ОТЗЫВ

ведущей организации на диссертационную работу
А.Л. Пестова "Характеризация
данных обратной задачи для одномерной двухскоростной динамической
системы" на соискание ученой степени кандидата
физико-математических наук по специальности
01.01.03 – Математическая физика

Предмет диссертации - прямые и обратные задачи для одномерных двухскоростных динамических систем. С физической точки зрения многоскоростные системы выделены тем, что в них имеется несколько типов волн (волновых мод), распространяющихся с различными скоростями и взаимодействующих друг с другом. Это взаимодействие приводит к ряду красивых и интересных физических эффектов, таких, как наличие предвестников в медленных каналах, существование т.н. медленных волн и проч. Оно же сильно усложняет картину распространения волн и затрудняет ее исследование. Соответственно, более сложным (в сравнении с односкоростными системами) становится математическое описание и изучение таких динамических систем.

Актуальность

Помимо теоретического интереса, исследование многоскоростных систем мотивировано большим количеством актуальных и разнообразных приложений. В их числе модели теории упругости, учитывающие конечность скорости распространения волн (балка Тимошенко), акустика и сейсмика слоистых сред, дефектоскопия композитных объектов, многоканальные кабельные системы в оптике и электротехнике. Эти приложения упомянуты в литературном обзоре диссертации, там же приведены соответствующие ссылки.
Структура диссертации

В работе разбирается случай системы с двумя волновыми модами, распространяющимися с разными, отделенными по величине скоростями, зависящими от (единственной) пространственной переменной. Этот случай - простейший из возможных, в то же время, он отражает все основные специфические свойства многоскоростных систем. По-видимому, полученные результаты можно перенести на случай большого количества мод (но с сохранением условия отделенности скоростей) без принципиальных изменений.

Как известно, изучать обратную задачу можно только после достаточно полного исследования прямой задачи. Такое исследование одновременно дает подходы к обратной задаче и конкретные инструменты ее решения. В соответствии с этим диссертацию можно разбить на две основные части, соответствующие исследованию прямой (главы 1 и 2) и обратной (глава 3) задач.

В части, относящейся к прямой задаче, проведено полное и строгое исследование особенностей фундаментального решения (ФР), отвечающего сингулярным граничным управлениям двух типов. Каждый из типов соответствует мгновенным импульсным источникам, возбуждающим в отдельности быстрый и медленный каналы. Детально исследован и описан характер особенностей ФР на передних фронтах волн, в том числе на фронтах предвестников, наведенных основными сингулярностями, распространяющимися в каждом из каналов. Средство исследования особенностей - лучевой метод (динамический вариант метода ВКБ). Хотя сама схема метода вполне стандартна и традиционна, при ее приложении и обосновании пришлось преодолеть ряд технических трудностей. Следует сказать, что техническая сложность и громоздкость -- характерная черта аппарата исследования многоскоростных задач. Итогом приложения лучевого метода и основным результатом первой части являются формулы геометрической оптики, играющие главную роль при решении обратной задачи. Эти формулы позволяют автору исследовать характер управляемости системы и описать красивый физический эффект - существование "медленных волн". Кроме того, найдены эффективные представления оператора управления и расширенного оператора реакции системы R^{2T}. Последний описывает отклик системы на действие граничных управлений.

В наиболее общей постановке для данного класса систем, обратная задача (ОЗ) состоит в восстановлении коэффициентов уравнения, описывающего эволюцию системы, по ее отклику на внешнее воздействие. В данном случае роль данных играет оператор реакции системы R^{2T}. В самой постановке и подходе к решению ОЗ, принципиальным оказывается локальный характер зависимости оператора R^{2T} от коэффициентов. Сильной стороной подхода (ВС-метода) является учет этой локальности и оптимальный (по времени) характер получаемых результатов: глубина восстановления соответствует участку полуси, заполняемому волнами за время T и, соответственно, увеличивается с увеличением времени наблюдения. В
то же время, участки, на которых удается восстановить коэффициенты, разлины для быстрого и медленного каналов, что соответствует разному характеру управляемости каналов.

Главный результат главы 3 и всей работы – характеристическое описание данных ОЗ, т.е. список необходимых и достаточных условий на данные, обеспечивающих ее разрешимость. Именно, приводятся необходимые и достаточные условия, при которых заданный оператор R^{2T} оказывается расширенным оператором двухскоростной системы (Теорема 4 главы 3). Необходимость условий фактически сводится к перечислению свойств R^{2T} и его связей с другими операторами системы, установленных в ходе рассмотрений прямой задачи. Гораздо более содержательно доказательство достаточности. Оно конструктивно: по заданному оператору R^{2T}, удовлетворяющему условиям теоремы, шаг за шагом проводится выбор параметров, приводящих к построению системы с оператором реакции R^{2T}, совпадающим с R^{2T}. Выбор производится в ситуации, когда данные (оператор R^{2T}) описываются меньшим числом функциональных параметров (трех), нежели восстанавливаемая система (описывается восемью параметрами). Основная проблема состояла в непротиворечивости такого выбора и проверке его правильности. Сильной стороной результата является исчерпывающий характер условий разрешимости: конструктивно описаны все системы данного класса, имеющие предписанные данные ОЗ.

Достоверность результатов диссертации

Результаты диссертации получены на основе известных средств математического анализа и математической физики, в рамках в рамках апробированного ранее ВС-метода. Это позволяет прийти к заключению об обоснованности научных положений, выводов и достоверности результатов исследований, проведенных автором диссертации.

Научная новизна

В рамках ВС-метода исследована сложная обратная задача для двухскоростной динамической системы. На предварительном этапе полностью исследована прямая задача, получено детальное описание аналитических свойств ее решения. Исследованы основные объекты ВС-метода в данной ситуации, в том числе установлено соотношение между связывающим оператором и оператором реакции, изучена управляемость данной системы. Получена полная характеристика оператора реакции системы в этой задаче. Описана пошаговая процедура определения характеристик системы, пригодная для численной реализации.

Теоретическая значимость работы состоит в демонстрации возможности приложения ВС-подхода к обратной задаче для двухскоростной динамической системы.
Практическая значимость работы связана с возможностью восстановления характеристик двухскоростной динамической системы на основе разработанной в диссертации пошаговой процедуры.

Рекомендации по использованию результатов работы
Разработанные результаты могут быть использованы при исследовании сложных динамических процессов в балке Тимошенко, акустике и сейсмике слоистых сред, дефектоскопии композитных объектов. Они могут использоваться также в преподавании студентам высших учебных заведений, таких как МГУ,СПбГУ, СПбГТУ и др.

Соответствие диссертации и автореферата требованиям
«Положения о порядке присуждения ученых степеней»
Диссертация является научно-квалификационной работой, в которой автор исследовал корректность обратной задачи для двухскоростной одномерной динамической системы и получил характеристику данных этой обратной задачи.
Диссертация представляет собой специально подготовленную рукопись, содержит совокупность новых научных результатов, имеет внутреннее единство. Личный вклад автора в решении поставленных проблем не вызывает сомнений (п.10 «Положения»). Оформление диссертации в целом отвечает требованиям ВАК РФ. Автореферат в полной мере отражает содержание диссертации и позволяет составить достаточно полное представление о ней.

Результаты исследования представлены в 3 работах, опубликованных в рецензируемых журналах, входящих в Перечень ВАК РФ.

Критические замечания
1. В тексте диссертации на стр. 16 утверждается, что расходимость интеграла (1.4) обеспечивает корректность задачи (1.1)–(1.3) при любом $T>0$. Следовало бы объяснить, почему. В связи с этим условием можно поставить и такой вопрос: в каком смысле корректность задачи сохраняется, если это условие не выполнено, а выполняется более слабое условие
 \[\int_0^\infty \frac{dx}{c_2(x)} = \infty \]

2. В доказательстве Теоремы 1 следовало бы четче пояснить роль условия разделенности скоростей. Нужно ли оно и где именно срабатывает?

3. На стр. 31 знаменатели ряда формул содержат выражение $\gamma_1 \rho_2 - \gamma_2 \rho_1$. Что происходит, когда это выражение обращается в ноль?

4. Формула (2.65) в Предложении 11 -- важный результат, на который автор ориентируется, решающая обратную задачу. Следовало бы привести ее полное доказательство, не ограничиваясь словами «простой анализ приводит к.....»
5. На стр. 90 обсуждается продолжение вспомогательной функции с интервала $[0,2T]$ на интервал $[0,2T']$. Не совсем ясно при этом, как связаны величины T и T'.

6. При реализации процедуры восстановления характеристик среды используется операция дифференцирования по времени (см. формулы (1.34)-(1.39), формулы (3.64), (3.65) и далее). Желательно было бы в тексте работы подробно обсудить этот факт в связи с известными свойствами этой операции.

7. В части, касающейся систем с нулевой функцией отклика (и взаимодействующими модами), построить явный пример так и не удалось. В этой ситуации, рассмотрения подкрепил бы численный эксперимент, подтверждающий их существование. Впрочем, его отсутствие -- не замечание, а пожелание автору в будущем сделать такое дополнение. Разумеется, оно потребует определенной работы.

Имеются и погрешности редакционного характера, однако мы не будем здесь на них останавливаться. Высказанные критические замечания не опровергают основных научных положений и результатов диссертации, не снижают их научной и практической значимости и не оказывают влияния на положительную оценку диссертационной работы А.Л. Пестова.

Заключение

Диссертационная работа Пестова Андрея Леонидовича «Характеризация данных обратной задачи для одномерной двухскоростной динамической системы» является завершенной научной квалификационной работой, в которой на основании выполненной автором исследований исследована обратная задача для двухскоростной динамической системы. Работа имеет существенное значение для теории и практики математического исследования сложных динамических систем, расширения применения ВС-метода для изучения обратных задач.

Рассмотренная диссертация соответствует требованиям «Положения о порядке присуждения ученых степеней» (пунктам 9,10,11,13,14), является законченным научным исследованием, удовлетворяет требованиям, предъявляемым к диссертациям на соискание ученой степени кандидата физико-математических наук, а ее автор Пестов Андрей Леонидович заслуживает присуждения ученой степени кандидата физико-математических наук по специальности 01.01.03 - «Математическая физика».

Диссертационная работа и отзыв обсуждены и одобрены на заседании кафедры высшей математики и механики, протокол № 6 от «3 » марта 2016 г.

Заведующий кафедрой высшей математики и механики ГУАП, доктор физико-математических наук

А.О. Смирнов