ОТЗЫВ НАУЧНОГО КОНСУЛЬТАНТА о диссертации Е. А. Лебедевой
Всплеск-преобразование: частотно-временная локализация, разложения по системам всплесков, обратимость представленной на соискание ученой степени доктора физико-математических наук по специальности 01.01.01 – вещественный, комплексный и функциональный анализ

В диссертации изучаются базисы и фреймы всплесков, а также непрерывное всплеск-преобразование. Решается несколько актуальных задач, представляющих как теоретический, так и прикладной интерес.

Значительная часть работы посвящена изучению частотно-временной локализации масштабирующих и всплеск-функций, порождающих ортогональные базисы. В первой главе дана конструкция семейств ортонормированных базисов всплесков (названных квазисплайн-всплесками), у которых константа неопределенности остается ограниченной с ростом гладкости всплеск-функции. До появления работ диссертантики [16], [80] на эту тему было непонятно, существуют ли такие базисы, хотя ряд известных математиков (Ч. Чуи, Й. Вонг, И.Я.Новиков и др.) активно интересовались этим вопросом. Конструкция базируется на модифицированных масках Мейера, полученных применением линейных методов суммирования ряда Фурье маски Мейера. Требованиям, предъявляемым конструкцией, удовлетворяет широкий класс линейных методов, в частности, средние Фейера, Валле-Пуассена, Рогозинского, Абеля-Пуассона.

В главе 2 с помощью вариационных методов найдена система, имеющая наименьшую константу неопределенности из всех систем всплесков Мейера. Задача сведена к поиску решения нелинейного неавтономного дифференциального уравнения второго порядка. Построена последовательность всплеск-функций Мейера, имеющих аналитическое представление и равномерно приближающих всплеск-функцию Мейера наименьшей константой неопределенности.

Результаты глав 3, 4 связаны с вопросом о наименьшем значении константы неопределенности всплеск-функции, порождающей фрейм Парацевали. Есть основания предполагать, что значение равно 3/2. Этой задаче посвящены многочисленные работы разных авторов, но пока никому не удалось подойти близко к этой величине, даже с учетом численных
исследований. В диссертационной работе построено семейство фреймов Парсеваля периодических всплесков, для которых реализуется значение 3/2. К сожалению, для периодических всплесков, в отличие от непериодических, невозможно, что значение 3/2 не может быть уменьшено. Работа на эту тему написана диссертанткой совместно с Ю. Престом, которому принадлежит постановка задачи и некоторые общие соображения. Очень непростая техническая реализация этих соображений, выполненная диссертанткой. В связи с этими исследованиями диссертанткой была поставлена задача: можно ли по данному фрейму Парсеваля периодических всплесков построить непериодический нестационарный фрейм всплесков Парсеваля с той же константой неопределенности. Положительный ответ на этот вопрос удалось дать для широкого класса периодических фреймов всплесков, построенных с помощью унитарного принципа расширения. Этот результат дает возможность строить хорошо локализованные системы нестационарных всплесков, начиная с периодических.

В главах 5-7 изучаются системы всплесков на группах Кантора/Виленкина и их приложения. Вводится понятие константы неопределенности для функций, заданных на группе Кантора. Доказано наличие аналога принципа неопределенности Гейзенберга, т.е. существование положительной нижней границы для введенной константы неопределенности. Вычислены константы неопределенности для масштабирующих и всплеск-функций, порождающих базы Ляна, численно доказана хорошая локализованность некоторых фреймов всплесков. Дано точное описание всех обобщенных полиномов Уолша, порождающих жесткие фреймы всплесков на группе Виленкина. Найдены соответствующие маски всплесков, то есть решена проблема матричного продолжения, и дано полное описание всех решений.

С использованием всплесков разработаны методы решения некоторых классов дифференциальных уравнений на группе Кантора. Рассматриваются уравнения в частных производных, содержащие как классическую, так и дробную модифицированную производную Гиббса (псевдо-дифференциальный оператор). В частности, решаются задачи Коши для волнового уравнения и уравнения теплопроводности. Решения найдены в классах обобщенных функций, а также найдены достаточные условия условий, при которых решения непрерывны или суммируемы с квадратом. Как соавтор работ, представленных в главах 6 и 7, подтверждаю, что те результаты, которые в значительной степени принадлежат соавторам.
торам, не включены в диссертацию.

В главе 8 доказана безусловная сходимость в пространствах $L_p(\mathbb{R})$, $1 < p < \infty$, разложений по системе двойственных фреймов всплесков в предположении определенной скорости убывания порождающих всплеск-функций. Эта теорема обобщает известный и важный результат П. Войтацика о безусловной сходимости базисов всплесков.

Последняя глава посвящена изучению непрерывного всплеск-преобразования. Предлагается новая формула обращения, которая применима даже в случае нарушения условия допустимости в отличие от хорошо известной формулы обращения, активно используемой в различных приложениях. Задача поиска новой формулы обращения была поставлена соавторами диссертантики в связи с решением физических задач, где требовалось использовать всплеск Морле, для которого не работает стандартный способ обращения.

Считаю, что диссертантика является одним из ведущих в России специалистов в области теории всплесков. В диссертации решен ряд трудных и важных задач, причем во многих из представленных результатов найдено полное окончательное решение задачи.

Профессор кафедры математического анализа
и кафедры высшей математики СПбГУ
доктор физ.-мат. наук (М.А. Скопина)