OPTIMAL HARDY-TYPE INEQUALITY FOR SECOND-ORDER ELLIPTIC OPERATOR: AN ANSWER TO A PROBLEM OF SHMUEL AGMON

YEHUDA PINCHOVER

We give a general answer to the following fundamental problem posed by Shmuel Agmon 30 years ago:

Given a (symmetric) linear elliptic operator P of second-order in \mathbb{R}^n , find a nonnegative weight function W which is "as large as possible", such that for some neighborhood of infinity G the following inequality holds

 $(P-W) \ge 0$ in the sense of the associated quadratic form on $C_0^{\infty}(G)$.

We construct, for a general subcritical second-order elliptic operator P on a domain M in \mathbb{R}^n (or on a noncompact manifold M), a Hardy-type weight W which is optimal in the following natural sense:

- $(P \lambda W) \ge 0$ on $C_0^{\infty}(M)$ for all $\lambda \le 1$,
- For $\lambda = 1$, the operator $(P \lambda W)$ is null-critical in M,
- For any $\lambda > 1$, and any neighborhood of infinity $G \subset M$, the operator $(P \lambda W)$ is not nonnegative on $C_0^{\infty}(G)$.
- If P is symmetric and W > 0, then the spectrum and the essential spectrum of the operator $W^{-1}P$ are equal to $[1, \infty)$.

Our method is based on the theory of positive solutions and applies to both symmetric and nonsymmetric operators on noncompact manifolds. Moreover, the results can be generalized to certain p-Laplacian type operators and to Schrödinger operators on graphs. The constructed weight W is given by an explicit simple formula involving two positive solutions of the equation Pu=0.

DEPARTMENT OF MATHEMATICS, TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA, ISRAEL

E-mail address: pincho@technion.ac.il