zeta = -1$ by appropriate resolvent identities and the scaling transformation.
For the problems in a bounded domain, it is impossible to deduce the results of Theorems 3 and 4 for any ζ from the results for $\zeta = -1$.

The proof is based on using the results for the problem in \mathbb{R}^d, introduction of the boundary layer correction term and a careful analysis of this term. Some technical tricks, in particular, using the extension to \mathbb{R}^d and the Steklov smoothing operator, are borrowed from the papers by Zhikov and Pastukhova.
Method of the proof. Theorems 3 and 4

For the problems in a bounded domain, it is impossible to deduce the results of Theorems 3 and 4 for any ζ from the results for $\zeta = -1$. The proof is based on using the results for the problem in \mathbb{R}^d, introduction of the boundary layer correction term and a careful analysis of this term.
Method of the proof. Theorems 3 and 4

For the problems in a bounded domain, it is impossible to deduce the results of Theorems 3 and 4 for any ζ from the results for $\zeta = -1$. The proof is based on using the results for the problem in \mathbb{R}^d, introduction of the boundary layer correction term and a careful analysis of this term. Some technical tricks, in particular, using the extension to \mathbb{R}^d and the Steklov smoothing operator, are borrowed from the papers by Zhikov and Pastukhova.
Method of the proof. Theorems 3 and 4

Let us discuss the simpler case of the Dirichlet problem.
Method of the proof. Theorems 3 and 4

Let us discuss the simpler case of the Dirichlet problem. We denote

$$u_\varepsilon = (A_{D,\varepsilon} - \zeta I)^{-1} F, \quad u_0 = (A_D^0 - \zeta I)^{-1} F,$$

where $F \in L_2(\mathcal{O}; \mathbb{C}^n)$.
Let us discuss the simpler case of the Dirichlet problem. We denote

\[u_\varepsilon = (A_{D,\varepsilon} - \zeta I)^{-1}F, \quad u_0 = (A_D^0 - \zeta I)^{-1}F, \]

where \(F \in L_2(O; \mathbb{C}^n) \). It means that \(u_\varepsilon \in H^1_0(O; \mathbb{C}^n) \) is the generalized solution of the Dirichlet problem

\[b(D)^* g^\varepsilon b(D)u_\varepsilon - \zeta u_\varepsilon = F \quad \text{in} \; O, \quad u_\varepsilon |_{\partial O} = 0, \]

and \(u_0 \in H^2(O; \mathbb{C}^n) \cap H^1_0(O; \mathbb{C}^n) \) is the solution of the ”homogenized” Dirichlet problem

\[b(D)^* g^0 b(D)u_0 - \zeta u_0 = F \quad \text{in} \; O, \quad u_0 |_{\partial O} = 0. \]
Method of the proof. Theorems 3 and 4

Let $\tilde{u}_0 = P_O u_0 \in H^2(\mathbb{R}^d; \mathbb{C}^n)$ is the extension of u_0 to \mathbb{R}^d. Denote by $v_\varepsilon = u_0 + \varepsilon K_D(\varepsilon; \zeta) F$ the first order approximation to the solution u_ε:

$$v_\varepsilon = u_0 + \varepsilon \Lambda^\varepsilon S_\varepsilon b(D) \tilde{u}_0.$$
Method of the proof. Theorems 3 and 4

Let \(\tilde{u}_0 = P_O u_0 \in H^2(\mathbb{R}^d; \mathbb{C}^n) \) is the extension of \(u_0 \) to \(\mathbb{R}^d \). Denote by \(v_\varepsilon = u_0 + \varepsilon K_D(\varepsilon; \zeta)F \) the first order approximation to the solution \(u_\varepsilon \):

\[
v_\varepsilon = u_0 + \varepsilon \Lambda^\varepsilon S_\varepsilon b(D)\tilde{u}_0.
\]

In order to prove Theorem 3, we have to estimate \(\|u_\varepsilon - u_0\|_{L^2(O)} \).
Method of the proof. Theorems 3 and 4

Let \(\tilde{u}_0 = P_O u_0 \in H^2(\mathbb{R}^d; \mathbb{C}^n) \) is the extension of \(u_0 \) to \(\mathbb{R}^d \). Denote by \(v_\varepsilon = u_0 + \varepsilon K_D(\varepsilon; \zeta)F \) the first order approximation to the solution \(u_\varepsilon \):

\[
v_\varepsilon = u_0 + \varepsilon \Lambda^\varepsilon S_\varepsilon b(D)\tilde{u}_0.
\]

In order to prove Theorem 3, we have to estimate \(\| u_\varepsilon - u_0 \|_{L^2(O)} \). In order to prove Theorem 4, we have to estimate \(\| u_\varepsilon - v_\varepsilon \|_{H^1(O)} \).
Method of the proof. Theorems 3 and 4

Let $\tilde{u}_0 = P_O u_0 \in H^2(\mathbb{R}^d; \mathbb{C}^n)$ is the extension of u_0 to \mathbb{R}^d. Denote by $v_\varepsilon = u_0 + \varepsilon K_D(\varepsilon; \zeta) F$ the first order approximation to the solution u_ε:

$$v_\varepsilon = u_0 + \varepsilon \Lambda^\varepsilon S_\varepsilon b(D) \tilde{u}_0.$$

In order to prove Theorem 3, we have to estimate $\|u_\varepsilon - u_0\|_{L^2(O)}$. In order to prove Theorem 4, we have to estimate $\|u_\varepsilon - v_\varepsilon\|_{H^1(O)}$.

The difference $u_\varepsilon - v_\varepsilon$ does not satisfy the Dirichlet condition on ∂O.
Method of the proof. Theorems 3 and 4

Let \(\tilde{u}_0 = P_O u_0 \in H^2(\mathbb{R}^d; \mathbb{C}^n) \) is the extension of \(u_0 \) to \(\mathbb{R}^d \). Denote by \(v_\varepsilon = u_0 + \varepsilon K_D(\varepsilon; \zeta) F \) the first order approximation to the solution \(u_\varepsilon \):

\[
v_\varepsilon = u_0 + \varepsilon \Lambda^\varepsilon S_\varepsilon b(D) \tilde{u}_0.
\]

In order to prove Theorem 3, we have to estimate \(\| u_\varepsilon - u_0 \|_{L^2(\Omega)} \). In order to prove Theorem 4, we have to estimate \(\| u_\varepsilon - v_\varepsilon \|_{H^1(\Omega)} \).

The difference \(u_\varepsilon - v_\varepsilon \) does not satisfy the Dirichlet condition on \(\partial \Omega \). We consider the ”discrepancy” \(w_\varepsilon \), which is the solution of the problem

\[
b(D)^* g^\varepsilon b(D) w_\varepsilon - \zeta w_\varepsilon = 0 \text{ in } \Omega; \quad w_\varepsilon_{|\partial \Omega} = \varepsilon \Lambda^\varepsilon (S_\varepsilon b(D) u_0)_{|\partial \Omega}.
\]

This \(w_\varepsilon \) is also called ”the boundary layer correction term”.

Tatiana Suslina (SPbSU) Operator Error Estimates for Homogenization
Method of the proof. Theorems 3 and 4

Using Theorems 1 and 2 (for the problem in \mathbb{R}^d), it is easy to prove that

$$\|u_\varepsilon - v_\varepsilon + w_\varepsilon\|_{H^1(\Omega)} \leq C(\varphi)\varepsilon \|F\|_{L^2(\Omega)},$$

(12)

$$\|u_\varepsilon - u_0 + w_\varepsilon\|_{L^2(\Omega)} \leq C(\varphi)\frac{\varepsilon}{|\zeta|^{1/2}} \|F\|_{L^2(\Omega)}.$$

(13)
Method of the proof. Theorems 3 and 4

Using Theorems 1 and 2 (for the problem in \mathbb{R}^d), it is easy to prove that

$$\|u_\varepsilon - v_\varepsilon + w_\varepsilon\|_{H^1(\Omega)} \leq C(\varphi)\varepsilon\|F\|_{L^2(\Omega)},$$ \hspace{1cm} (12)

$$\|u_\varepsilon - u_0 + w_\varepsilon\|_{L^2(\Omega)} \leq C(\varphi)\frac{\varepsilon}{|\zeta|^{1/2}}\|F\|_{L^2(\Omega)}. \hspace{1cm} (13)$$

In order to prove Theorem 4, we have to obtain appropriate estimate for $\|w_\varepsilon\|_{H^1(\Omega)}$.
Method of the proof. Theorems 3 and 4

Using Theorems 1 and 2 (for the problem in \mathbb{R}^d), it is easy to prove that

$$
\|u_\varepsilon - v_\varepsilon + w_\varepsilon\|_{H^1(\Omega)} \leq C(\varphi)\varepsilon\|F\|_{L^2(\Omega)}, \quad (12)
$$

$$
\|u_\varepsilon - u_0 + w_\varepsilon\|_{L^2(\Omega)} \leq C(\varphi)\frac{\varepsilon}{|\zeta|^{1/2}}\|F\|_{L^2(\Omega)}. \quad (13)
$$

- In order to prove Theorem 4, we have to obtain appropriate estimate for $\|w_\varepsilon\|_{H^1(\Omega)}$.
- In order to prove Theorem 3, we have to obtain appropriate estimate for $\|w_\varepsilon\|_{L^2(\Omega)}$.
Lemma 1

\[\| \mathbf{w}_\varepsilon \|_{H^1(\Omega)} \leq C(\varphi) \left(\frac{\varepsilon^{1/2}}{|\zeta|^{1/4}} + \varepsilon \right) \| \mathbf{F} \|_{L^2(\Omega)}. \]
Method of the proof. Theorems 3 and 4

Lemma 1

\[\| w_\varepsilon \|_{H^1(\mathcal{O})} \leq C(\varphi) \left(\frac{\varepsilon^{1/2}}{|\zeta|^{1/4}} + \varepsilon \right) \| F \|_{L^2(\mathcal{O})}. \]

Lemma 2

\[\| w_\varepsilon \|_{L^2(\mathcal{O})} \leq C(\varphi) \left(\frac{\varepsilon}{|\zeta|^{1/2}} + \varepsilon^2 \right) \| F \|_{L^2(\mathcal{O})}. \]
Method of the proof. Theorems 3 and 4

Lemma 1

$$\|w_\varepsilon\|_{H^1(O)} \leq C(\varphi) \left(\frac{\varepsilon^{1/2}}{|\zeta|^{1/4}} + \varepsilon \right) \|F\|_{L^2(O)}.$$

Lemma 2

$$\|w_\varepsilon\|_{L^2(O)} \leq C(\varphi) \left(\frac{\varepsilon}{|\zeta|^{1/2}} + \varepsilon^2 \right) \|F\|_{L^2(O)}.$$

Lemma 1 and estimate (12) imply Theorem 4.
Lemma 2 and estimate (13) imply Theorem 3.
Method of the proof. Theorems 3 and 4

Lemma 1

\[\|w_\varepsilon\|_{H^1(O)} \leq C(\varphi) \left(\frac{\varepsilon^{1/2}}{|\zeta|^{1/4}} + \varepsilon \right) \|F\|_{L^2(O)}. \]

Lemma 2

\[\|w_\varepsilon\|_{L^2(O)} \leq C(\varphi) \left(\frac{\varepsilon}{|\zeta|^{1/2}} + \varepsilon^2 \right) \|F\|_{L^2(O)}. \]

Lemma 1 and estimate (12) imply Theorem 4.
Lemma 2 and estimate (13) imply Theorem 3.
Main technical work is the proof of Lemmas 1 and 2. Main technical difficulties are related to estimates in the \(\varepsilon \)-neighborhood of \(\partial O \).
Theorems 5 and 6 are deduced from the already proved estimates with $\zeta = -1$ by appropriate resolvent identities.
Application to parabolic problems

The results of Theorems 3–6 can be applied to the study of the parabolic initial boundary-value problems in the domain O. Such problems are reduced to the study of the operator exponential $\exp(-A^{\flat,\varepsilon}t)$. It is natural to use representation

$$\exp(-A^{\flat,\varepsilon}t) = \frac{1}{2\pi i} \int_{\gamma} e^{-\zeta t} (A^{\flat,\varepsilon} - \zeta I)^{-1} d\zeta,$$

where γ is a suitable contour in the complex plane. In order to find two-parameter approximations of the exponential of right order (with respect to ε and t), two-parameter approximations of the resolvent (with respect to ε and ζ) found in Theorems 3–6 are needed. The corresponding results for parabolic problems were obtained in 2014 jointly with Y. Meshkova.
Application to parabolic problems

The results of Theorems 3–6 can be applied to the study of the parabolic initial boundary-value problems in the domain \mathcal{O}. Such problems are reduced to the study of the operator exponential $\exp(-A_{b,\varepsilon} t)$. It is natural to use representation

$$\exp(-A_{b,\varepsilon} t) = \frac{1}{2\pi i} \int_{\gamma} e^{-\zeta t} (A_{b,\varepsilon} - \zeta I)^{-1} d\zeta,$$

where γ is a suitable contour in the complex plane. In order to find twoparametric approximations of the exponential of right order (with respect to ε and t), twoparametric approximations of the resolvent (with respect to ε and ζ) found in Theorems 3–6 are needed. The corresponding results for parabolic problems were obtained in 2014 jointly with Y. Meshkova.
The results of Theorems 3–6 can be applied to the study of the parabolic initial boundary-value problems in the domain \(\mathcal{O} \). Such problems are reduced to the study of the operator exponential \(\exp(-A_{b,\varepsilon}t) \). It is natural to use representation

\[
\exp(-A_{b,\varepsilon}t) = \frac{1}{2\pi i} \int_{\gamma} e^{-\zeta t}(A_{b,\varepsilon} - \zeta I)^{-1} d\zeta,
\]

where \(\gamma \) is a suitable contour in the complex plane.
The results of Theorems 3–6 can be applied to the study of the parabolic initial boundary-value problems in the domain \mathcal{O}. Such problems are reduced to the study of the operator exponential $\exp(-A_{b,\varepsilon}t)$. It is natural to use representation

$$\exp(-A_{b,\varepsilon}t) = \frac{1}{2\pi i} \int_{\gamma} e^{-\zeta t}(A_{b,\varepsilon} - \zeta I)^{-1} d\zeta,$$

where γ is a suitable contour in the complex plane. In order to find twoparametric approximations of the exponential of right order (with respect to ε and t), twoparametric approximations of the resolvent (with respect to ε and ζ) found in Theorems 3–6 are needed.
The results of Theorems 3–6 can be applied to the study of the parabolic initial boundary-value problems in the domain \mathcal{O}. Such problems are reduced to the study of the operator exponential $\exp(-\mathcal{A}_{b,\varepsilon}t)$. It is natural to use representation

$$\exp(-\mathcal{A}_{b,\varepsilon}t) = \frac{1}{2\pi i} \int_{\gamma} e^{-\zeta t}(\mathcal{A}_{b,\varepsilon} - \zeta I)^{-1} d\zeta,$$

where γ is a suitable contour in the complex plane. In order to find twoparametric approximations of the exponential of right order (with respect to ε and t), twoparametric approximations of the resolvent (with respect to ε and ζ) found in Theorems 3–6 are needed. The corresponding results for parabolic problems were obtained in 2014 jointly with Y. Meshkova.
References

References

References
