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Models for tumor growth

The talk explains results of a Project with

Benoı̂t Perthame, Univ. Paris VI,

and Fernando Quirós, Univ. Autónoma de Madrid.

to understand the mathematics of some models that have been
proposed for tumor growth

Main paper:

Arch. Ration. Mech. Anal. 212 (2014), no. 1, 93-127.
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Models for tumor growth

• In the understanding of cancer development, mathematical
modeling and numerical simulations have nowadays
complemented experimental and clinical observations.
Books and surveys are available, see reports by Bellomo,
Friedman, Lowengrub, ...

• A first class of models, initiated in the 70’s by Greenspan,
Greenspan, H. P. Models for the growth of a solid tumor by
diffusion. Stud. Appl. Math. 51 (1972), no. 4, 317–340,consideres
that cancerous cells multiplication is limited by nutrients (glucosis,
oxygen) brought by blood vessels.

• Models of this class rely on two kinds of descriptions; either they
describe the dynamics of cell population density or they consider
the ‘geometric’ motion of the tumor through a free boundary
problem (Friedman, Cui, ...)
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Mechanical models

I Mechanical models:

• Competition for space
• Pressure limited growth

I Kinds of descriptions:

• Cell scale⇒ cell population density
• Solid tumor⇒ free boundary problem

AIM: To explain how asymptotic analysis can link the two main
approaches, cell density models and free boundary models, in the
context of fluid mechanics.
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Purely mechanical model (cell scale)

We start from the simplest cell population density model, proposed in
Byrne, H. M.; Drasdo, D. (2009) Individual-based and continuum
models of growing cell populations: a comparison. J. Math. Biol. 58
in which the cell population density % evolves under pressure forces
and cell multiplication ∂%− div (%∇p) = %Φ(p), x ∈ RN , t > 0

%(·, 0) = %0 ≥ 0

I %: cell population density

I p: pressure.

I −→v = −∇p
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Constitutive Relations

I Pressure-limited growth): Φ′(p) < 0, Φ(pM) = 0

• where pM > 0: is the homeostatic pressure (lower pressure that
prevents cell multiplication by contact inhibition).

I Pressure-density relation: p = P(%), P′(%) ≥ 0

• p = Pm(%) := m
m−1

(
%
%c

)m−1
, m� 1

• %c: maximum packing density of cells (m→∞), %c = 1
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Modified PME

We arrive at the evolution problem ∂t%m −∆%m
m = %mΦ(pm), x ∈ RN , t > 0

%m(·, 0) = %0
m ≥ 0

that we want to study in the limit of large m (the Hele-Shaw limit).

I The pressure-density relation becomes singular:

p = Pm(ρ) =
m

m− 1
(ρ/ρc)

m−1.

Put ρc = 1

I Pressure equation

∂tpm − |∇pm|2 = (m− 1)pm∆pm + (m− 1)pmΦ(pm)
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Hele-Shaw graph

I P∞(%) =

{
0, 0 ≤ % < 1,

[0,∞), % = 1.

• %mpm =
(m−1

m

)1/(m−1)
pm/(m−1)

m ⇒ (1− %∞)p∞ = 0

I Diffusivity: D(%) = m%m−1

• Huge if % > 1 and m large!

I ‖%0‖∞ > 1⇒ expected convergence towards a solution of the same
problem with a projected initial data
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Precedents m→∞ (without growth term)

• Two kinds of limit situations.

I Keeping data for ρ0(x) fixed leads to a Stationary limit after an initial
collapse of the region {ρ0(x) > 1}.Then the pressure goes to zero for
all t > 0 (after a violent transition at t = 0+) :

• [Elliot-Herrero-King-Ockendon, 1986]

• [Caffarelli, Friedman], [Sacks],

• [Benilan-Igbida], [Igbida]...
• For fractional Laplacian version of the model [Vazquez, 2013]

I Keeping the size of p(x, t) nontrivial (e.g., by a source at the
boundary) leads to nontrivial limit evolution for pressures and free
boundaries, in the Hele-Shaw class of models:
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Hele-Shaw Limit m→∞ (without growth term)
I Keeping the size of p(x, t) nontrivial (e.g., by a source at the
boundary) leads to nontrivial limit evolution for pressures and free
boundaries, in the Hele-Shaw class of models:

∆p = 0 in Ω(t)

|∇p| = 0 in ∂Ω(t)

Huge literature, specially in 2D.
Variational formulation : Elliott and Janovski ( 1981)

for the PME to HS limit
• [Aronson-Gil-Vázquez, 1998]
• [Gil-Quirós, 2001], [Gil-Quirós, 2003]

• [Jakobsen-Karlsen, 2002],
• [Kim, 2003], ...
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Setting for the Problem

I Q = R× (0,∞), QT = RN × (0,T), T > 0

Conditions on the data:

I ‖%0
m − %0‖L1(RN) −→m→∞

0, %0 ∈ L1
+(RN)

I Pm(%0
m) ≤ pM (⇒ 0 ≤ %0 ≤ 1, no initial layers)

I ‖∂xi%
0
m‖L1(RN) ≤ C, i = 1, . . . ,N
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Pictures

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure: Effect of m large. A solution to the mechanical model in one
dimension with Φ(p) = 5(1− p). Left: m = 5. Right: m = 40. The upper line is
%; the bottom line is p (scale enlarged for visibility). Notice that the density
scales are not the same in the two figures. The initial data is taken with
compact support and the solution is displayed for a time large enough (see
Figure below for an intermediate regime).
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Pictures 2
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Figure: Cell density and pressure carry different informations. Here m = 40
and the initial data % is less than 1. The solution is displayed at four different
times. It shows how the smooth part of % strictly less than 1 is growing with
p = 0 (figure on the left). When % reaches the value 1, the pressure becomes
positive, increases and creates a moving front that delimitates the growing
domain where % ≈ 1. Thin line is % and thick line is p as functions of x.
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m→∞

THEOREM

• %m
L1(QT)−→ %∞ ∈ C

(
[0,∞); L1(RN)

)
∩ BV(QT)

• pm
L1(QT)−→ p∞ ∈ BV(QT)

• 0 ≤ %∞ ≤ 1, 0 ≤ p∞ ≤ pM

• ∂t%∞ = ∆p∞ + %∞Φ(p∞) in D′(Q), %∞(0) = %0 in L1(RN)

• p∞ ∈ P∞(%∞)
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Pressure equation / complementarity formula

I From the pressure equation
∂tpm = (m− 1)pm∆pm + |∇pm|2 + (m− 1)pmΦ(pm)
and m→∞ we get

I Complementarity formula: p∞
(
∆p∞ + Φ(p∞)

)
= 0

THEOREM :
∫
RN

(
−|∇p∞|2 + p∞Φ(p∞)

)
= 0 a.e. t > 0

• Equivalent to strong convergence of ∇pm in L2(QT)

• Main difficulty: lack of time regularity (regularization à la Steklov)
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Free Boundary Problem

I Ω(t) := {x; p∞(x, t) > 0} = {x; %∞(x, t) = 1}

I −∆p∞(t) = Φ(p∞(t)) in Ω(t), p∞(t) ∈ H1
0

(
Ω(t)

)
I ∂tp∞ = |∇p∞|2 at ∂Ω(t) ⇒ V = |∇p∞| at ∂Ω(t)

Hele-Shaw type problem

• Expected to be true if pm(0) = p0 is prescribed (%0
m → 1{p0>0})
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Precancer zones

I 0 < % < 1 (only possible if 0 < %0 < 1)

I V =
|∇p∞|
1− %

(open problem, challenging)

I Precancer zones: ∂t%∞ = %∞Φ(0)

• Exponential growth

• Density equation required to describe the limit
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First estimates

I L∞ estimates:

• Standard comparison arguments

• 0 ≤ %m ≤
(m−1

m pM
)1/(m−1) −→

m→∞
1, 0 ≤ pm = Pm(%m) ≤ pM

I L1 estimates:

•
∫
RN{%m(t)− %̂m(t)}+ ≤ eΦ(0)t

∫
RN{%m(0)− %̂m(0)}+

• ‖%m(t)‖L1(RN) ≤ eΦ(0)t‖%0
m‖L1(RN) ≤ CeΦ(0)t

• ‖pm(t)‖L1(RN) ≤ CeΦ(0)t (pm = m
m−1%m(m−1

m pm)
m−2
m−1 )
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Semiconvexity

rΦ = min
p∈[0,pM ]

(
Φ(p)− pΦ′(p)

)
> 0

∆pm(t) + Φ(pm(t))︸ ︷︷ ︸
w

≥ −rΦe−(m−1)rΦt/(1− e−(m−1)rΦt)

•
∂tw ≥ (m− 1)pm∆w + 2m∇pm · ∇w + (m− 1)w2

− (m− 1)
(
Φ(pm)− pmΦ′(pm)

)
w

• W(t) = −rΦe−(m−1)rΦt/(1− e−(m−1)rΦt) subsolution
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Monotonicity

I Pressure equation: ∂tpm = (m− 1)pmw + |∇pm|2

I ∂tpm(t) ≥ −(m− 1)pm(t)rΦ
e−(m−1)rΦt

1− e−(m−1)rΦt

I ∂t%m(t) ≥ −%m(t)rΦ
e−(m−1)rΦt

1− e−(m−1)rΦt

Corollary: ∂t%∞ ≥ 0, ∂tp∞ ≥ 0

I ‖∂t%m(t)‖L1(RN) ≤ C t ∈
[

1
m− 1

,T
]
,

∫ T
1

m−1

∫
RN |∂tpm| ≤ C(T)
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BV estimates / convergence
I ‖∂xi%m(t)‖L1(RN) ≤ KeΦ(0)t, ‖∂xipm‖L1(QT) ≤ C(T)

• Equation for ∂xi%m

• Multiply by sign(∂xi%m) = sign(∂xipm)

• Kato’s inequality + strict sign of Φ′

I Strong convergence in L1(QT):

• Estimates in W1,1
loc (Q) ⇒ strong convergence in L1

loc(Q)

• Control of the mass in an initial strip (L1 estimates)

• Control of the tails (equation + L1 and L∞ estimates)
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L1 continuity of the density / initial trace

0 < ζ(x) < 1 test function, 0 < t1 < t2 ≤ T

I %∞ ∈ C
(
[0,∞); L1(RN)

)
•
∫
RN
|%∞(t2)− %∞(t1)|ζ =

∫
RN

(%∞(t2)− %∞(t1)) ζ

=

∫ t2

t1

∫
RN

(p∞∆ζ + %∞Φ(p∞)ζ) ≤ C(T)(t2 − t1) (‖∆ζ‖∞ + 1)

• ζ → 1

I %∞(0) = %0 in L1(RN)

•
∫
RN %m(t)ζ −

∫
RN %

0
mζ =

∫ t
0

∫
RN (pm∆ζ + %mΦ(pm)) ζ

• m→∞, t→ 0, ζ → 1

I p∞(t) : (0,∞) 7→ Lp(RN) discontinuous (in general) for any p ≥ 1
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Finite speed of propagation

I ∂tp ≤ (m− 1)p∆p + |∇p|2 + (m− 1)pΦ(0)

I P(x, t) =
(

C − |x|2
4(τ+t)

)
+

, τ = N/(4Φ(0)):

• Viscosity solutions of Pt = |∇P|2 (Hamilton-Jacobi equation)

• ∂tP− (m− 1)P∆P− |∇P|2 − (m− 1)PΦ(0) ≥ 0, t ∈ [0, N
4Φ(0) ]
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Uniqueness
I Difficulty: p is not a Lipschitz, single-valued function of %

I Trick: (%1, p1), (%2, p2) solutions

• Ω containing the supports of %1, %2 for all t ∈ [0,T], ΩT = Ω× (0,T)

•
∫∫

ΩT

(%1 − %2 + p1 − p2) [A∂tψ + B∆ψ + AΦ(p1)ψ − CBψ] = 0 (*)

• For some fixed ν > 0:

0 ≤ A =
%1 − %2

(%1 − %2) + (p1 − p2)
≤ 1,

0 ≤ B =
p1 − p2

(%1 − %2) + (p1 − p2)
≤ 1,

0 ≤ C = −%2
Φ(p1)− Φ(p2)

p1 − p2
≤ ν.
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Hilbert’s duality method
I For any smooth G, solve A∂tψ + B∆ψ + AΦ(p1)ψ − CBψ = AG in ΩT ,

ψ = 0 in ∂Ω× (0,T), ψ(·,T) = 0 in Ω,

• Non smooth coefficients, A,B not estrictly positive⇒
Approximation

I Use ψ as test function ⇒
∫∫

ΩT

(%1 − %2)G = 0 ⇒ %1 = %2

I Uniqueness for % + equation (*)⇒ p1 = p2

•
∫∫

ΩT

(
(p1 − p2)∆ψ + %1(Φ(p1)− Φ(p2))ψ

)
= 0

• ψ = p1 − p2 + monotonicity of Φ
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Mechanical model with nutrients
∂t%− div(%∇p) = % Φ(p, c)

∂tc−∆c = −% Ψ(p, c)

c(x, t)→ cB > 0 as |x| → ∞

I c: density of nutrients

I
∂pΦ < 0, ∂cΦ ≥ 0, Φ(pM, cB) = 0

∂pΨ ≤ 0, ∂cΨ ≥ 0, Ψ(p, 0) = 0

• It may happen that Φ(p, c) < 0 for c small
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Model with nutrients. Initial data

I Additional assumptions: c0 such that

• cB − c0 ∈ L1
+(RN)

• 0 ≤ c0
m < cB

• ‖c0
m − c0‖L1(RN) −→m→∞

0

• ‖(c0
m)xi‖L1(RN) ≤ C, i = 1, . . . ,N

• ‖div(%0
m∇p0

m) + %0
m Φ(p0

m, c
0
m)‖L1(RN) ≤ C

• ‖∆c0
m − %0

m Ψ(p0
m, c

0
m)‖L1(RN) ≤ C
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Model with nutrients. Main results

I Strong convergence in L1(QT) towards BV functions solving

 ∂t%∞ = ∆p∞ + %∞Φ(p∞, c∞), %∞(0) = %0,

∂tc∞ = ∆c∞ − %∞Ψ(p∞, c∞) c∞(0) = c0,
in D′

p∞ ∈ P∞(%∞)

I Finite speed of propagation for %∞, p∞ (not true for c∞)

I Uniqueness
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Tumor spheroids
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Figure: Traveling wave. A traveling wave solution to the mechanical model in
one dimension with m = 40. The upper continuous line is %; the bottom
dashed line is p. Here pM = .85.
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A typical application of the Hele-Shaw equations is to describe tumor
spheroids (Bru, Byrne-chaplain, Byrne-drasdo, Cui-escher, Friedman,
Friedman-hu, Lowengrub-survey). When nutrients are ignored, the
tumor is assumed to fill a ball centered at 0,

Ω(t) := {p∞(t) > 0} = {%∞(t) = 1} = BR(t)(0).

The radius R(t) of this ball is computed according to the geometric
motion rules; that is, we consider the unique (and thus radially
symmetric) solution to

−∆p∞(t) = Φ(p∞(t)) in BR(t)(0), p∞(R(t), t) = 0, (1)

and evolve the radius according to

R′(t) = V = |∇p∞(R(t), t)|. (2)

Then, we consider %∞ defined as

%∞(t) = 1BR(t)(0). (3)
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Result. TW. KPP like behaviour

This is indeed a correct solution to our model.

Theorem

Let R(0) = R0 be given. Problem (1)–(3) defines a unique dynamic
R(t), %∞(t), p∞(t), which turns out to be the unique solution to the
Hele-Shaw limit problem with initial data %0

∞ = 1BR0 (0). For long times it
approaches a ‘traveling wave’ solution with a limiting speed
independent of the dimension,

R′(t) −→
t→∞

√
2Q(pM), Q(p) =

∫ p

0
Φ(q)dq. (4)

The limit profile can also be calculated and is one-dimensional.

For several more elaborate one dimensional models, it is also possible
to compute the traveling waves which define the asymptotic shape for
large times.
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Cell model with active motion

As a regularized variant of the previous model Perthame, Quirós, Tang
and Vauchelet (preprint 2013, to appear in Interfaces and Free
Boundaries) consider the mechanical model with a regularization term
due to the active motion of the cell

∂tρm −∇ · (ρm∇pm)− ν∆ρm = ρm G(pm)

with small ν > 0. Again, there is a porous medium relation
pm = Pm(ρm).
I The regularity of ρ∞ is better because there always exists a residual
diffusion ν∆ρ∞, but the alternative represented by the previous
complementarity formula disappears and the formula becomes

p∞∆p∞ = p∞G(p∞)− ν∇p∞ · ∇ρ∞
ρ∞

that is not so standard. There is a system of 3 equations
characterizing the limit (uniqueness).
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