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Introduction

Homogenization theory studies the properties of solutions of differential
equations with periodic rapidly oscillating coefficients. It is a wide area of
theoretical and applied science.

Books on homogenization theory:

A. Bensoussan, J.-L. Lions, G. Papanicolaou. Asymptotic analysis for
periodic structures, 1978.

N. S. Bakhvalov, G. P. Panasenko. Homogenization: averaging of
processes in periodic media, 1984.

V. V. Zhikov, S. M. Kozlov, O. A. Oleinik. Homogenization of
differential operators, 1993.
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Introduction

We study the operator error estimates in homogenization theory. Such
estimates were intensively studied during the last 10–12 years by many
authors: Birman, Suslina, Zhikov, Pastukhova, Griso, Kenig, Lin, Shen,
others (more detailed survey will be given later on).

In this talk we present some recent results on the operator error estimates.

We study homogenization problems for a wide class of the second
order matrix elliptic operators Aε, both in Rd and in a bounded
domain with the Dirichlet or Neumann boundary conditions. The
coefficients of Aε are periodic and depend on x/ε.

We obtain approximations of the resolvent (Aε − ζI )−1 of an operator
Aε in a regular point ζ in different operator norms.

We find twoparametric operator error estimates in dependence of ε
and ζ.
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Statement of the problem

Let Γ be a lattice in Rd , let Ω be the cell of Γ.
Example: Γ = Zd , Ω =

(
−1

2 ,
1
2

)d
.

We use the notation φε(x) = φ
(

x
ε

)
, ε > 0.

We study (n × n)-matrix elliptic second order DO

b(D)∗g ε(x)b(D)

in Rd and in a bounded domain O ⊂ Rd . Here g(x) is a Γ-periodic
(m ×m)-matrix-valued function such that

g , g−1 ∈ L∞; g(x) > 0.

The operator

b(D) =
d∑

j=1

bjDj

is a first order (m × n)-matrix DO; bj are constant matrices, and m ≥ n.
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Statement of the problem

The symbol b(ξ) =
∑d

j=1 bjξj is such that

rank b(ξ) = n, 0 6= ξ ∈ Rd , (1D)

for the problem in Rd and for the case of the Dirichlet condition, or

rank b(ξ) = n, 0 6= ξ ∈ Cd , (1N)

for the case of the Neumann condition.

Examples. 1) The acoustics operator Aε = −div g ε(x)∇ = D∗g ε(x)D.
2) The operator of elasticity theory.

Let O ⊂ Rd be a bounded domain with the boundary ∂O ∈ C 1,1.
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Statement of the problem

Main objects

By Aε we denote the operator in L2(Rd ;Cn) given by
b(D)∗g ε(x)b(D).

By AD,ε we denote the operator in L2(O;Cn) given by
b(D)∗g ε(x)b(D) with the Dirichlet boundary condition.

By AN,ε we denote the operator in L2(O;Cn) given by
b(D)∗g ε(x)b(D) with the Neumann boundary condition.

Precise definitions are given in terms of the corresponding quadratic forms.
Under our assumptions, the operators Aε, AD,ε, AN,ε are strongly elliptic;
the corresponding quadratic forms satisfy the coercivity conditions.
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Statement of the problem

Problem

The problem is to study the behavior of the resolvents

(Aε − ζI )−1, (AD,ε − ζI )−1, (AN,ε − ζI )−1

in dependence of ε and ζ. We wish to find two-parametric approximations
for these resolvents in the L2 → L2 and L2 → H1 operator norms.
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The effective operator

In order to formulate the results, we define the effective operator with
constant coefficients:

b(D)∗g0b(D),

where g0 is a constant positive matrix called the effective matrix.

Definition of the effective matrix:
Let Λ(x) be the (n ×m)-matrix-valued Γ-periodic solution of the equation

b(D)∗g(x)(b(D)Λ(x) + 1m) = 0,

∫
Ω

Λ(x) dx = 0.

Then g0 is an (m ×m)-matrix given by

g0 = |Ω|−1

∫
Ω

g(x)(b(D)Λ(x) + 1m) dx.
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The effective operator

The effective operator

By A0 we denote the operator in L2(Rd ;Cn) given by b(D)∗g0b(D).
Its domain is H2(Rd ;Cn).

By A0
D we denote the operator in L2(O;Cn) given by b(D)∗g0b(D)

with the Dirichlet boundary condition. Its domain is
H2(O;Cn) ∩ H1

0 (O;Cn).

By A0
N we denote the operator in L2(O;Cn) given by b(D)∗g0b(D)

with the Neumann boundary condition. Its domain is
{u ∈ H2(O;Cn) : ∂0

νu|∂O = 0}.
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Main results in the whole space

We start with the results in Rd . A point ζ ∈ C \ [0,∞) is regular both for
Aε and A0.

Theorem 1 [T. Suslina, 2014]

Let ζ = |ζ|e iϕ ∈ C \ [0,∞). Then for ε > 0 we have

‖(Aε − ζI )−1 − (A0 − ζI )−1‖L2(Rd )→L2(Rd ) ≤ C (ϕ)
ε

|ζ|1/2
. (2)

Inequality (2) is uniform with respect to ϕ in any sector
ϕ ∈ [ϕ0, 2π − ϕ0], i. e., C (ϕ) ≤ C (ϕ0) in this sector.
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Main results in the whole space

In order to approximate the resolvent in the L2 → H1 norm, we need to
introduce a corrector

K (ε; ζ) = ΛεSεb(D)(A0 − ζI )−1.

Here Sε is the Steklov smoothing operator defined by

(Sεv)(x) = |Ω|−1

∫
Ω

v(x− εz) dz.

The operator K (ε; ζ) is continuous from L2(Rd ;Cn) to H1(Rd ;Cn).
In the case where Λ ∈ L∞ we can use the standard corrector

K 0(ε; ζ) = Λεb(D)(A0 − ζI )−1,

which in this case is a continuous mapping of L2(Rd ;Cn) to H1(Rd ;Cn).
Remark. In some cases Λ ∈ L∞ automatically. In particular, 1) if d = 2;
2) for the acoustics operator −div g ε∇ (and any d).
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Main results in the whole space

Theorem 2 [T. Suslina, 2014]

For ζ ∈ C \ [0,∞) and ε > 0 we have

‖(Aε−ζI )−1−(A0−ζI )−1−εK (ε; ζ)‖L2(Rd )→H1(Rd ) ≤ C (ϕ)(1+ |ζ|−1/2)ε.
(3)

In the case where Λ ∈ L∞ the same is true with K (ε; ζ) replaced by
K 0(ε; ζ).
Estimate (3) is uniform with respect to ϕ in any sector ϕ ∈ [ϕ0, 2π − ϕ0],
i. e., C (ϕ) ≤ C (ϕ0) in this sector.
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Main results in a bounded domain

Now we formulate the results for AD,ε and AN,ε. First, we assume in
addition that |ζ| ≥ 1.

Theorem 3 [T. Suslina, 2014]

Let ζ = |ζ|e iϕ ∈ C \ [0,∞) and |ζ| ≥ 1. Then there exists a number ε0

(depending only on O and Γ) such that for 0 < ε ≤ ε0 we have

‖(A[,ε − ζI )−1 − (A0
[ − ζI )

−1‖L2(O)→L2(O) ≤ C (ϕ)

(
ε

|ζ|1/2
+ ε2

)
. (4)

Here [ = D,N. Estimate (4) is uniform with respect to ϕ in any domain
{ζ ∈ C : |ζ| ≥ 1, ϕ ∈ [ϕ0, 2π − ϕ0]}, i. e., C (ϕ) ≤ C (ϕ0) in this domain.
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Main results in a bounded domain

In order to approximate the resolvent in the L2 → H1 norm, we need to
introduce a corrector

K[(ε; ζ) = ΛεSεb(D)PO(A0
[ − ζI )

−1, [ = D,N.

Here
PO : Hs(O;Cn)→ Hs(Rd ;Cn), s = 0, 1, 2,

is a linear continuous extension operator. The operator K[(ε; ζ) is
continuous from L2(O;Cn) to H1(O;Cn).
In the case where Λ ∈ L∞ we can use the standard corrector

K 0
[ (ε; ζ) = Λεb(D)(A0

[ − ζI )
−1, [ = D,N,

which in this case is a continuous mapping of L2(O;Cn) to H1(O;Cn).
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Main results in a bounded domain

Theorem 4 [T. Suslina, 2014]

Let ζ = |ζ|e iϕ ∈ C \ [0,∞) and |ζ| ≥ 1. Then there exists a number ε0

(depending only on O and Γ) such that for 0 < ε ≤ ε0 we have

‖(A[,ε−ζI )−1−(A0
[−ζI )

−1−εK[(ε; ζ)‖L2(O)→H1(O) ≤ C (ϕ)

(
ε1/2

|ζ|1/4
+ ε

)
.

(5)
Here [ = D,N. In the case where Λ ∈ L∞ the same is true with K[(ε; ζ)

replaced by K 0
[ (ε; ζ).

Estimate (5) is uniform with respect to ϕ in any domain
{ζ ∈ C : |ζ| ≥ 1, ϕ ∈ [ϕ0, 2π − ϕ0]}, i. e., C (ϕ) ≤ C (ϕ0) in this domain.
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Main results in a bounded domain:
a different approximation of the resolvent

Also, we find a different approximation of the resolvent for a wider domain
of ζ. Let us formulate this result for the Dirichlet case.

Theorem 5 [T. Suslina, 2014]

Let c∗ > 0 be a common lower bound of the operators AD,ε and A0
D . Let

ζ ∈ C \ [c∗,∞). We put ζ − c∗ = |ζ − c∗|e iψ. There exists a number ε0

such that for 0 < ε ≤ ε0 we have

‖(AD,ε − ζI )−1 − (A0
D − ζI )−1‖L2(O)→L2(O) ≤ ρ(ζ)ε, (6)

ρ(ζ) =

{
c(ψ)|ζ − c∗|−2, |ζ − c∗| < 1,

c(ψ), |ζ − c∗| ≥ 1.

Inequality (6) is uniform with respect to ψ in any sector ψ ∈ [ψ0, 2π− ψ0].
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Main results in a bounded domain:
a different approximation of the resolvent

Theorem 6 [T. Suslina, 2014]

Under the assumptions of Theorem 5 for 0 < ε ≤ ε0 we have

‖(AD,ε − ζI )−1 − (A0
D − ζI )−1 − εKD(ε; ζ)‖L2(O)→H1(O) ≤ ρ(ζ)ε1/2. (7)

Here

ρ(ζ) =

{
c(ψ)|ζ − c∗|−2, |ζ − c∗| < 1,

c(ψ), |ζ − c∗| ≥ 1.

In the case where Λ ∈ L∞ the same is true with KD(ε; ζ) replaced by
K 0
D(ε; ζ).

Estimate (7) is uniform with respect to ψ in any sector ψ ∈ [ψ0, 2π − ψ0],
i. e., c(ψ) ≤ c(ψ0) in this sector.

Analogs of Theorems 5 and 6 are obtained also for AN,ε.
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Survey

Estimates of the form (2)–(7) are called the operator error estimates in
homogenization theory. Before such estimates were studied for a fixed
regular point ζ.

In a series of papers by M. Birman and T. Suslina (2001–2006),
operator error estimates for homogenization problems in Rd were
obtained by the operator-theoretic method. In particular, for the
operator Aε estimates (2) and (3) were proved in the case ζ = −1:

‖(Aε + I )−1 − (A0 + I )−1‖L2(Rd )→L2(Rd ) ≤ Cε, (8)

‖(Aε + I )−1 − (A0 + I )−1 − εK (ε)‖L2(Rd )→H1(Rd ) ≤ C̃ε. (9)
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Survey

A different approach. V. V. Zhikov and S. E. Pastukhova (2005,
2006) studied the acoustics operator Aε = −div g ε(x)∇ and the
operator of elasticity theory.

The results similar to (8) and (9) in Rd

were obtained by ”the modified method of the first approximation”.
Also, they studied the Dirichlet and Neumann problems for the same
operators in a bounded domain. They obtained estimate

‖A−1
[,ε − (A0

[ )−1 − εK[(ε)‖L2(O)→H1(O) ≤ Cε1/2.

The error becomes worse because of the boundary influence.
As a consequence, they obtained estimate

‖A−1
[,ε − (A0

[ )−1‖L2(O)→L2(O) ≤ Cε1/2. (10)

The improvement of estimate (10) was a natural problem. In the
Dirichlet problem for the acoustics equation, using the maximum
principle, Zhikov and Pastukhova obtained estimate of order
O(εd/(2d−2)) for d ≥ 3 and O(ε| log ε|) for d = 2.
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Survey

Similar results were obtained by G. Griso (2004, 2006) by the
unfolding method.

He studied the acoustics operator
Aε = −div g ε(x)∇ and obtained sharp order estimate

‖A−1
[,ε − (A0

[ )−1‖L2(O)→L2(O) ≤ Cε, [ = D,N. (11)

Until recent time, the problem of proving estimate (11) for matrix
elliptic operators remained open.

In the recent paper by C. Kenig, F. Lin and Z. Shen (2012) a sharp
order estimate (11) was obtained for uniformly elliptic systems.
However, they assume that the coefficients are real-valued and Hölder
continuous.

Note that the class of operators Aε that we consider is wider than the
class studied by Kenig, Lin and Shen. Also, we do not impose any
smoothness conditions on coefficients.
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Survey

The operators AD,ε and AN,ε that we consider have been studied in
recent papers (2012–2014) by the author; one paper (about L2 → H1

approximation of A−1
D,ε) is joint with M. Pakhnin. First, the results for

a fixed ζ were obtained, and in 2014 the two-parametric estimates
presented above have been proved.
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Method of the proof

Let us discuss the method of investigation. Theorems 1 and 2 (about the
operator Aε in L2(Rd ;Cn)) can be easily deduced from the known results
of Birman and Suslina for ζ = −1 by appropriate resolvent identities and
the scaling transformation.
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Method of the proof. Theorems 3 and 4

For the problems in a bounded domain, it is impossible to deduce the
results of Theorems 3 and 4 for any ζ from the results for ζ = −1.

The proof is based on using the results for the problem in Rd , introduction
of the boundary layer correction term and a careful analysis of this term.
Some technical tricks, in particular, using the extension to Rd and the
Steklov smoothing operator, are borrowed from the papers by Zhikov and
Pastukhova.
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Method of the proof. Theorems 3 and 4

Let us discuss the simpler case of the Dirichlet problem.

We denote

uε = (AD,ε − ζI )−1F, u0 = (A0
D − ζI )−1F,

where F ∈ L2(O;Cn). It means that uε ∈ H1
0 (O;Cn) is the generalized

solution of the Dirichlet problem

b(D)∗g εb(D)uε − ζuε = F in O, uε|∂O = 0,

and u0 ∈ H2(O;Cn) ∩ H1
0 (O;Cn) is the solution of the ”homogenized”

Dirichlet problem

b(D)∗g0b(D)u0 − ζu0 = F in O, u0|∂O = 0.
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Method of the proof. Theorems 3 and 4

Let ũ0 = POu0 ∈ H2(Rd ;Cn) is the extension of u0 to Rd . Denote by
vε = u0 + εKD(ε; ζ)F the first order approximation to the solution uε:

vε = u0 + εΛεSεb(D)ũ0.

In order to prove Theorem 3, we have to estimate ‖uε − u0‖L2(O). In order
to prove Theorem 4, we have to estimate ‖uε − vε‖H1(O).
The difference uε − vε does not satisfy the Dirichlet condition on ∂O. We
consider the ”discrepancy” wε, which is the solution of the problem

b(D)∗g εb(D)wε − ζwε = 0 in O; wε|∂O = εΛε(Sεb(D)u0)|∂O.

This wε is also called ”the boundary layer correction term”.
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Method of the proof. Theorems 3 and 4

Using Theorems 1 and 2 (for the problem in Rd), it is easy to prove that

‖uε − vε + wε‖H1(O) ≤ C (ϕ)ε‖F‖L2(O), (12)

‖uε − u0 + wε‖L2(O) ≤ C (ϕ)
ε

|ζ|1/2
‖F‖L2(O). (13)

In order to prove Theorem 4, we have to obtain appropriate estimate
for ‖wε‖H1(O).

In order to prove Theorem 3, we have to obtain appropriate estimate
for ‖wε‖L2(O).
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Method of the proof. Theorems 3 and 4

Lemma 1

‖wε‖H1(O) ≤ C (ϕ)

(
ε1/2

|ζ|1/4
+ ε

)
‖F‖L2(O).

Lemma 2

‖wε‖L2(O) ≤ C (ϕ)

(
ε

|ζ|1/2
+ ε2

)
‖F‖L2(O).

Lemma 1 and estimate (12) imply Theorem 4.
Lemma 2 and estimate (13) imply Theorem 3.
Main technical work is the proof of Lemmas 1 and 2. Main technical
difficulties are related to estimates in the ε-neighborhood of ∂O.
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Method of the proof. Theorems 5 and 6

Theorems 5 and 6 are deduced from the already proved estimates with
ζ = −1 by appropriate resolvent identities.
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Application to parabolic problems

The results of Theorems 3–6 can be applied to the study of the parabolic
initial boundary-value problems in the domain O.

Such problems are
reduced to the study of the operator exponential exp(−A[,εt). It is natural
to use representation

exp(−A[,εt) =
1

2πi

∫
γ

e−ζt(A[,ε − ζI )−1 dζ,

where γ is a suitable contour in the complex plane.
In order to find twoparametric approximations of the exponential of right
order (with respect to ε and t), twoparametric approximations of the
resolvent (with respect to ε and ζ) found in Theorems 3–6 are needed.

The corresponding results for parabolic problems were obtained in 2014
jointly with Y. Meshkova.
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