ОТЗЫВ
официального оппонента на диссертационную работу
ПРОНЬКО Андрея Георгиевича
«Корреляционные функции вершинных моделей с
фиксированными граничными условиями и их приложения к
задачам комбинаторики»
представленной на соискание ученой степени доктора
физико-математических наук по специальности 01.01.03 —
математическая физика

Диссерация Пронько А. Г. продолжает традиции научной школы Л. Д. Фаддеева и посвящена исследованию вершинных моделей, в основе которых лежит уравнение Янга—Бакстера. Работа в основном посвящена исследованию шестивершинной модели с граничными условиями типа доменной стенки и является естественным развитием результатов полученных в 80-х годах В. Е. Корепиным и А. Г. Изертгина для статистической суммы этой модели, которая изначально возникла в контексте задачи вычисления скалярного произведения векторов состояний в алгебраическом апазе Бете. Эта статистическая сумма отличается от статистической суммы с периодическими граничными условиями даже в том режиме, когда корреляционные функции при периодических граничных условиях быстро убывают (разупорядоченная фаза). Такое поведение противоречит устоявшемуся среди физиков убеждению, что при быст- ро убывающих корреляциях статистическая сумма не зависит от граничных условий. Причина для такого, нетипичного, поведения кроется в том, что определяющие шестивершинную модель условия льда не дают степеням свободы смешиваться достаточно быстро. Поэтому в случае граничных условий Изертгина—Корепина модель находится в упорядоченной фазе вблизи границы, достигая разупорядочения на некотором расстоянии от нее. В термодина- мическом пределе упорядоченная и разупорядоченная фазы разделяются некоторой кривой, называемой арктикой. Интересен вопрос о форме арктической кривой. Изучению этого вопроса и посвящена основная часть диссертации А.Г. Пронько.

В диссертации также исследуется пятивершинная модель с фик- сированными граничными условиями, которые тесно связаны со скалярными произведениями бетевских векторов вне поверхности масс.

Основное направление исследования — проблематика вывода за- мкнутых выражений для статистических сумм и корреляционных
функий пяти- и шестивершинной моделей статистической механики заданных на решетках конечного размера и с фиксированными граничными условиями, и их комбинаторных приложений.

К наиболее важным результатам работы можно отнести развитие метода вычисления корреляционных функций шестивершинной модели с граничными условиями типа доменной стенки. В частности, вычислена вероятность образования пустот в терминах кратного контурного интеграла. На основе этого представления решена задача о нахождении арктической кривой модели. В диссертации также приложены граничные корреляционные функции к перечисленным матриц чередующихся знаков, а именно, найдена связь перечислений этих матриц с классическими ортогональными многочленами и доказана теорема о детальных 3-перечислениях матриц чередующихся знаков. Изучена термодинамика шестивершинной модели на L-образной области, дана новая интерпретация арктической кривой как кривой фазового перехода третьего рода возникающего при деформациях решетки путем удаления ее части. Для пятивершинной модели с специальными фиксированными граничными условиями проведено вычисление одноточечной корреляционной функции и получены различные новые детерминантные представления для статистической суммы.

Диссертация состоит из введения, семи глав и заключения.

В первой главе обсуждаются общие свойства шестивершинной модели с граничными условиями типа доменной стенки, формулируются основные актуальные задачи связанные с этой моделью и на решение которых направлено исследование в диссертации. Основные новые результаты в этой главе касаются эквивалентных представлений для статистической суммы.

Во второй главе квантовым методом обратной задачи разработан подход к вычислению граничных корреляционных функций шестивершинной модели с граничными условиями типа доменной стенки. В основе этого подхода лежат коммутационные соотношения алгебры Янга-Бакстера и концепция «двухузелевой модели», которые позволяют выразить граничные корреляционные функции в терминах статистической суммы на решетках меньшего размера. Основные новые результаты этой главы касаются вычисления граничных корреляционных функций в терминах определителей. Также показано, что двухточечная граничная корреляционная функция разрешима в терминах одноточечной.
Третья глава посвящена приложению полученных результатов о граничных корреляционных функций к задаче вычисления детальных взвешенных перечислений матриц чередующихся знаков. Важное наблюдение состоит в том, что формула Иэргина–Корепина для однородной шестивершинной модели с граничными условиями типа доменной стенки позволяет решать задачи о перечислениях матриц чередующихся знаков с помощью классических полиномов из таблицы Аски–Вильсона. Это позволило значительно упростить доказательство известных результатов об детальных 1- и 2-перечислениях, и, более того, вывести ранее неизвестное явное выражение для детальных 3-перечислений.

В четвертой главе получены результаты, позволяющие позднее найти арктическую кривую. Самым естественным способом вычисления мог бы состоять в вычислении одноточечной функции во всей области. Однако, такое вычисление представляется чрезвычайно сложным. Вместо этого предлагается следующий острунный способ. Подается вычислению локальная корреляционная функция, представляющая собой вероятность обнаружения упорядоченного прямоугольника, расположенного в углу исходной области, то есть имеющего одну вершину вне границы. Если в термодинамическом пределе эта вероятность равна единице (нулю), то указанная вершина лежит вне (внутри) арктического квадрата. Такая корреляционная функция называется вероятностью образования пустоты. Рассматривается также вероятность конфигурации ряда. В этой главе получены наиважнейшие результаты диссертации о корреляционных функциях модели, для вычисления которых развит подход позволяющий получать представления в терминах кратных контурных интегралов.

Пятая глава содержит наиболее интересные результаты в связи с явлением разделения фаз в шестивершинной модели с граничными условиями типа доменной стенки, и предельной форме матриц чередующихся знаков. Основной результат — уравнение арктической кривой модели. Это действительно выдающийся результат. Вывод основан на термодинамическом пределе для вероятности образования пустоты и механизме воспроизведения этого предела из представления в терминах кратного контурного интеграла, а именно, что арктическая кривая соответствует условию на параметры интеграла, при выполнении которого почти все решения системы уравнений седловой точки равны одному, известному, значению. Также обсуждаются частные случаи этой кривой, в частности, предъявленное явное выражение кривой описывающее предельную форму матриц чередующихся знаков.
В шестой главе выводится главный член асимптотики в термодинамическом пределе для вероятность образования пустоты шестивершинной модели с граничными условиями типа доменной стенки в точке свободных фермионов. Основной результат состоит в том, что арктическая кривая является кривой фазового перехода третьего рода возникающего при геометрической деформации области задания модели. Найденный фазовый переход обладает чертами фазовых переходов третьего рода типа Дугласа–Казакова и Гросса–Виттена–Вадь хорошо известными в теории матричных моделей.

В седьмой главе исследуется пятивершинная модель с фиксированными граничными условиями при которых имеет место взаимно-однозначное соответствие между конфигурациями модели и трехмерными диаграммами Юнга (плоскими разбиениями, или, эквивалентно, замощениями ромбами) в ящиках. Одним из основных результатов здесь является детерминантная формула для статистической суммы пятивершинной модели с граничными условиями типа «скалярное произведение» в однородном пределе. Кроме того показано, что эта статистическая сумма допускает представление в виде τ-функции шестого уравнения Пенлеве для частных значений параметров, соответствующих классическим (в смысле Окамото) решениям.

Представленная диссертация является оригинальным исследованием, выполненным на очень высоком научном уровне. Полученные результаты и разработанные для их получения новые методы существенно обогащают математический аппарат интегрируемы моделей статистической механики. В частности, вычисление корреляционных функций на основе квантового метода обратной задачи, в существенной степени привлекает теорию ортогональных полиномов (для моделей на конечных решетках) и оперирует методами матричных моделей (для исследования величин в термодинамическом пределе). Изложение имеет продуманную структуру, основные результаты полно и строго доказаны.

По моему мнению работа автора вносит яркий вклад в развитие теории интегрируемых моделей на решете и квантового метода обратной задачи. В диссертации получены важные чисто математические результаты относящиеся к широкому кругу задач перечислительной комбинаторики.

В качестве замечания к диссертации, стоит отметить некоторую избыточность в седьмой главе. Пятивершинная модель в случае свободных фермионов рассматривается дважды: сначала в приложении к плоским разбиениям, а затем к взвешенным плоским
разбиениям. Используется совершенно аналогичная техника, некоторые детали повторяются дважды. На мой взгляд было бы естественно рассмотреть только взвешенные плоские разбиения и упомянуть плоские разбения в качестве частного случая. Учитывая, однако, желание автора придерживаться полноты изложения, указанные замечания носят рекомендательный характер и не меняют общей положительной оценки представленной работы.

Результаты работы своевременно и полно опубликованы. Автореферат правильно отражает содержание диссертации.

Диссертация Пронько Андрея Георгиевича «Корреляционные функции вершинных моделей с фиксированными граничными условиями и их приложения к задачам комбинаторики» полностью соответствует предъявляемым к докторским диссертациям требованиям «Положения о присуждении ученых степеней», а её автор несомненно заслуживает присуждения ему ученой степени доктора физико-математических наук по специальности 01.01.03 – математическая физика.

Официальный оппонент
доктор физико-математических наук
СМИРНОВ Федор Александрович

Директор исследований первого класса
Лаборатории теоретической физики и высоких энергий
Национального центра научных исследований,
Париж, Франция

E-mail: smirnov@lpthe.jussieu.fr

11 сентября 2017 года