ЧИЧЕРИН
Дмитрий Игоревич

О квантовых интегрируемых спиновых цепочках с бесконечномерным пространством состояний

Специальность 01.01.03 – Математическая физика

ДИССЕРТАЦИЯ
на соискание ученой степени
кандидата физико-математических наук

Научный руководитель
доктор физико-математических наук
С. Э. Деркачёв

Санкт-Петербург – 2014
Содержание

Введение ... 6

Глава 1. Операторы Бакстера для спиновых цепочек с деформированной
симметрией .. 22
 1.1. Факторизация R-оператора и уравнение Бакстера ... 22
 1.2. Недеформированная алгебра симметрии ... 36
 1.2.1. L-оператор для sl2 и операторы перестановки ... 36
 1.2.2. Редукция общего R-оператора к L-оператору ... 38
 1.2.3. Q-оператор и уравнение Бакстера ... 40
 1.2.4. Явная формула для действия оператора Бакстера Q2 на полиномы . 42
 1.2.5. Редукция общего R-оператора на конечномерное подпространство . 44
 1.3. Тригонометрическая деформация ... 45
 1.3.1. Тригонометрический L-оператор и операторы перестановки 45
 1.3.2. Операторы R1 и R2 в случае тригонометрической деформации 48
 1.3.3. От пентагона к соотношениям Кокстера .. 49
 1.3.4. Редукция общего R-оператора к L-оператору в случае тригонометрической деформации ... 51
 1.3.5. Тригонометрические рекуррентные соотношения 53
 1.3.6. Тригонометрическое уравнение Бакстера .. 55
 1.3.7. Действие тригонометрического Q-оператора на производящую функцию представления ... 58
 1.3.8. Явная формула для Q-оператора из соотношений Кокстера 60
 1.4. Эллиптическая деформация ... 61
 1.4.1. Эллиптический L-оператор и перестановки параметров 61
 1.4.2. Эллиптические рекуррентные соотношения ... 63
 1.4.3. Факторизация сплетающего оператора ... 66
 1.4.4. Эллиптическое уравнение Бакстера ... 67
 1.4.5. Явная формула для эллиптического Q-оператора 70
 1.4.6. Редукция общего R-оператора на конечном подпространство и
 эллиптический L-оператор ... 71
Глава 2. Операторы Бакстера для конечномерных представлений sl_2-симветричной спиновой цепочки

2.1. Альтернативная конструкция общего R-оператора

2.2. Явные формулы для действия Q-операторов на полиномы: некомпактный спин

2.3. Конечномерные представления I

2.3.1. Ограничение общего R-оператора на конечномерные представления

2.3.2. Общие трансфер матрицы и Q-операторы

2.3.3. Связь Q-операторов для компактного и некомпактного спинна и уравнение Бакстера

2.3.4. Явные формулы для действия Q-операторов на полиномы

2.4. Вырожденные локальные операторы и общие трансфер матрицы

2.4.1. Явные формулы для Q_\pm

2.5. Конечномерные представления II

2.5.1. Конечномерные операторы R, R^+, R^-

2.5.2. Общие трансфер матрицы и операторы Бакстера Q_\pm

2.5.3. Явные формулы для действия операторов Q_\pm на полиномы

2.6. Конечномерные представления III

2.6.1. Конечномерные трансфер-матрицы, уравнение Бакстера и детерминантные формулы

2.6.2. Аналитическое продолжение конечномерных трансфер-матриц

2.6.3. Аналитическая регуляризация следа и sl_2-инвариантный оператор Бакстера

2.6.4. Полностью sl_2-инвариантная конструкция пары операторов Бакстера

2.6.5. Физический оператор Бакстера и связь с решениями уравнений Бете

2.6.6. Исключительные решения уравнений Бете и аномальные подпространства

3
Глава 3. Факторизация общего R-оператора для модульного дубля

3.1. Модульный дубль и сплетающий оператор

3.2. L-оператор, факторизация, вырождение, слияние

3.3. Базовые соотношения сплетания и преобразование дуальности

3.4. Общий R-оператор и его редукции

3.4.1. Редукции общего R-оператора

3.4.2. Редукция общего R-оператора на конечномерное подпространство

3.5. Сравнение с конструкцией R-оператора для тригонометрической деформации

3.6. Заключение

Глава 4. Спинорная R-матрица

4.1. Введение

4.2. Алгебра Клиффорда

4.2.1. Фермионная реализация алгебры Клиффорда

4.2.2. Фермионная реализация R-матрицы

4.2.3. Операторы замены

4.2.4. Производящая функция для уравнения Янга–Бакстера, соотношения унитарности и кроссинга

4.2.5. Локальное уравнение Янга–Бакстера

4.3. Уравнение Янга–Бакстера, унитарность и кроссинг

4.3.1. Спинорная R-матрица

4.3.2. Интегральное тождество

4.3.3. Унитарность

4.3.4. Кроссинг-унитарность

4.4. L-оператор для $so(d)$

4.4.1. RLL-соотношение

4.4.2. Спинорная R-матрица в особом случае $d = 6$

Глава 5. Конформно-инвариантный R-оператор

5.1. Конформная алгебра в $\mathbb{R}^{p,q}$

5.1.1. Дифференциальное представление конформной алгебры и индуцированные представления
5.1.2. Операторы спина S и \bar{S} ... 201
5.2. L-операторы ... 203
 5.2.1. Алгебра $A = sl(N, C)$... 204
 5.2.2. Алгебра $A = so(p + 1, q + 1)$ и спинорная R-матрица 206
5.3. L-оператор для конформной алгебры в четырёх измерениях 210
 5.3.1. L-оператор для $sl(4, C)$ и $so(6, C)$ 211
 5.3.2. Сплетающие операторы и соотношение звезда-треугольник
 для $so(6, C) = sl(4, C)$.. 214
5.4. Общий R-оператор .. 219
 5.4.1. n-мерное пространство, скалярные представления 220
 5.4.2. Общий R-оператор для алгебры $so(5, 1)$ 228
5.5. Доказательство соотношения звезда-треугольник 234
5.6. Заключение .. 238

Приложение А. Специальные функции для тригонометрической и эллип-
тической деформаций .. 241

Литература ... 244
Введение

Актуальность работы. Модель интегрируемой спиновой цепочки естественным образом возникает при исследовании многих физических проблем. Первым историческим примером было решение Ганса Бете (1931 г.) антиферромагнитной модели Гейзенберга. Позднее анзатц Бете был переформулирован в алгебраических терминах в рамках Квантового метода обратной задачи [1]. На начальных этапах акцент делался на случае конечномерных представлений в локальных квантовых пространствах, что имеет непосредственное приложение в теории конденсированного состояния. Несмотря на то, что спиновые цепочки – 2-мерные физические системы, они нашли неожиданные приложения в 4-мерных квантовых неабелевых калибровочных теориях поля, в частности при исследовании высокозергетической асимптотики амплитуд рассеяния в КХД [2], при нахождении спектра аномальных размерностей составных операторов. При этом необходимы цепочки для бесконечномерных представлений.

В работе [3], посвящённой вычислению статсуммы 8-вершинной модели, Бакстером был сформулирован метод Q-оператора. По сравнению с анзатцем Бете, метод Q-оператора применим для более широкого класса моделей, в частности для систем с бесконечномерным пространством состояний в каждом узле цепочки. Поэтому поиск новых решений уравнения Янга–Бакстера и Q-операторов для бесконечномерных представлений имеет важное значение для многих современных проблем теоретической и математической физики и тесно связан с теорией представлений алгебры симметрии спиновой цепочки. Стоит отметить, что интегрируемые конструкции для XYZ цепочки важны для исследование представлений алгебры Склянина [4].

Научная новизна и практическая значимость. В диссертации впервые решены следующие задачи:

- Предложена единая конструкция операторов Бакстера на основе сплетающих операторов, которая охватывает все стандартные типы деформаций алгебры \(s\ell_2 \). Найдены свойства сплетающих операторов, которые справедливы для всех типов деформаций, а значит присущи структуре интегрируемых моделей. Все свойства Q-операторов единообразно получены из соотношений сплетения для составляющих их локальных блоков.

- Предложено несколько конструкций операторов Бакстера для конечномерных пред-
составленных \(\mathfrak{sl}_2 \) на основе построений для бесконечномерных представлений. Это позволило получить новые явные формулы для \(Q \)-операторов на пространстве полиномов.

- Найден общий \(R \)-оператор для модулярного дубля в форме интегрального оператора. Построение выполнено двумя способами: при помощи сплелейщих операторов для вырожденных \(L \)-операторов, и при помощи операторного представления симметрической группы на множестве параметров 2-узловой монодромии, – и прослежена связь двух подходов. Исследованы вырождения общего \(R \)-оператора, показано, что все другие известные решения соотношений типа Янга–Бакстера для модулярного дубля следуют из общего \(R \)-оператора.

- Найдены эффективные формулы редукции общего \(R \)-оператора на конечномерные инвариантные подпространства для алгебры \(\mathfrak{sl}_2 \), её эллиптической деформации и для модулярного дубля.

- Предложена формулировка Янгиана для (псевдо)ортогональных алгебр при помощи спинорной \(R \)-матрицы, и найдено его нетривиальное бесконечномерное представление. Построен общий \(R \)-оператор для конформной алгебры \(n \)-мерного Евклидова пространства, заданный на тензорном произведении двух скалярных дифференциальных представлений, параметризуемых конформным весом. В случае 4-мерного Евклидова пространства построен общий \(R \)-оператор для дифференциальных представлений с нетривиальной конечномерной частью, отвечающей лоренцевой подалгебре. Найдено обобщение скалярного операторного и интегрального соотношений звезда-треугольник на случай безмассовых полей произвольных спинов.

Найденные \(R \)-операторы и \(Q \)-операторы имеют потенциальное приложение для интегрируемых моделей, связанных с 4-мерными квантовыми калибровочными теориями поля. В частности при изучении Янгианной симметрии амплитуд рассеяния в теории супер–Янга–Миллса \(\mathcal{N} = 4 \) и при поисках высших симметрий других динамических величин.

На защиту выносятся следующие основные результаты и положения:

- Для периодических однородных спиновых цепочек с алгеброй симметрии ранга один: \(\mathfrak{sl}_2 \), её тригонометрическая и эллиптическая деформации, – построены операторы Бакстера в случае бесконечномерных представлений в каждом локальном квантовом пространстве цепочки. Найдены явные формулы для действия \(Q \)-операторов на производящую функцию векторов состояний спиновой цепочки.
Получен набор операторов Бакстера для периодической компактной sl_{2}-симметричной спиновой цепочки при помощи спуска от бесконечномерных представлений к конечномерным. Найдены формулы для действия Q-операторов на пространство полиномов в случае произвольных конечномерных представлений.

Найден общий R-оператор для модулярного дубля. Получены формулы редукции общего R-оператора для модулярного дубля и эллиптической деформации sl_{2}, заданного на тензорном произведении двух бесконечномерных представлений, на произвольное инвариантное конечномерное подпространство в одном из тензорных сомноожителей.

Построен общий R-оператор для конформной алгебры n-мерного Евклидова пространства для представлений на скалярных полях и в случае 4-мерного Евклидова пространства для представлений на тензорных полях произвольного ранга. Получено обобщение скалярного соотношения звезда-треугольник в 4-мерии на случай тензоров произвольного ранга.

Апробация работы. Результаты диссертации обсуждались на заседаниях научного семинара по квантовой теории поля в Санкт-Петербургском отделении Математического института им. В.А. Стеклова РАН, на семинаре Groupes de Lie et espaces des modules математического факультета Университета Женевы, на семинаре математического факультета Высшей Школы Экономики, на семинаре отдела теоретической физики Математического института им. В.А. Стеклова РАН. Основные результаты диссертации докладывались на одной российской и на одной международной конференции.

Публикации. Материалы диссертации опубликованы в шести статьях в рецензируемых журналах [5–10] из Перечня ведущих рецензируемых журналов и изданий ВАК.

Личный вклад автора. Содержание диссертации и основные положения, выносимые на защиту, отражают персональный вклад автора в опубликованные работы. При подготовке к публикации полученных с соавторами результатов участие диссертанта было определяющим на всех этапах.

Структура и объем диссертации. Диссертация состоит из введения, 5 глав и приложения. Общий объем диссертации 254 страницы, включая 19 рисунков. Библиография включает 143 наименования.

Работу можно условно разделить на две логические части. В первой части, объеди-
няя главы 1, 2, 3, исследуются спиновые цепочки с недеформированной и деформированной алгеброй симметрии ранга один. Акцент сделан на изучение квантовых систем с бесконечномерным пространством состояний. Выполнено построение обших трансфер матриц и операторов Бакстера в виде следов матриц монодрмий по вспомогательному бесконечномерному пространству. Выведены соотношения между ними на основе локальных соотношений для строительных блоков матриц монодрмий, которые в свою очередь получены из соотношений Янга–Бакстера и ему подобных. Найдены явные выражения для рассматриваемых локальных и глобальных операторов. Анализ конечномерных представлений в квантовом пространстве основан на предельных переходах в формул для бесконечномерных представлений. Вторая часть состоит из глав 4, 5. В ней исследуются решения Янга–Бакстера, которые определены как на конечномерных пространствах, так и бесконечномерных, и инвариантны относительно алгебр высших рангов конформной и (псевдо)ортогональной симметрии. Несмотря на повышение ранга симметрии, построения таких решений существенно задействует методы, развиваемые для алгебр ранга один, что позволяет логически связать воедино обе части работы.

Перед тем как приступить к обсуждению динамики однородной периодической квантовой спиновой цепочки, квантовые состояния в каждом узле которой образуют бесконечномерное неприводимое представление деформированной (тригонометрически, эллиптически) или недеформированной алгебры симметрии ранга один, напомним основные положения квантового метода обратной задачи (КМОЗ) [1, 11–13], который является современным методом решения квантовых интегрируемых систем. В рамках КМОЗ собственные векторы \(|v_1, \ldots, v_k \rangle \) набора коммутирующих операторов строятся при помощи алгебраического анзатца Бете (АБА) в форме возбуждений над псевдовакуумным состоянием. При этом спектральная задача сводится к решению системы алгебраических уравнений (уравнения Бете) на параметры \(v_j \).

Такие объекты как матрица монодрмии \(M(u) \) и трансфер матрица \(t(u) \) играют основную роль при изучении квантовой спиновой цепочки. Матрица монодрмии строится как упорядоченное произведение \(L \)-операторов, каждый из которых относится к своему узлу цепочки,

\[
M(u) \equiv L_1(u)L_2(u) \cdots L_n(u) = \begin{pmatrix} A(u) & B(u) \\ C(u) & D(u) \end{pmatrix}.
\]

(1)
Трансфер матрица определяется как матричный след монодромии

\[t(u) \equiv \text{tr} M(u) = A(u) + D(u) \quad (2) \]

и порождает семейство коммутирующих операторов, \(t(u) t(v) = t(v) t(u) \). Для многих квантовых систем (но не для всех, которые имеют физические приложения) существует псевдовакуумное состояние \(|0\rangle \), которое играет роль вектора младшего веса для представлений алгебры, описывающей интегрируемую структуру или другими словами скрытую динамическую симметрию:

\[B(u)|0\rangle = 0 \; ; \; A(u)|0\rangle = \Delta_+(u)|0\rangle \; ; \; D(u)|0\rangle = \Delta_-(u)|0\rangle , \]

где \(\Delta_{\pm}(u) \) некоторые функции спектрального параметра \(u \).

В рамках АБА проверяется, что вектор \(|v_1, \cdots, v_k\rangle = C(v_1) \cdots C(v_k)|0\rangle \) является собственным вектором оператора \(t(u) \), и соответствует собственному значению \(\tau_k(u) \):

\[t(u)|v_1, \cdots, v_k\rangle = \tau_k(u)|v_1, \cdots, v_k\rangle \; ; \; \tau_k(u) = \Delta_+(u) \frac{Q_k(u + 1)}{Q_k(u)} + \Delta_-(u) \frac{Q_k(u - 1)}{Q_k(u)} , \quad (3) \]

если параметры \(v_i \) подчинены уравнениям Бете:

\[Q_k(v_i + 1) \Delta_+(v_i) + Q_k(v_i - 1) \Delta_-(v_i) = 0 . \quad (4) \]

Совокупность параметров \(v_i \) собрана в одном полиноме \(Q_k(u) = (u - v_1) \cdots (u - v_k) \).

Уравнения Бете легко вывести из формулы (3) для трансфер-матрицы \(\tau(u) \), вычислив вычет при \(u = v_i \) с учётом того, что \(\tau(u) \) полиномиальная, а следовательно вычет зануляется. Таким образом видим, что уравнения (3) и (4) эквивалентны уравнению Бакстера для полинома \(Q_k(u) \),

\[\tau_k(u) Q_k(u) = \Delta_+(u) Q_k(u + 1) + \Delta_-(u) Q_k(u - 1) . \quad (5) \]

Предыдущие рассуждения могут служить мотивацией для формулировки альтернативного подхода к нахождению спектра квантовой системы, известного как метод Q-оператора.

В этом подходе вся задача сводится к задаче нахождения Q-оператора Бакстера. Этот оператор \(Q(u) \) обладает свойствами [3, 14]:

- коммутативность

\[[Q(u), Q(v)] = 0 , \quad [Q(u), t(v)] = 0 \]
разностное уравнение Бакстера

\[t(u) \cdot Q(u) = \Delta_+(u) Q(u + 1) + \Delta_-(u) Q(u - 1). \]

(6)

Отметим, что в этом подходе функция \(Q_k(u) = (u - v_1) \cdots (u - v_k) \) является полиномиальным собственным значением оператора Бакстера

\[Q(u) |v_1, \ldots, v_k\rangle = Q_k(u) |v_1, \ldots, v_k\rangle. \]

(7)

Концепция Q-операторов была введена Р. Бакстером при анализе восьми-вершинной модели [3, 14].

Основное преимущество метода Q-оператора состоит в том, что для его формулировки не требуется существование псевдовакуумного состояния. Поэтому он применим для более широкого класса моделей по сравнению с АБА, в частности для систем с бесконечномерным пространством состояний. Из упомянутой выше связи между АБА и методом Q-оператора следует, что в рамках обоих методов имеет место разностное уравнение (5) Бакстера на функцию \(Q_k(u) \), где \(k \)-квантовое число. Однако это разностное уравнение второго порядка для каждого \(k \) имеет пару решений, которые различаются по своим аналитическим свойствам как функции спектрального параметра. Выбор аналитических свойств решения соответствует дополнительным условиям квантования системы. В упомянутом выше примере спиновой цепочки с конечномерным квантовым пространством выбиралась полиномиальная по \(u \) решение. Построив пару операторов Бакстера, автоматически получим решение (5) для всего набора квантовых чисел с некоторыми аналитическими свойствами, так что не требуется накладывать условия на аналитические свойства решения для каждого заданного квантового числа по отдельности.

Операторы Бакстера строились для различных квантовых моделей например в работах [15–23], где рассмотрены алгебры симметрии моделей ранга один. Общая алгебраическая конструкция операторов Бакстера в рамках теории представлений аффинных алгебр с использованием универсальной R-матрицы сформулирована в [24–27]. Динамика квантовых систем для бесконечномерных представлений обсуждается в частности в работах [17–19, 24, 28–32]. Системы с некомпактным квантовым пространством имеют важное приложение при исследовании разнообразных аспектов интегрируемости калибровочных квантовых теорий поля в режимах сильной и слабой константы связи. Альтернативный подход к решению квантовых систем при помощи оператора Бакстера основан на унитар-
ном преобразовании к представлению разделённых переменных [33–36]. Несмотря на обилие полученных результатов и решённых моделей, до сих пор не существует общепринятой схемы построения операторов Бакстера. Также слабо изучены связи между различными подходами к решению этой проблемы.

В начале главы 1 сформулирована общая схема решения квантовых спиновых цепочек методом оператора Бакстера, пространством состояний которых в каждом узле является бесконечномерное пространство представления алгебры симметрии ранга один. Далее общая схема применена к трём моделям: XXX, XXZ и XYZ спиновым цепочкам, алгебрами симметрии которых является sl_2, её тригонометрическая и эллиптическая деформации соответственно. Все глобальные соотношения (те, в которых участвуют Q-операторы и трансфер матрицы) систематически выведены из локальных соотношений для составляющих их локальных операторов (R-операторы и L-операторы). Таким образом проверены соотношения факторизации, коммутативности и уравнение Бакстера. В итоге вся конструкция спускается на уровень локальных соотношений, в результате чего глобальные соотношения становятся абсолютно естественными.

В предлагаемом подходе сначала рассматривается случай спинового параметра в общем положении, а затем изучается предельный переход к (полу)целому значению спина, $2\ell = n, n = 0, 1, 2, \cdots$. L-матрица является оператором, заданным на тензорном произведении двух пространств представлений sl_2, одно из которых является фундаментальным (спин $1/2$), тогда как общий R-оператор задан на тензорном произведении двух пространств бесконечномерных представлений, спины которых в общем положении. R-оператор является наиболее общим локальным оператором, ограничение которого на пространство фундаментального представления в одном из тензорных сомножителей приводит к L-оператору. С другой стороны, R-оператор строится при помощи L-оператора (как решение RLL-соотношения).

Общая трансфер матрица $T_s(u)$ определяется как и обычная трансфер матрица, если в таком определении в каждом узле заменить матричный L-оператор на общий R-оператор Янга–Бакстера, заданный на тензорном произведении двух модулей со спиновыми параметрами ℓ, s, так что след вычисляется по бесконечномерному пространству представления спина s. Как и обычная трансфер матрица, она является производящей функцией для набора коммутирующих наблюдаемых спиновой цепочки. Кроме того, она наследует свойства составляющих её локальных блоков: общая трансфер матрица $T_s(u)$ фактори-
зуется в произведение более простых Q-операторов. С этой точки зрения $T_u(u)$ является однопараметрическим набором Q-операторов.

В качестве локальных строительных блоков для глобальных операторов использованы общие операторы Янга–Бакстера. Они были построены единичным образом для трёх алгебр симметрии ранга один в работе [37] в форме функций от канонических пар. Главная идея такой конструкции состоит в факторизации общих операторов Янга–Бакстера на операторы перестановок параметров представлений. Аналогичная факторизация была замечена ранее при изучении киральных моделей Поттса [38–41]. Кроме того, используем результаты работы [42], в которой предложена конструкция общих операторов Янга–Бакстера для эллиптической деформации в виде интегральных операторов. Причина состоит в том, что оператор перестановки параметров, являющийся сплётным оператором представлений ℓ и $-\ell - 1$ алгебры Склянина, выбран в [37] в форме ряда, предложенного в [23, 43]. Он хорошо определён только лишь для конечномерных представлений. Для бесконечночмерных представлений с таким операторным рядом можно обращаться лишь формально: алгебраические соотношения сплётания выполнены, но при действии им на векторы состояния возникают расходности. Формулировка, основанная на эллиптическом бете интеграле [44–46], позволяет избежать подобных затруднений.

Важную роль при выводе уравнения Бакстера играют рекуррентные соотношения для операторов элементарных перестановок параметров. Примечательно, что они имеют сходный вид для тригонометрической и эллиптической деформаций. Произведение сплётующих операторов представлений алгебры симметрии, взятое по узлам цепочки, сплётает также друг с другом операторы Бакстера из пары.

Важным результатом являются эффективные формулы для ограничения общего R-оператора, при подходящем значении спинового параметра, на произвольное конечночмерное представление в одном из тензорных сомножителей. Примечательно то, что удалось получить такую формулу для случая эллиптической деформации, где доступна лишь формулировка в терминах интегральных операторов. Эта редукция особенно важна в случае эллиптической деформации, для которой известен весьма ограниченный набор решений уравнений типа Янга–Бакстера.

Результаты этой главы частично опубликованы в работах [5, 6].

В главе 2 подробнее остановимся на спиновой цепочке с недеформированной sl_2 симметрией, обсуждение которой начали в главе 1. Получим дополнительные, более деталь-
ные результаты для бесконечномерных представлений, а также перенесём конструкцию на случай произвольных конечномерных представлений в квантовом пространстве. Подчеркнём, что в предлагаемом подходе конструкция конечномерных представлений основывается на формулах, полученных исходно для бесконечномерных представлений. В основе лежит наблюдение, что при (полу)целом параметре спина модуль Верма становится приводимым и его фактор по неприводимому подмодулю равен конечномерному инварианту подпространству. Анализ конечномерных представлений сводится к ограничению операторов, заданных исходно на произведении модулей Верма, на инвариантное подпространство. В результате рассматриваемая конструкция позволяет охватить операторы Бакстера для представлений обоих типов, приводя естественным образом к формулам связи для них. Такая конструкция имеет важные практические следствия, поскольку позволяет получить весьма удобные для вычислений формулы для операторов Бакстера. Эти явные формулы описывают результат применения операторов Бакстера к полиномам. Оказывается, что явная формула для первого оператора Бакстера, выведенная исходно для бесконечномерных представлений, заметно упрощается при переходе к конечномерным представлениям. Это связано с тем, что для конечномерных представлений оба оператора Бакстера полиномиальны по спектральному параметру.

В работе [24], а также в работе [47], посвящённой спиновой цепочке с фундаментальным представлением в каждом локальном квантовом пространстве, сформулирована конструкция операторов Бакстера, альтернативная разобранной в главе 1. Выполним обобщение этой схемы как на случай произвольных конечномерных представлений, так и бесконечномерных представлений на модулях Верма, и установим связь двух конструкций. В обоих подходах основная линия построения Q-операторов Бакстера одинакова и опирается на КМОС. Сформулируем её основные шаги для конечномерных представлений $s\ell_2$:

- Строится общая трансфер матрица для (полу)целого спина квантового пространства $\ell = n/2, n = 0, 1, 2, \ldots$ и спинового параметра вспомогательного пространства в общем положении $s \in \mathbb{C}$, так что слож по бесконечномерному пространству регуляризован параметром $q, |q| < 1$,

$$T_s(u) = tr_0 q^{s_0\delta_0} R_{10} (u|\frac{n}{2}, s) R_{20} (u|\frac{n}{2}, s) \cdots R_{N0} (u|\frac{n}{2}, s).$$

Здесь $R_{k0} (u|\frac{n}{2}, s)$ — ограничение общего решения уравнения Янга–Бакстера на тензорное произведение $U_n \otimes V_s$, где U_n — $(n + 1)$-мерное и V_s — бесконечномерный.
неприводимый $s\ell_2$-модуль.

• Доказывается соотношение факторизации

$$S T_s(u) = Q_B(u - s) Q_A(u + s + 1) = Q_A(u + s + 1) Q_B(u - s), \quad (8)$$

где коммутирующие операторы Q_A и Q_B имеют вид общих трансфер матриц

$$Q_A(u) = \text{tr}_0 q^{z_0 u_0} R_A^0(u) \cdots R_A^N(u) ; \quad Q_B(u) = \text{tr}_0 q^{z_0 u_0} R_B^0(u) \cdots R_B^N(u),$$

построенных из локальных операторов $R_{A0}^k(u)$ и $R_{B0}^k(u)$. Они тесно связаны с общим оператором Янга–Бакстера $R_{k0}^0(u | \frac{1}{2}, s)$, и являются факторами последнего. Оператор S не зависит от спектрального параметра u, также имеет вид общей трансфер матрицы и коммутирует с прочими глобальными операторами $T_s(u)$ и Q_A, Q_B. Доказательства соотношений факторизации и коммутативности шаг в шаг повторяют аналогичные доказательства для бесконечномерных представлений. Они основаны на тройных соотношениях типа Янга–Бакстера, которые теперь ограничены на инвариантное подпространство.

Факторизация общей трансфер матрицы (8) немедленно приводит к детерминантному представлению трансфер матрицы $t_m(u)$, в которой след взят по $(m + 1)$-мерному вспомогательному пространству. Из детерминантного представления следует уравнение Бакстера для Q_A и Q_B, а также все возможные соотношения слияния для трансфер матриц. Индексы A и B, принимают значения $A, B = +, -$ или $A, B = 1, 2$ для двух различных пар Q-операторов, рассматриваемых далее. Бесконечномерные аналоги Q_1 и Q_2 изучены в главе 1, а операторы Q_+ и Q_- для фундаментального представления были использованы в [47]. В качестве стартовой точки для обобщения на прочие представления, найдём их бесконечномерные аналоги Q_{\pm}.

В итоге построим по два набора операторов Бакстера как для конечномерных, так и бесконечномерных представлений. Между ними всеми существует многообразные связи, позволяющие переходить от одной конструкции к другой $(+, -) \leftrightarrow (1, 2)$, и от бесконечномерных представлений к конечномерным. Одна из поставленных целей состоит в установлении этих связей, сопоставлении двух конструкций и выявлении их преимуществ и недостатков.

Необходимость ввести параметр регуляризации q является явным недостатком предыдущей конструкции Q-операторов. Чтобы описать конечномерные представления, по сути
пришлось подменить периодическую цепочку квазипериодической, т.е. ввести изменения в формулировку модели. Далее в главе 2 обсуждается вопрос о снятии регуляризации. Показано, как определить набор операторов Бакстера, в которых не возникает расходимостей при снятии регуляризации, так что в пределе получаются \(sl_2 \)-инвариантные операторы. Кроме того, предложена альтернативная конструкция операторов Бакстера, которая исходно \(sl_2 \) инвариантна и не использует на промежуточных шагах регуляризацию, нарушающую исходную симметрию модели. Также как и предыдущая, она основана на анализе предельных переходов в формулах для бесконечномерных представлений, однако на это раз выбран несколько иной порядок предельных переходов.

Результаты этой главы частично опубликованы в работах [6, 7].

Глава 3 посвящена построению общего R-оператора для модульного дубля Фаддеева [48]. Эта алгебраическую структуру можно условно считать тригонометрической деформацией алгебры \(sl_2 \). Однако, в отличие от \(U_q(sl_2) \), изученной в главе 1, она содержит вдвое больше генераторов: две копии генераторов обычной тригонометрической деформации, которые (анти)коммутируют друг с другом и реализованы на общем пространстве функций. Удвоение алгебры приводит к кардинальному изменению структуры представлений. Помимо представлений на модулях Верма, возникают представления без старшего веса. В этом плане модульный дубль можно сравнить с группой \(SL(2,\mathbb{C}) \), алгебра Ли которой также удавивается \(sl_2 + sl_2 \), а требование групповой структуры, представленной на пространстве однозначных функций на комплексной плоскости, связывает параметры представлений двух копий \(sl_2 \). Поскольку теория представлений модульного дубля отличается от теории представлений тригонометрической деформации универсальной обёртывающей алгебры для \(sl_2 \), то при построении R-оператора требуются иные специальные функции, а именно, вместо квантового дилогарифма применяется некомпактный квантовый дилогарифм. R-оператор для обычной тригонометрической деформации был построен в виде функции от набора Вейлевских пар. Такая форма R-оператора по прежнему справедлива для представлений модульного дубля, а в случае представлений без старшего веса возникает новая возможность: R-оператор строится в форме интегрального оператора. При этом согласованность конструкции R-оператора, т.е. справедливость соотношения Янга–Бакстера, обеспечивается интегральными тождествами для некомпактного квантового дилогарифма. В этом плане модульный дубль аналогочн эллиптической деформации из главы 1, для которой общий R-оператор является интегральным, но по сравнению
с последней для него имеет место хорошо определённое представление в форме функции от набора Гейзенберговских пар. Кроме того, в главе 3 исследованы выражения L- и R-операторов. Выражения L-оператора L± решают „Янг-Бакстеров“ соотношение, и анало­
gичны случаю sl(2), исследованному в главе 2. В свою очередь, полный L-оператор можно расщепить на пару выраженных L1+ · L2− ∼ L1. Это наблюдение позволяет выполнить альтернативное построение общего R-оператора из сплетающих операторов для выраже­
nий L±. Общий R-оператор в частности содержит другие известные решения соотношений Янга–Бакстера. Показано как при помощи выражения из него получается универсальная R-матрица, вычисленная в соответствующем представлении, а также решение уравнения Янга–Бакстера типа универсальной R-матрицы с зависимостью от спектрального парамет­ра. Соотношения сплетания между этими объектами следуют из уравнения Янга–Бакстера для общего R-оператора. Кроме того, получены эффективные формулы для редукции общего R-оператора, заданного на тензорном произведении двух бесконечномерных про­
странств, на произвольное инвариантное конечномерное подпространство в одном и в паре пространств. Таким образом в частности показано, как из общего R-оператора получить L-оператор и тригонометрическую R-матрицу.

Результаты этой главы частично опубликованы в работе [8].

В главе 4 переходим к изучения решений уравнения Янга–Бакстера, обладающих (псевдо)ортогональной и конформной симметрией. Квазитвые интегрируемые спиновые цепочки с алгебрами симметрии старшего ранга привлекли большое внимание [49–53] ввиду их приложений для описания спектра аномальных размерностей в калибровочных тео­
риях и AdS/CFT соответствия. Однако большинство разработанных до сих пор методов применимы только к sl(N)-симметричными моделями, для которых поддаются всесторон­ному анализу как конечномерные, так и бесконечномерные представления в квантовом пространстве. Фундаментальным уравнением, которое обеспечивает квантовую интегрируе­мость моделей, является универсальное уравнение Янга–Бакстера (RRR-соотношение) и его частные случаи: RLL-соотношение с общим R-оператором, действующим на тензорном произведении двух квантовых пространствах, и RLL-соотношение с R-матрицей, действу­
ющей на тензорном произведении двух конечномерных вспомогательных пространств (к примеру пространство определяющего представления sl(N)). В последнем случае RLL-соотношение можно получить при помощи точечного гомоморфизма Янгана для sl(N): Y(sl(N)) → U(sl(N)). Для sl(N)-симметричных моделей известен общий R-оператор, за
данный на тензорном произведении двух бесконечномерных квантовых пространств. Он служит локальным строительным блоком в конструкции Q-операторов Бакстера [54–56]. Намного меньше известно о квантовых интегрируемых решёточных моделях для спиновой цепочки со $so(N)$ симметрией (см. [57–59]). Отчасти это связано с тем, что основной алгебраический объект – Янгиан $Y(so(N))$ [60], если его определять RLL-соотношением с числовой R-матрицей типа $so(N)$, действующей в двух конечномерных вспомогательных пространствах (пространство определяющего представления $so(N)$), не имеет точечного гомоморфизма $Y(so(N)) \rightarrow U(so(N))$. В таком случае вместо Янгиана $Y(so(N))$ можно рассматривать скрученный Янгиан Ольшанского [61] или алгебру уравнения отражения [62], для которых существует точечный гомоморфизм. Однако такие алгебры использовать исключительно для построения интегрируемых спиновых цепочек с нетривиальными граничными условиями.

В этой части работы покажем как перенести методы, пригодные для $s\ell(N)$ симметричных спиновых цепочек, на спиновые цепочки со $so(p+1,q+1)$-симметрией, интерпретируя её как конформную симметрию в пространстве $\mathbb{R}^{p,q}$.

L-оператор для $s\ell(N)$-симметричной квантовой спиновой цепочки можно получить из Янгиана $Y(s\ell(N))$ при помощи точечного гомоморфизма $Y(s\ell(N)) \rightarrow U(s\ell(N))$. Он выражается через поляризованный оператор Казимира для $g\ell(N)$:

$$L(u) = u \cdot 1 + T(E_{ij}) \otimes T'(E_{ij}) ,$$

где u – спектральный параметр, E_{ij} – генераторы $g\ell(N)$; в первом пространстве (вспомогательное пространство) тензорного произведения выбрано фундаментальное (определяющее) представление T, а во втором пространстве (квантовое пространство) выбрано произвольное представление T'. Такой L-оператор был рассмотрен в [63–66]. Если в качестве T' выбрать дифференциальное (индуктированное) представление [67], тогда для L-оператора имеет место примечательное свойство факторизации [56]. Такой L-оператор удовлетворяет RLL-соотношению с R-матрицей Янга.

Предыдущее замечание приводит к естественному определению. Будем называть L-оператором оператор L, действующий в тензорном произведении некоторого конечно-мерного вспомогательного пространства и произвольного квантового пространства (вообще говоря бесконечномерного) и удовлетворяющий RLL-соотношению с некоторой числовой R-матрицей на вспомогательных пространствах. Для конформной алгебры $so(p+1,q+1)$ псевдоевклидова пространства $\mathbb{R}^{p+1,q+1}$ рассмотрим L-оператор, построенный из
поляризованного оператора Казимира для $so(p + 1, q + 1)$, действующего в тензорном произведении двух пространств: вспомогательным пространством служит пространство спинорного представления (вместо определяющего), а в качестве квантового пространства выступает пространство дифференциального представления конформной алгебры $so(p + 1, q + 1)$. Оказывается, что в случае общего положения такой оператор удовлетворяет RLL-соотношению только при специальном выборе дифференциального представления конформной алгебры в квантовом пространстве. А именно нужно взять скалярное представление, для которого равна нулю спиновая часть $S_{\mu\nu}$ генераторов подалгебры Лоренца. Соответствующая числовая R-матрица, действующая в пространстве спинорного представления, весьма нетривиальна. Будем называть её спинорной R-матрицей. Впервые она появилась в работе [68] (см. также [57, 58]), где было использовано RLL-соотношение для $so(N)$-инвариантного L-оператора с фундаментальным (определяющим) представлением в квантовом пространстве. Таким образом в настоящей работе предложено обобщение этого результата. А именно покажем, что в квантовом пространстве L-оператора можно заменить определяющее представление на бесконечномерное скалярное представление, параметризованное конформной размерностью Δ. Этот конформный L-оператор можно факторизовать аналогично случаю $s\ell(N)$. Он соответствует некоторой интегрируемой системе [69-71]. В главе 4 обсуждается такой L-оператор для (псевдо)ортогональной алгебры и проверяется RLL-соотношение со спинорной R-матрицей, а в главе 5 — L-оператор для конформной алгебры.

В качестве самостоятельного сюжета в главе 4 исследуется спинорная R-матрица. Это весьма нетривиальный объект, который выражается через полный базис гамма-матриц алгебры Клиффорда, что весьма затрудняет работу с ним. Априори совсем не очевидно, что такая R-матрица решает уравнение Янга–Бакстера, которое в этом случае равносиливо равенству двух громоздких гамма-матричных структур. В этой главе проверим, что уравнение Янга–Бакстера в самом деле выполнено и установим тождество, которое его порождает. Для этого будем работать не с алгеброй гамма-матриц, а воспользуемся фермионной реализацией алгебры Клиффорда, и запишем спинорную R-матрицу через фермионные операторы. Такое представление оказывается чрезвычайно удобным, позволяя переписать R-матрицу в виде интеграла по вспомогательному параметру от некоторой производящей функции фермионных операторов. В результате уравнение Янга–Бакстера для спинорной R-матрицы следует из интегрального тождества, которое выражает сим-
метрию некоторого трёхкратного интеграла, зависящего от набора внешних параметров. Проверка этого тождества выполнена при помощи подходящей замены переменных интегрирования в интеграле, которая имеет интересную геометрическую интерпретацию и связана с локальным уравнением Янга–Бакстера.

Результаты главы 4 опубликованы в работе [9].

Основная цель главы 5 – построить общий R-оператор, определённый на тензорном произведении $\rho_1 \otimes \rho_2$ двух бесконечномерных представлений конформной алгебры $so(n + 1, 1) = conf(\mathbb{R}^n)$ и решающий RLL-соотношение с конформными L-операторами. Для простоты ограничимся случаем Евклидова пространства \mathbb{R}^n, поскольку в этом случае все интегральные операторы хорошо определены. Для конформной алгебры $so(n + 1, 1) = conf(\mathbb{R}^n)$ строим R-оператор для скалярных ($S_{\mu\nu} = 0$) представлений $\rho_{\Delta_1} \otimes \rho_{\Delta_2}$ и в специальном случае алгебры $so(5, 1)$, т.е. конформная алгебра 4-мерного Евклидова пространства, предъявим R-оператор для весьма общего типа представлений $\rho_{\Delta_1, \ell_1, \ell_1} \otimes \rho_{\Delta_2, \ell_2, \ell_2}$ с нетривиальной спиновой частью.

Общий R-оператор строится в виде произведения, образованного более простыми операторами $S_1, S_2 \text{ и } S_3$, каждый из которых решает соотношение типа RLL: $SLL' = L''L'''S$, в полной аналогии со случаем алгебры ранга один. Каждый L-оператор зависит от набора четырёх параметров $(u, \Delta, \ell, \hat{\ell})$. Поэтому RLL-соотношение можно интерпретировать так, что R-оператор, который сплетает произведение $(L_1 \cdot L_2)$ двух L-операторов, переставляет между собой наборы их параметров: $(u, \Delta_1, \ell_1, \hat{\ell}_1) \leftrightarrow (v, \Delta_2, \ell_2, \hat{\ell}_2)$. В силу предыдущего замечания разумно выполнять перестановку за несколько шагов и для этого построить операторы S_1, S_2, S_3, которые сплетают произведение двух L-операторов и переставляют только часть их параметров. Операторы S_1 и S_3 переставляют параметры только в первом и втором множителях произведения $L_1 \cdot L_2$ соответственно. На самом деле операторы $S_1 \text{ и } S_3$ можно отождествить со сплетающими операторами двух неприводимых представлений конформной алгебры [72–74], так что вся конструкция имеет прозрачную интерпретацию с точки зрения теории представлений. Оператор S_2 переставляет между собой параметры из двух сомножителей $L_1 \text{ и } L_2$. Явный вид S_2 получен из сплетающего оператора S_1 (или S_3) при помощи некоторого преобразования дуальности. Это преобразование дуальности является аналогом преобразования в модели некомпактной спиновой цепочки в [75] (см. также [19]). Оно также напоминает преобразование дуальной конформной симметрии для диаграмм Фейнмана [76, 77] и амплитуд рассеяния в максимально суперсимметричной
$N = 4$ теории Янга–Миллса [78, 79]. Таким образом общий R-оператор, осуществляющий перестановку специального вида на множество параметров, может быть факторизован в произведение базовых строительных блоков S^1, S^2, S^3, которые представляют элементарные перестановки. Имеются соотношения для основных строительных блоков, которые порождают все прочие соотношения между R-операторами. В самом деле, тройные соотношения Кокстера симметрической группы (группы кос) представляются элементарными операторами: $S^1 S^2 S^1 = S^3 S^1 S^2$ и $S^3 S^2 S^3 = S^2 S^3 S^2$. Эти тройные соотношения можно интерпретировать как соотношение звезда-треугольник. Они играют важную роль в конструции общего R-оператора. В n-мерном скалярном случае такое соотношение совпадает с известным соотношением звезда-треугольник [80, 81] для пропагаторов скалярных полей. Для конформной алгебры $so(5,1)$ 4-мерного евклидова пространства доказано новое соотношение звезда-треугольник для весьма общих представлений типа $\rho_{\Delta,t,i}$, которые включают спиновые степени свободы, т.е. выполнено обобщение скалярного соотношения звезда-треугольник на безмассовые поля произвольных спинов.

Соотношение звезда-треугольник лежит в основе многих решёточных моделей статистической механики [3, 14] (см. также [82, 83]). Скалярное соотношение звезда-треугольник позволяет сформулировать n-мерный вариант интегрируемой решёточной модели Л. Липатова [2, 69, 70]. Отметим также работу [71], где была предложена другая интегрируемая решёточная модель при помощи скалярного соотношения звезда-треугольник.

Результаты главы 5 опубликованы в работе [10].

В Приложении А собраны определения и необходимые свойства использованных в работе специальных функций.
Глава 1

Операторы Бакстера для спиновых цепочек с
деформированной симметрией

1.1. Факторизация R-оператора и уравнение Бакстера

Основным объектом при формулировке и решении квантовой интегрируемой спиновой цепочки выступает R-оператор, который зависит от спектрального \(u \), сплетает тензорное произведение двух пространств (представлений)

\[
R_{12}(u) : V_1 \otimes V_2 \rightarrow V_1 \otimes V_2
\]

и удовлетворяет универсальному уравнению Янга–Бакстера,

\[
R_{12}(u - v) R_{13}(u) R_{23}(v) = R_{23}(v) R_{13}(u) R_{12}(u - v) .
\]

В предыдущем соотношении все операторы определены на тензорном произведении трёх пространств \(V_1 \otimes V_2 \otimes V_3 \), где к примеру \(R_{12} \) действует нетрivialно в тензорном произведении первого и второго пространств (1.1) и как единичный оператор на третьем пространстве \(V_3 \).

Будем рассматривать неприводимые представления алгебры \(s\ell_2 \) и её тригонометрической и эллиптической деформации, которые задаются параметром спина \(\ell \). Представления бесконечномерны, если \(\ell \) комплексное число в общем положении, т.е. при \(\ell \neq \frac{n}{2}, n = 0, 1, 2 \cdots \), и конечномерны \((n + 1\)-мерные\) при \(\ell = \frac{n}{2} \). В уравнении (1.2) не выполнено ограничение на конкретные представления. В дальнейшем сохраним обозначение \(R_{12}(u) \) для общего R-оператора, который по определению действует на тензорном произведении двух бесконечномерных представлений

\[
R_{12}(u|\ell_1, \ell_2) : V_{\ell_1} \otimes V_{\ell_2} \rightarrow V_{\ell_1} \otimes V_{\ell_2}
\]

и удовлетворяет уравнению Янга–Бакстера (1.2) на тензорном произведении пространств \(V_{\ell_1} \otimes V_{\ell_2} \otimes V_{\ell_3} \)

\[
R_{12}(u - v|\ell_1, \ell_2) R_{13}(u|\ell_1, \ell_3) R_{23}(v|\ell_2, \ell_3) = R_{23}(v|\ell_2, \ell_3) R_{13}(u|\ell_1, \ell_3) R_{12}(u - v|\ell_1, \ell_2) .
\]

(1.3)
Наряду с предыдущем случае двух бесконечномерных представлений, также нам понадобятся R-операторы, в которых один или оба тензорных фактора конечмемеры. Если одним из пространств в тензорном произведении взято \mathbb{C}^2, т.е. фундаментальное представление спина $\frac{1}{2}$, то такой R-оператор называется L-оператором. Если оба тензорных фактора являются представлениями спина $\frac{1}{2}$, то получаем фундаментальную \mathcal{R}-матрицу, $\mathcal{R}(u) : \mathbb{C}^2 \otimes \mathbb{C}^2 \rightarrow \mathbb{C}^2 \otimes \mathbb{C}^2$. В интересующем нас случае алгебр симметрии ранга один она имеет явный вид

$$\mathcal{R}(u) = \frac{1}{2} \sum_{a=0}^{3} w_a(u + \eta) \sigma^a \otimes \sigma^a,$$
(1.4)

где σ^a стандартный набор матриц Паули. Подчеркнём, что уравнение Янга–Бакстера (1.3) на тензорном произведении трёх фундаментальных представлений $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ выполняется не для любого набора функций $w_a(u)$. Оно служит ограничением на вид функций, хотя и не фиксирует их однозначно. Более того, каждой алгебре симметрии отвечает свой набор функций $w_a(u)$ в предыдущем выражении.

\mathcal{R}-матрица позволяет сформулировать алгебраические и ко-алгебраические соотношения для рассматриваемых алгебр симметрии квантовых систем. В самом деле, частный случай соотношения (1.2), в котором пространства, отмеченные индексами 1, 2, это фундаментальные представления $V_1 = V_2 = \mathbb{C}^2$, имеет вид

$$\mathcal{R}_{ij, nm}(u - v) L_{ns}(v) L_{mp}(v) = L_{is}(v) L_{jp}(v) \mathcal{R}_{sp, nm}(u - v).$$
(1.5)

При заданной \mathcal{R}-матрице (т.е. при заданном наборе функций $w_a(u)$ в (1.4)) предыдущее соотношение порождает коммутационные соотношения между матричными элементами L-оператора. Здесь предполагается суммирование по повторяющимся индексам $n, m = 1, 2$. Предполагаем, что матричные элементы L-оператора порождают неприводимое представление общего вида, соответствующее одному узлу цепочки.

В случае алгебры симметрии ранга один L-оператор определён на тензорном произведении бесконечномерного квантового пространства и двумерного пространства фундаментального представления $V_\ell \otimes \mathbb{C}^2$ и имеет вид

$$L(u|\ell) = \sum_{a=0}^{3} w_a(u) \sigma^a \otimes S^{a}(\ell) : V_\ell \otimes \mathbb{C}^2 \rightarrow V_\ell \otimes \mathbb{C}^2.$$
(1.6)

Здесь и далее $S^{a}(\ell)$ обозначают генераторы алгебры симметрии в представлении спина ℓ. Такое решение отличается от других весьма простой зависимостью от спектрального параметра u и линейностью по генераторам алгебры симметрии.
Ко-алгебраическая структура также порождается соотношением (1.5), поскольку оно остаётся верным при замене \(L(u) \) на упорядоченное матричное произведение \(L \)-операторов \(L_1(u) L_2(u) \cdots L_N(u) \) (матрица монодромии), которое определено на тензорном произведении представлений, соответствующих углам цепочки \(1, 2, \ldots, N \). Помимо решений, построенных по неприводимым представлениям \(sl_2 \) или её тригонометрической и эллиптической деформации, также известны решения уравнения (1.5) с той же самой \(R \)-матрицей. Их можно получить при помощи выражений (выполняя подходящий предельный переход по некоторому подмножеству параметров) из решений первого вида. Подробнее останавливаемся на этом вопросе в главе 2 для недеформированной \(sl_2 \), и для её тригонометрической деформации (для модульного дубля) в главе 3.

Далее выберем в (1.2) в качестве пространств \(1, 2 \) бесконечномерные представления общего вида, параметризованные спинами \(\ell_1 \) и \(\ell_2 \) соответственно, т.е. \(V_1 = V_{\ell_1}, V_2 = V_{\ell_2} \), а в пространстве \(3 \) — фундаментальное представление, т.е. \(V_3 = \mathbb{C}^2 \),

\[
\mathbb{R}_{12}(u - v|\ell_1, \ell_2) L_1(u|\ell_1) L_2(v|\ell_2) = L_2(v|\ell_2) L_1(u|\ell_1) \mathbb{R}_{12}(u - v|\ell_1, \ell_2) . \tag{1.7}
\]

Предыдущее уравнение, известное как RLL-соотношение, можно понимать как определяющее соотношение для общего \(R \)-оператора при заданном \(L \)-операторе.

Таким образом имеем иерархию операторов

\[
\mathbb{R}(u|\ell, s) \rightarrow L(u|\ell) \rightarrow \mathcal{R}(u) , \tag{1.8}
\]

которые связаны друг с другом уравнениями Янга–Бакстера, т.е. уравнениями, получающимися при специализации универсального уравнения Янга–Бакстера (1.2) на подходящее тензорное произведение пространство. Кроме того, как показем далее явным вычислением, одни решения получаются из других согласно предыдущей диаграмме при помощи ограничений на инвариантные подпространства.

Теперь нам будет удобно ввести обозначения, которые учитывают тот факт, что представления алгебры симметрии с параметрами \(\ell \) и \(-\ell - 1 \) эквивалентны. Это действительно так, поскольку значения операторов Казимира совпадают для таких представлений. Итак соберём спектральный параметр \(u \) и спиновой параметр \(\ell \) в две линейно независимые комбинации \(u_1, u_2 \), так чтобы переход к эквивалентному представлению отвечал перестановке \(u_1 \) и \(u_2 \),

\[
u_1 \leftrightarrow u_2 \sim \ell \leftrightarrow -\ell - 1 . \tag{1.9}
\]
L-оператор по построению зависит от спектрального параметра и параметра представления. Его зависимость от нового набора параметров будем обозначать \(L(u_1, u_2) \). К примеру, как будет видно дальше, в случае недеформированной алгебры \(s\ell_2 \), формулы связи \(u_1 = u - \ell - 1 \), \(u_2 = u + \ell \). В дальнейшем укажем связь и для деформированных алгебр симметрии. Будем называть оба параметра \(u_1, u_2 \) спектральными. Соответствующий такому L-оператору общий R-оператор в (1.7) зависит от параметров \(u_1, u_2, v_1, v_2 \) где

\[
 u_1 \leftrightarrow u_2 \sim \ell_1 \leftrightarrow -\ell_1 - 1 ; \quad v_1 \leftrightarrow v_2 \sim \ell_2 \leftrightarrow -\ell_2 - 1.
\]

В дальнейшем мы будем использовать две версии \(R_{12} \) и \(R_{12} \) операторов Янга–Бакстера, заданных на пространстве \(V_{\ell_1} \otimes V_{\ell_2} \). Второй из них, в отличие от первого, содержит оператор перестановки тензорных факторов \(P_{12} : P_{12} \psi(z_1, z_2) = \psi(z_2, z_1) \), так что они связаны соотношением

\[
 R_{12} = P_{12} R_{12}.
\]

Перепишем теперь (1.7) в терминах нового набора параметров и \(R_{12} \),

\[
 R_{12}(u_1, u_2|v_1, v_2) L_1(u_1, u_2) L_2(v_1, v_2) = L_1(v_1, v_2) L_2(u_1, u_2) R_{12}(u_1, u_2|v_1, v_2).
\]

Видим, что действие R-оператора (сплетение) на произведение двух L-операторов, действующих в разных узлах цепочки, приводит к перестановке пары параметров \((u_1, u_2) \) из L-оператора на первом пространстве с парой параметров \((v_1, v_2) \) из L-оператора на втором пространстве. Изобразим это на рисунке

\[
 \begin{array}{c}
 L_1(u_1, u_2) \xrightarrow{R(u_1, u_2|v_1, v_2)} L_2(v_1, v_2) \xrightarrow{R_{12}(u_1, u_2|v_1, v_2)} L_1(v_1, v_2) L_2(u_1, u_2)
 \end{array}
\]

R-оператор представляет перестановку \(s \) в наборе из четырёх параметров

\[
 s : u = (u_1, u_2, v_1, v_2) \mapsto (v_1, v_2, u_1, u_2).
\]

Полезно также рассмотреть операторы, отвечающие другим перестановкам в этом наборе параметров. Произвольную перестановку четырёх параметров можно выразить посредством трёх элементарных транспозиций \(s^i (i=1,2,3) \), каждая из которых переставляет только пару соседних параметров. Найдём для них операторное представление \(s^i \mapsto S^i(u) \) с правилом композиции \(s^i s^j \mapsto S^i(s^j u) S^j(u) \), так что

\[
 S^i(u) L_1(u_1, u_2) L_2(v_1, v_2) = L_1(u'_1, u'_2) L_2(v'_1, v'_2) S^i(u) ; \quad s^i u = (u'_1, u'_2, v'_1, v'_2).
\]
Кроме того, должны выполнять операторные соотношения, отвечающие определяющим соотношениям симметрической группы

\[s^i s^i = 1, \quad s^1 s^2 s^1 = s^2 s^1 s^2, \quad s^3 s^2 s^3 = s^2 s^3 s^2. \]

Явные выражения для операторов \(S^1, S^2, S^3 \) для алгебры \(s\ell_2 \) и её тригонометрической и эллиптической деформаций предъявлены в следующих параграфах. Каждый из этих операторов на самом деле зависит только от одного параметра. Определяющие соотношения для них имеют вид

\[
S^1(v_2 - v_1) L_2(v_1, v_2) = L_2(v_2, v_1) S^1(v_2 - v_1), \tag{1.12}
\]

\[
S^2(u_1 - v_2) L_1(u_1, u_2) L_2(v_1, v_2) = L_1(v_2, u_2) L_2(v_1, u_1) S^2(u_1 - v_2), \tag{1.13}
\]

\[
S^3(u_2 - u_1) L_1(u_1, u_2) = L_1(u_2, u_1) S^3(u_2 - u_1). \tag{1.14}
\]

Двойные соотношения

\[S^i(a) S^i(-a) = 1, \quad S^1(a) S^3(b) = S^3(b) S^1(a) \tag{1.15} \]

и тройные соотношения Кокстера

\[
S^1(a) S^2(a + b) S^1(b) = S^2(b) S^1(a + b) S^2(a), \tag{1.16}
\]

\[
S^3(a) S^2(a + b) S^3(b) = S^2(b) S^3(a + b) S^2(a), \tag{1.17}
\]

в самом деле выполняются. Это означает, что операторы элементарных перестановок порождают представление симметрической группы. В частности \(S^i(0) = 1 \).

Определяющие соотношения (1.12) и (1.14) для операторов практически идентичны. Они переставляют пару спектральных параметров в одном \(L \)-операторе, что отвечает переходу к эквивалентному представлению (1.9). Таким образом операторы \(S^1(a) \) и \(S^3(a) \) являются двумя копиями сплетающего оператора \(W(a) \) эквивалентных представлений,

\[
W(u_2 - u_1) S_a(\ell) = S_a(-\ell - 1) W(u_2 - u_1), \tag{1.18}
\]

где \(S_a(\ell) \) генераторы алгебры симметрии в представлении спина \(\ell \) из формулы (1.6). Для второго квантового пространства \(S^1(a) = W_2(a) \), а для первого \(S^3(a) = W_1(a) \),

\[
W(u_2 - u_1) L(u_1, u_2) = L(u_2, u_1) W(u_2 - u_1). \tag{1.19}
\]

Отметим, что при (полу)целом \(\ell \), т.е. \(u_2 - u_1 = 2\ell + 1 = 1, 2, \ldots \), ядро сплетающего оператора \(W \) нетривиально и совпадает с \((2\ell + 1)\)-мерным инвариантным подпространством. В
самом деле, из соотношения сплетания (1.18) следует, что векторы, которые зануляются оператором W, лежат в инвариантном подпространстве.

Из операторов элементарных перестановок, как из блоков, построим более сложные операторы. Нам понадобятся операторы R^1 и R^2, которые заданы определяющими соотношениями

$$R^1(u_1|v_1,v_2)L_1(u_1,u_2)L_2(v_1,v_2) = L_1(v_1,u_2)L_2(u_1,v_2)R^1(u_1|v_1,v_2),$$ \hspace{1cm} (1.20)

$$R^2(u_1,u_2|v_2)L_1(u_1,u_2)L_2(v_1,v_2) = L_1(u_1,v_2)L_2(v_1,u_2)R^2(u_1,u_2|v_2),$$ \hspace{1cm} (1.21)

и как легко проверить факторизуются в произведение трёх элементарных операторов,

$$R^1(u_1|v_1,v_2) = S^2(v_2 - v_1)S^1(u_1 - v_1)S^2(u_1 - v_2) = S^1(u_1 - v_2)S^2(u_1 - v_1)S^1(v_2 - v_1),$$ \hspace{1cm} (1.22)

$$R^2(u_1,u_2|v_2) = S^2(u_2 - u_1)S^1(u_2 - v_2)S^2(u_1 - v_2) = S^3(u_1 - v_2)S^2(u_2 - v_2)S^3(u_2 - u_1).$$ \hspace{1cm} (1.23)

Тот факт, что две предыдущие факторизации согласованы друг с другом следует из тройных соотношений Кокстера (1.16) и (1.17). Легко убедиться, что общий R-опператор, который решает RLL-соотношение (1.11) и уравнение Янга–Бакстера (1.3), факторизуется в произведение четырёх элементарных операторов,

$$R_{12}(u_1,u_2|v_1,v_2) = S^2(u_2 - v_1)S^1(u_1 - v_1)S^3(u_2 - v_2)S^2(u_1 - v_2).$$ \hspace{1cm} (1.24)

Из двойных соотношений для элементарных блоков (1.15) следует формула обращения R-оператора,

$$R_{12}(u_1,u_2|v_1,v_2)R_{12}(v_1,v_2|u_1,u_2) = 1, \quad R_{12}(u|\ell,s)R_{12}(-u|s,\ell) = 1.$$ \hspace{1cm} (1.25)

Отметим, что в предыдущей формуле при обращении R-оператора не только изменил знак спектральный параметр, но и переставились местами параметры двух представлений.

Перестановку параметров $(u_1,u_2,v_1,v_2) \rightarrow (v_1,v_2,u_1,u_2)$ можно выполнить разными способами. К примеру, можно на первом шаге переставить $u_1 \leftrightarrow v_1$, а на втором шаге $u_2 \leftrightarrow v_2$. Или же наоборот, сначала $u_2 \leftrightarrow v_2$, а затем $u_1 \leftrightarrow v_1$. Такие перестановки пар параметров осуществляются в точности операторами R^1 и R^2. Соответственно факторизуем двумя способами общий R-оператор

$$R(u_1,u_2|v_1,v_2) = R^1(u_1|v_1,u_2)R^2(u_1,u_2|v_2) = R^2(v_1,u_2|v_2)R^1(u_1|v_1,v_2).$$ \hspace{1cm} (1.26)
Обе предыдущие факторизации R-оператора согласованы друг с другом, что следует из соотношений Кокстера (1.15), (1.16) и (1.17).

Изобразим факторизацию общего R-оператора на рисунке. Оператор \(R^1 \) переставляет параметры \(u_1 \) и \(v_1 \):

\[
L_1(u_1,u_2) L_2(v_1,v_2) \xrightarrow{R^1(u_1|v_1,v_2)} L_1(v_1,u_2) L_2(u_1,v_2)
\]

а оператор \(R^2 \) переставляет \(u_2 \) и \(v_2 \):

\[
L_1(u_1,u_2) L_2(v_1,v_2) \xrightarrow{R^2(u_1,u_2|v_2)} L_1(u_1,v_2) L_2(v_1,u_2)
\]

Оператор \(R^1 R^2 \) переставляет параметры \(u_1, v_1 \) и \(u_2, v_2 \) двумя способами, так что указанная выше факторизация равносильна коммутативности диаграммы

Два эквивалентных способа переставить параметры изображаются коммутативной диаграммой

которая представляет две возможные факторизации R-оператора (1.26).

В некоторых точках пространства параметров эти операторы значительно упрощаются. В самом деле, при \(u_1 = v_1 \) или \(u_2 = v_2 \) соответствующие перестановки параметров становятся тривиальными, как и операторы этих перестановок,

\[
R^1(u_1|v_1,v_2) = \mathbb{I}, \quad R^2(u_1,u_2|v_2) = \mathbb{I}, \quad (1.27)
\]

\[
R(u_1,u_2|u_1,v_2) = R^2(u_1,u_2|v_2), \quad R(u_1,u_2|v_1,u_2) = R^1(u_1|v_1,u_2).
\]
Отметим, что предыдущие соотношения верны только лишь для параметров в общем положении и должны быть модифицированы при целых значениях $u_2 - u_1$ или $v_2 - v_1$.

В терминах нового набора параметров уравнение Янга–Бакстера для общего R-оператора имеет вид

$$ R_{12}(v_1, v_2 | w_1, w_2) R_{23}(u_1, u_2 | w_1, w_2) R_{12}(u_1, u_2 | v_1, v_2) = (1.28) $$

$$ = R_{23}(u_1, u_2 | v_1, v_2) R_{12}(u_1, u_2 | w_1, w_2) R_{23}(v_1, v_2 | w_1, w_2). $$

Оно выражает эквивалентность двух способов перестановки параметров в произведении трёх L-операторов $L_1(u_1, u_2)L_2(v_1, v_2)L_3(w_1, w_2) \rightarrow L_1(w_1, w_2)L_2(v_1, v_2)L_3(u_1, u_2)$, что изображается коммутативной диаграммой

Помимо (1.28) имеются и другие тройные соотношения для операторов Янга–Бакстера. Рассмотрим соотношение, которое содержит два R-оператора и один оператор R^2,

$$ R^2_{12}(v_1, v_2 | w_2) R_{23}(u_1, u_2 | w_1, w_2) R_{12}(u_1, u_2 | v_1, v_2) = (1.29) $$

$$ = R_{23}(u_1, u_2 | v_1, v_2) R_{12}(u_1, u_2 | w_1, w_2) R^2_{23}(v_1, v_2 | w_2). $$

Оно подразумевает эквивалентность двух способов перестановки параметров

$L_1(u_1, u_2)L_2(v_1, v_2)L_3(w_1, w_2) \rightarrow L_1(v_1, v_2)L_2(w_1, w_2)L_3(u_1, u_2)$ и изображается диаграммой
Ещё раз подчеркнём, что справедливость этого соотношения следует из двойных (1.15) и тройных (1.16), (1.17) соотношений Кокстера. Наконец, имеем ещё одно тройное соотношение, содержащее оператор R^1 вместо R^2,

$$R_{12}(v_1|w_1, w_2)R_{23}(u_1, u_2|w_1, w_2)R_{12}(u_1, u_2|v_1, v_2) = (1.30)$$

$$= R_{23}(u_1, u_2|v_1, w_2)R_{12}(u_1, u_2|w_1, v_2)R_{12}(v_1|w_1, w_2).$$

Отметим, что общее уравнение Янга–Бакстера (1.3) следует из (1.29) и (1.30), тогда как два последних тройных соотношения являются независимыми соотношениями, и их не возможно получить из (1.3). Для наших целей они не менее важны, чем общее уравнение Янга–Бакстера. Исключительно при помощи этих трёх соотношений (1.28), (1.29), (1.30) установим факторизацию общей трансфер матрицы $T(u)$ в произведение Q-операторов Бакстера, а также коммутативность всего набора этих операторов.

После краткого обзора локальных операторов перейдём к глобальным операторам, которые действуют непривильно во всех узлах цепочки. Они строятся из локальных операторов, поэтому их свойства наследуются из свойств локальных операторов. Физические наблюдаемые однородной периодической спиновой цепочки содержатся в трансфер матрице, которая строится из L-операторов,

$$t(u) = \text{tr} L_1(u) L_2(u) \cdots L_N(u),$$

(1.31)

где нижний индекс k соответствует локальному квантовому пространству в k-ом узле, а матричный след вычислен по вспомогательному пространству C^2. Трансфер матрица служит производящей функцией для набора коммутирующих операторов $[t(u), t(v)] = 0$, что следует из (1.5). В однородном случае параметры спин для всех узлов совпадают $\ell_1 = \ell_2 = \cdots = \ell_N = \ell$.

Аналогичным образом строим общую трансфер матрицу, заменяя в каждом узле L-оператор на общий R-оператор

$$T_s(u|\ell) = \text{tr}_0 R_{10}(u|\ell, s) R_{20}(u|\ell, s) \cdots R_{N0}(u|\ell, s).$$

(1.32)

В отличие от (1.31), где матричный след вычисляется по фундаментальному представлению, теперь след берётся по бесконечномерному пространству V_s представления общего вида со спиновым параметром s, которое обозначено индексом 0. Далее предполагаем спин ℓ для квантового пространства фиксированным и не указываем его явно, используя...
обозначение $T_s(u)$. Если использовать другой набор параметров, то формулу для общей трансфер матрицы также можно записать в виде

$$T_s(u - v) = \text{tr}_0 R_{10}(u_1, u_2|v_1, v_2) \cdots R_{N0}(u_1, u_2|v_1, v_2).$$ \hspace{1cm} (1.33)

Подобным образом из локальных операторов R,

$$Q_1(u - v_1|\ell) = \text{tr}_0 R_{10}^1(u_1|v_1, u_2) \cdots R_{N0}^1(u_1|v_1, u_2),$$ \hspace{1cm} (1.34)

$$Q_2(u - v_2|\ell) = \text{tr}_0 R_{10}^2(u_1, u_2|v_2) \cdots R_{N0}^2(u_1, u_2|v_2).$$ \hspace{1cm} (1.35)

Форма зависимости двух предыдущих выражений от спектральных параметров следует из соответствующих свойств локальных блоков и видна из формулу (1.22) и (1.23).

Введённые операторы коммутируют друг с другом

$$[t(u), Q_s(v)] = 0; \quad [T_s(u), Q_s(v)] = 0; \quad [Q_1(u), Q_s(v)] = 0; \quad [P, Q_s'(u)] = 0; \quad i, k = 1, 2,$$ \hspace{1cm} (1.36)

где $P = P_{12}P_{13} \cdots P_{1N}$ оператор циклического сдвига вдоль цепочки. Кроме того, имеет место соотношение факторизации

$$P \cdot T_s(u - v) = Q_1(u - v_1) Q_2(u - v_2) = Q_2(u - v_2) Q_1(u - v_1),$$ \hspace{1cm} (1.37)

где v_1, v_2 являются линейными комбинациями v и s аналогично формулами связи между параметрами u_1, u_2, u, ℓ (1.9).

Факторизация (1.37) трансфер матрицы напоминает соответствующее свойство составляющих её блоков

$$R_{12}(u_1, u_2|v_1, v_2) = P_{12} R_{12}^1(u_1|v_1, u_2) R_{12}^2(u_1, u_2|v_2).$$

Факторизация общей трансфер матрицы следует из локальных тройных соотношений (1.29) и (1.30). Начнём с соотношения (1.29) и перепишем его в терминах операторов с перестановкой тензорных факторов $R_{ik} = P_{ik} R_{ik}$,

$$R_{23}^2(v_1, v_2|w_2) R_{13}^2(u_1, u_2|w_1, w_2) R_{12}^2(u_1, u_2|v_1, v_2) =$$

$$= R_{12}(u_1, u_2|v_1, v_2) R_{13}^2(u_1, u_2|v_1, w_2) R_{23}^2(v_1, v_2|w_2).$$

Выберем теперь первым пространством локальное квантовое пространство V_ℓ в k-ом узле, вторым пространством – вспомогательное пространство V_s функций от z_0, а третьим пространством – вспомогательное пространство V_s функций от z_0',

$$R_{00'}^{2}(v_1, v_2|w_2) R_{k0'}^{2}(u_1, u_2|w_1, w_2) R_{k0}^{2}(u_1, u_2|v_1, v_2) =$$
Теперь учитем, что R-оператор упрощается, когда часть спектральных параметров совпадает

$$R(u_1, u_2|u_1, v_2) = R^2(u_1, u_2|v_2), \quad R(u_1, u_2|v_1, u_2) = R^1(u_1|v_1, u_2),$$

так что, приравнивая $w_1 = u_1$ и $w_2 = u_2$, получаем нужное нам соотношение сплетания, в котором сплетателем выступает оператор $R_{00}^2(v_1, v_2|u_2)$,

$$R_{00}^2(v_1, v_2|u_2) \cdot P_{k0} \cdot R_{k0}(u_1, u_2|v_1, v_2) = R_{k0}^2(u_1, u_2|v_2) \cdot R_{k0}^1(u_1|v_1, u_2) \cdot R_{00}^2(v_1, v_2|u_2).$$

Из этого локального соотношения незамедлительно следует соотношение для глобальных операторов, т.е. для трансфер матриц

$$\text{tr}_0^r [P_{10} \cdots P_{N0}] \cdot \text{tr}_0 [R_{10}(u_1, u_2|v_1, v_2) \cdots R_{N0}(u_1, u_2|v_1, v_2)] = \text{tr}_0 [R_{10}^2(u_1, u_2|v_2) \cdots R_{N0}^2(u_1, u_2|v_2)] \cdot \text{tr}_0^r [R_{10}^1(u_1|v_1, u_2) \cdots R_{N0}^1(u_1|v_1, u_2)].$$

Таким образом общая трансфер матрица, построенная из операторов $R_{k0}(u_1, u_2|v_1, v_2)$, факторизуется в произведение двух трансфер матриц, построенных из $R_{k0}^2(u_1, u_2|v_2)$ и $R_{k0}^1(u_1|v_1, u_2)$. Аналогичным образом из тройного соотношения для R^1 (1.30) выводится вторая факторизация в (1.37). Из двух соотношений факторизации в (1.37) следует коммутативность трансфер матриц, построенных из R^1 и R^2. Однако она также следует напрямую из локальных соотношений.

В самом деле, уравнение Янга–Бакстера (1.28) в виде

$$R_{00}^r(v_1, v_2|w_1, w_2)R_{k0}^r(u_1, u_2|w_1, w_2)R_{k0}(u_1, u_2|v_1, v_2) =$$

$$= R_{k0}(u_1, u_2|v_1, v_2)R_{k0}^r(u_1, u_2|w_1, w_2)R_{00}^r(v_1, v_2|w_1, w_2)$$

(1.40) подразумевает коммутативность общих трансфер матриц, построенных из R-операторов. Далее, выбирая параметры в (1.1), получаем три локальных соотношения. Из первого $(v_1 = u_1, w_2 = u_2)$

$$R_{00}^r(u_1, v_2|w_1, w_2)R_{k0}^1(u_1|w_1, u_2)R_{k0}^2(u_1, u_2|v_2) =$$

$$= R_{k0}^2(u_1, u_2|v_2)R_{k0}^1(u_1|w_1, u_2)R_{00}^r(v_1, v_2|w_1, w_2)$$

(1.41) следует коммутативность трансфер матриц, построенных из R^1 и R^2. Второе соотношение $(u_2 = v_2 = w_2)$

$$R_{00}^1(v_1|w_1, u_2)R_{k0}^1(u_1|w_1, u_2)R_{k0}^1(u_1|v_1, u_2) =$$

32
означает коммутативность трансфер матрицы из \(\mathbb{R}^1 \), а третье (\(u_1 = v_1 = w_1 \))

\[
\mathbb{R}^2_{k0}(u_1, v_2|w_2)\mathbb{R}^2_{k0}'(u_1, u_2|w_2) = \\
= \mathbb{R}^2_{k0}(u_1, u_2|v_2)\mathbb{R}^2_{k0}'(u_1, u_2|w_2)\mathbb{R}^2_{00}'(u_1, v_2|w_2)
\]

(1.43)

приводит к коммутативности трансфер матриц из \(\mathbb{R}^2 \).

Общий R-оператор и составляющие его блоки, которые отвечают перестановкам параметров, для алгебры \(s\ell_2 \) и её тригонометрических и эллиптических деформаций построены в [37]. Отправляясь в каждом случае от фундаментальной \(R \)-матрицы, далее формуллируется L-оператор. Его матричные элементы вложены в алгебру, порождённую парой Гейзенберга \(z, \partial \) с каноническими коммутационными соотношениями. В каждом из трёх случаев L-оператор допускает факторизацию

\[
L(u_1, u_2) = [u] V^{-1}(z|u_2) D(z, \partial) V(z|u_1),
\]

(1.44)

где \([u] \) является некоторой функцией от спектрального параметра, \(V \) и \(D \) являются матрицами размера \(2 \times 2 \) с операторными элементами. Для формулировки квантовой модели берём набор пар Гейзенберга \(z_i, \partial_i, i = 1, \ldots, N \) для каждого узла цепочки и дополнительную пару для вспомогательного пространства \(i = 0 \). Рассматриваемая операторная конструкция опирается на алгебраические соотношения, имеющие место в алгебре порождённой каноническими парами. При этом операторы имеют вид функций от таких генераторов или являются интегральными операторами по переменным \(z_i \).

Рассматриваемые представления реализованы на функциях от \(z \). В случае недеформированной и тригонометрически деформированной алгебры симметрии пространство представления спина \(\ell \) является модулем, натянутым на мономы неотрицательных степеней, с 1 в качестве вектора младшего веса. При этом алгебраическая конструкция выполнена при помощи пар Гейзенберга. В отличие от двух предыдущих случаев, в случае эллиптической деформации операторы имеют вид интегральных, и представление реализовано в некотором пространстве функций \(z \), детальное описание которого не важно в рассматриваемой алгебраической конструкции. Необходимые факты о представлениях этой алгебры собраны в параграфе 1.4. При этом след из определения общей трансфер матрицы понимается как след интегрального оператора.

Далее необходимо доказать, что введённые матрицы монодромии \(Q_1 \) и \(Q_2 \) (1.34), (1.35) в самом деле являются Q-операторами Бакстера. Для этого нужно проверить, что
они решают уравнение Бакстера. Выше показано, что свойства факторизации и коммутативность операторов T_s, Q_1, Q_2 следуют из локальных соотношений для соответствующих им локальных операторов. Следуя той же логике получим уравнение Бакстера из локального соотношения. Отображаясь от определяющего соотношения для оператора R^2 (1.21) получим локальное соотношение в пространстве $V_\ell \otimes V_s \otimes \mathbb{C}^2$

$$Z_0^{-1} \cdot \mathbb{P}^2_{k_0}(u) L_k(u_1, u_2) \cdot Z_0 = \begin{pmatrix} \kappa^{-1} \cdot \mathbb{P}^2_{k_0}(u + \delta) & \cdots & 0 \\ 0 & \kappa \Delta(u_1, u_2) \cdot \mathbb{P}^2_{k_0}(u - \delta) \end{pmatrix}.$$ (1.45)

Здесь использовано обозначение $\mathbb{P}^2(u) = \mathbb{P}^2(u_1, u_2|0)$. Индекс k относится к локальному квантовому пространству V_ℓ в соответствующем узле цепочки, а индекс 0 соответствует бесконечномерному вспомогательному пространству V_s. Z_0 обозначает некоторую вспомогательную матрицу 2×2, определённую в пространстве $V_s \otimes \mathbb{C}^2$. κ и δ постоянные, а $\Delta(u_1, u_2) = \text{симветричная функция спектральных параметров}$: $\Delta(u_1, u_2) = \Delta(u_2, u_1)$. В случае недеформированной алгебры $\Delta(u_1, u_2) = (u_1 u_2)^N$, где N число узлов, а в остальных случаях возникают деформации этого выражения. Матричный элемент над диагональю в (1.45), обозначенный многоточием, не указан явно, поскольку не нужен для наших целей. Явное вычисление, приводящее к (1.45), проведено в параграфах 1.2.3, 1.3.6 и 1.4.4 для случая недеформированной алгебры симметрии и её q-деформации и эллиптической деформации соответственно. Вычисление во всех трёх случаях следует единой линии. Оно не использует явное выражение для операторов R^2 или для составляющих его блоков S^2, S^3, а только их свойства. Вычисление использует:

1. Определяющее соотношение для R^2 (1.21).
2. Вторую факторизацию R^2 (1.23) в произведение операторов элементарных перестановок.
3. Формулу факторизации для L-оператора (1.44).
4. Свойство оператора R^2: $[R^2_{12}, z_2] = 0$, следующее непосредственно из (1.23).
5. Несколько рекуррентных соотношений для S^2 и S^3, которые связывают $S^i(a \pm \delta)$ и $S^i(a)$ при $i = 2, 3$.

В добавок получим рекуррентные соотношения для сплетающих операторов алгебры симметрии. Эти соотношения напоминают рекуррентные соотношения, использованные при вычислении q-бета-интеграла [84] и эллиптического бета-интеграла [44, 45].
В эллиптическом случае для конечномерных представлений алгебры Склянина рекуррентные соотношения приводят к факторизации сплетающего оператора. Такая запись сплетающего оператора является альтернативной по отношению к предложенной А. За-бродным в [85].

Имея локальное соотношение (1.45) легко получить соответствующее глобальное соотношение. Строим матрицу монодромии по формуле \(R_{10}^2(u) \cdots R_{N0}^2(u) L_1(u) \cdots L_N(u) \), и применяем \(N \) раз локальное соотношение (1.45), что даёт произведение \(N \) треугольных матриц с операторными элементами. Далее вычисляем след по вспомогательному двумерному пространству \(\mathbb{C}^2 \) и по вспомогательному бесконечномерному пространству \(\mathbb{V}_s \). В результате получаем уравнение Бакстера для \(Q_2(u) \),

\[
t(u) Q_2(u) = \kappa^{-N} Q_2(u + \delta) + \kappa^N \Delta^N(u_1, u_2) Q_2(u - \delta). \tag{1.46}
\]

Похожим образом из локальных соотношений для \(R^1 \) (1.20) можно вывести уравнение Бакстера для \(Q_1(u) \). Однако этого также можно добиться посредством соотношений между двумя операторами Бакстера \(Q_1 \) и \(Q_2 \). Для упрощения изложения воспользуемся следующими обозначениями для операторов элементарных перестановок

\[
S^1(a) = W_2(a) ; \quad S^2(a) = S_{12}(a) ; \quad S^3(a) = W_1(a), \tag{1.47}
\]

которые явно показывают в каких пространствах данный оператор действует нетривиально. Здесь также учли формулу (1.18).

Учитывая формулу факторизации (1.23), перепишем второй Q-оператор (1.35) в виде

\[
Q_2(\ell | u) = \text{tr}_0 P_{10} W_1(u_1) S_{10}(u_2) W_1(u_2 - u_1) \cdots P_{N0} W_N(u_1) S_{N0}(u_2) W_N(u_2 - u_1) = \text{tr}_0 P_{10} W_1(u_1) S_{10}(u_2) \cdots P_{N0} W_N(u_1) S_{N0}(u_2) \cdot \mathcal{T}(u_2 - u_1), \tag{1.48}
\]

где использовано обозначение

\[
\mathcal{T}(a) = W_1(a) \cdots W_N(a)
\]

dля произведения \(N \) сплетающих операторов, каждый из которых отвечает своему узлу цепочки. Из свойств сплетающего оператора \(\mathcal{T}(a) \mathcal{T}(-a) = \mathbb{I} \). Аналогичным образом из соотношения факторизации (1.22) первый Q-оператор (1.34) принимает вид

\[
Q_1(\ell | u - 1) = \text{tr}_0 P_{10} W_0(u_2 - u_1) S_{10}(u_2) W_0(u_1) \cdots P_{N0} W_0(u_2 - u_1) S_{N0}(u_2) W_0(u_1) = \mathcal{T}(u_2 - u_1) \cdot \text{tr}_0 P_{10} S_{10}(u_2) W_0(u_1) \cdots P_{N0} S_{N0}(u_2) W_0(u_1). \tag{1.49}
\]
Отметим, что в Q_1 в качестве параметра представления в квантовом пространстве выбран $-\ell - 1$, а не ℓ, что отвечает перестановке спектральных параметров $u_1 \leftrightarrow u_2$ (1.9). Далее, учитывая цикличность следа, легко проверить, что следы монодромий в (1.48) и (1.49) совпадают. Таким образом операторы Бакстера связаны преобразованием подобия

$$T(u_2 - u_1) Q_2(u|\ell) = Q_1(u|-\ell-1) T(u_2 - u_1)$$

и следовательно уравнение Бакстера для $Q_1(u)$ имеет в точности тот же вид, что и для $Q_2(u)$ (1.46).

Определения операторов Q_1 и Q_2 (1.34), (1.35) выглядят практически идентично, однако эти операторы заметно различаются по своим свойствам. В частности легко увидеть, что след по бесконечномерному вспомогательному пространству в определении Q_2 сходится и не требует какой-либо регуляризации. В самом деле след монодромии вида

$$A = P_{10} A(z_1, \partial_1|z_0) \cdot P_{20} A(z_2, \partial_2|z_0) \cdots P_{N0} A(z_N, \partial_N|z_0)$$

легко вычисляется в явном виде

$$\text{tr}_0 A = P \cdot A(z_1, \partial_1|z_2) \cdot A(z_2, \partial_2|z_3) \cdots A(z_N, \partial_N|z_0)|_{z_0 \rightarrow z_1}.$$

Эта же формула верна, если A интегральный оператор. Форма зависимости оператор Бакстера Q_2, построенного из R^2, от двух канонических пар в точности соответствует этой формуле. В самом деле, как уже ранее упоминали, R_{12} коммутирует с переменной z_2.

При помощи формулы (1.52) для недеформированной алгебры $s\ell_2$, а также для её тригонометрической и эллиптической деформаций, вычислим как $Q_2(u)$ действует на векторы состояний спиновой цепочки, которые собраны в производящую функцию.

1.2. Недеформированная алгебра симметрии

1.2.1. L-оператор для $s\ell_2$ и операторы перестановки

В этом параграфе в качестве простейшего приложения очерченной выше схемы рассматриваем спиновую цепочку с недеформированной алгеброй симметрии $s\ell_2$. Воспользуемся представлением этой алгебры на пространстве полиномов от одной комплексной переменной $\mathbb{C}[z]$. Фиксируем комплексное число ℓ в общем положении и выбираем представление генераторов алгебры симметрии дифференциальными операторами первого порядка

$$S(\ell) = z \partial - \ell, \quad S_{-}(\ell) = - \partial, \quad S_{+}(\ell) = z^2 \partial - 2\ell z,$$

(1.53)
в результате чего \(\mathbb{C}[z] \) снабжается структурой модуля Верма с младшим весом \(-\ell\). Как упомянуто в предыдущем параграфе обозначаем это пространство \(\mathbb{V}_\ell \).

Модуль \(\mathbb{V}_\ell \) является бесконечномерным пространством с базисом \(\{ 1, z, z^2, z^3 \ldots \} \). При этом не существуют инвариантные подпространства при \(\ell \) в общем положении, т.e. другими словами модуль неприводим. Инвариантное конечномерное подпространство \(\mathbb{U}_n \) появляется для особых значений \(\ell = \frac{n}{2}, n = 0, 1, 2, 3 \ldots \). Это \((n + 1)\)-мерное неприводимый подмодуль с базисом \(\{ 1, z, \ldots z^n \} \). Бесконечномерный модуль \(\mathbb{V}_{-\ell -1} = \mathbb{V}^\prime / \mathbb{U}_n \) с базисом \(\{ z^{n+1}, z^{n+2}, \ldots \} \) также неприводим. Его младший вес \(\frac{n}{2} + 1 \). Представление генераторов дифференциальными операторами очень удобно, поскольку позволяет описывать в рамках единого формализма конечномерные и бесконечномерные представления, соответственно представления (компактного) спина и (некомпактного) спина. В дальнейшем это обстоятельство позволит нам построить \(\mathbb{Q} \)-операторы для представлений этих двух типов следуя одной и той же схеме.

Генераторы \(s\ell_2 \) в фундаментальном представлении \(s, s_\pm \) легко вычисляются по генераторам в дифференциальном представлении (1.53) при \(\ell = \frac{1}{2} \). Для этого выберем базис \(e_1 = S_+ \cdot 1 = -z \), \(e_2 = 1 \), фиксируем определении матрицы оператора \(A e_i = \sum_k e_k A_{ki} \) и в результате получаем матрицы Паули

\[
s = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad s_- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad s_+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.
\]

L-оператор (1.6) для \(s\ell_2 \), записанный в терминах генераторов (1.53) алгебры, имеет вид

\[
L(u) = u \cdot 1 \otimes 1 + 2 \cdot S \otimes s + S_- \otimes s_+ + S_+ \otimes s_-.
\]

Он в самом деле удовлетворяет RLL-своотношению с \(R \)-матрицей Янга \(R_{ij,km}(u) = u \cdot \delta_{in} \delta_{jm} + \delta_{im} \delta_{jn} \), что следует из коммутационных соотношений \(s\ell_2 \). После подстановки дифференциального представления для генераторов в квантовом пространстве он становится \(2 \times 2 \) матрицей с операторными элементами

\[
L(u|\ell) = \begin{pmatrix} u - \ell + z \partial & -\partial \\ z^2 \partial - 2lz & u + \ell - z \partial \end{pmatrix}.
\]

Далее вводим набор параметров

\[
u_1 = u - \ell - 1, \quad u_2 = u + \ell
\] (1.55)
и как отмечено в (1.44) переписываем (1.54) в факторизованном виде

\[L(u_1, u_2) = \begin{pmatrix} 1 & 0 \\ z & 1 \end{pmatrix} \begin{pmatrix} u_1 & -\partial \\ 0 & u_2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -z & 1 \end{pmatrix}. \] (1.56)

Далее укажем элементарные сплетатели, из которых строится R-оператор. Операторы элементарных перестановок \(S^1(a) \) и \(S^3(a) \) (1.12), (1.14) обозначает две копии оператора \(W(a) = \partial^a \), действующего нетривиальным образом на втором и первом квантовых пространствах соответственно (1.47). Поскольку спектральные параметры принимают произвольные комплексные значения, то требуется чётко определить в каком смысле понимается этот оператор. В дальнейшем используем следующее определение для степени оператора дифференцирования,

\[W(a) = \partial^a \equiv \frac{1}{z^a} \frac{\Gamma(z\partial + 1)}{\Gamma(z\partial + 1 - a)}. \] (1.57)

Легко видеть, что при натуральных \(a \) он совпадает с кратным дифференцированием. \(W(2\ell + 1) = \partial^{2\ell+1} \) сплетает представления с параметрами \(\ell \) и \(-\ell - 1 \) (1.18). Отметим, что при неотрицательном (полу)целом \(\ell \), т.е. \(\ell = \frac{n}{2}, n = 0, 1, 2, 3 \cdots \), сплетающий оператор \(W(n + 1) = \partial^{n+1} \) зануляет \(n\)-мерное инвариантное подпространство \(U_n \). Оператор \(S^2 \), определённый соотношением (1.13), действует нетривиально в тензорном произведении двух квантовых пространств и имеет вид \(S^2(a) = z_1^n z_2^m \).

Явный недостаток этих операторов элементарных перестановок состоит в том, что они выводят из пространства \(\mathbb{C}[z_1] \otimes \mathbb{C}[z_2] \), т.к. спектральные параметры принимают произвольные комплексные значения. Однако в дальнейшем при обсуждении \(s\ell_2 \)-симметричной цепочки нам в основном потребуются лишь операторы \(R^1 \) и \(R^2 \),

\[
R^1_{12}(u_1|v_1, v_2) = z_{21}^{v_2-v_1} \frac{\partial_{u_1}^{u_1-v_1}}{\partial_{u_2}^{u_2-v_2}} z_{21}^{u_1-v_2} = \frac{\Gamma(z_{21} d_2 + u_1 - v_2 + 1)}{\Gamma(z_{21} d_2 + u_1 - v_2 + 1)},
\]

\[
R^2_{12}(u_1, u_2|v_2) = z_{12}^{u_2-u_1} \frac{\partial_{u_1}^{u_2-v_2}}{\partial_{u_2}^{u_2-v_2}} z_{12}^{u_1-v_2} = \frac{\Gamma(z_{12} d_1 + u_1 - v_2 + 1)}{\Gamma(z_{12} d_1 + u_1 - v_2 + 1)}. \] (1.58)

Легко видеть, что оба этих оператора не выводят из \(\mathbb{C}[z_1] \otimes \mathbb{C}[z_2] \), а следовательно и общий R-оператор (1.26). Из этих явных формул следует, что \(R^k \) коммутирует с \(z_k \): \(R^1 z_1 = z_1 R^1; R^2 z_2 = z_2 R^2 \).

1.2.2. Редукция общего R-оператора к L-оператору

В этом параграфе продемонстрируем, что общий R-оператор, предъявленный выше, содержит всю информацию о локальной структуре интегрируемой системы. Для этого воспроизведём L-оператор (1.54) из R-оператора.
Общий R-оператор задан на пространстве $V_{\ell_1} \otimes V_{\ell_2}$ и согласно (1.26) и (1.58) имеет вид

$$\mathbb{R}(u|\ell_1, \ell_2) = P_{12} \cdot \frac{\Gamma(z_{12}\partial_1 - 2\ell_2)}{\Gamma(z_{12}\partial_2 - \ell_1 - \ell_2 - u)} \cdot \frac{\Gamma(z_{21}\partial_2 - \ell_1 - \ell_2 + u)}{\Gamma(z_{21}\partial_2 - 2\ell_2)}. \quad (1.59)$$

Выберем теперь $\ell_2 = \frac{1}{2}$ и ограничим общий R-оператор на пространство $V_{\ell_1} \otimes C^2$, т.е. R-оператор действует на функции вида

$$\Psi(z_1, z_2) = \phi(z_1) + z_2 \psi(z_1).$$

Результат применения первого оператора из (1.59) легко вычислить ввиду весьма простой зависимости $\Psi(z_1, z_2)$ от переменной z_2,

$$[\phi(z_1) + z_1 \psi(z_1) + z_{12} \cdot \psi(z_1) \cdot (-\ell_1 - \frac{1}{2} + u)] \cdot \frac{\Gamma(-\ell_1 - \frac{1}{2} + u)}{\Gamma(-1 + \varepsilon)} + O(\varepsilon^2).$$

Чтобы работать с расходящимися выражениями, здесь введена регуляризация $2\ell_2 = 1 - \varepsilon$. Из-за фактора $\Gamma(-1 + \varepsilon)$ предыдущее выражение содержит простой нуль при $\varepsilon \to 0$. Второй оператор в (1.59) коммутирует с z_2, так что достаточно определить как он действует на функцию от z_1. Результат не столь тривиален

$$e^{z_2\partial_1} \frac{\Gamma(z_1\partial_1 - 1 + \varepsilon)}{\Gamma(z_1\partial_1 - \ell_1 - \frac{1}{2} - u)} e^{z_2\partial_1} \Phi(z_1) = \sum_{k=0}^{\infty} \frac{\Phi^{(k)}(z_2)}{k!} \frac{\Gamma(k - 1 + \varepsilon)}{\Gamma(k - \ell_1 - \frac{1}{2} - u)} \cdot z_{12}^k =$$

$$= \Phi(z_2) \frac{\Gamma(-1 + \varepsilon)}{\Gamma(-\ell_1 - \frac{1}{2} - u)} + \Phi'(z_2) \frac{\Gamma(\varepsilon)}{\Gamma(-\ell_1 + \frac{1}{2} - u)} \cdot z_{12} + O(\varepsilon^0),$$

но для наших целей из него нужно извлечь лишь сингулярную часть $\sim \varepsilon^{-1}$,

$$[\Phi(z_2) (-\ell_1 - \frac{1}{2} - u) + \Phi'(z_2) \cdot z_{21}] \cdot \frac{\Gamma(-1 + \varepsilon)}{\Gamma(-\ell_1 + \frac{1}{2} - u)}.$$

Теперь видим, что простой полюс сокращает простой нуль, и получающееся выражение после применения R-оператора конечно при $\varepsilon \to 0$. Результат применения R-оператора к компонентам функции $\Psi(z_1, z_2)$ представим в виде,

$$\phi(z_1) \to \left[\phi(z_1) (-\ell_1 - \frac{1}{2} - u) + \phi'(z_1) \cdot z_{12} \right] \cdot \frac{\Gamma(-\ell_1 - \frac{1}{2} + u)}{\Gamma(-\ell_1 + \frac{1}{2} - u)},$$

$$z_2 \psi(z_1) \to \left[z_2^2 \psi'(z_1) - 2\ell_1 z_1 \psi(z_1) - z_2 (z_1 \psi'(z_1) + (-\ell_1 + \frac{1}{2} + u) \psi(z_1)) \right] \cdot \frac{\Gamma(-\ell_1 - \frac{1}{2} + u)}{\Gamma(-\ell_1 + \frac{1}{2} - u)}.$$

В базисе $e_1 = -z_2, e_2 = 1$ пространства C^2 при $\ell_1 = \ell$ и $\ell_2 \to \frac{1}{2}$,

$$\mathbb{R} \left(u|\ell, \frac{1}{2} \right) e_1 = -\frac{\Gamma(-\ell - \frac{1}{2} + u)}{\Gamma(-\ell + \frac{1}{2} - u)} \cdot \left[e_1 (z_1\partial_1 - \ell + \frac{1}{2} + u) + e_2 (z_1^2\partial_1 - 2\ell z_1) \right],$$

39
Возможно выполнить ограничение \(R \)-оператора, исходя из другой факторизации (1.26) на \(\mathbb{R}^1 \) и \(\mathbb{R}^2 \), следуя шагам предыдущего вычисления. В таком вычислении все промежуточные выражения конечны и не требуют регуляризации. При этом механизм обрезания степени полиномов оказывается неявным и проистекает от применения формул суммирования Пфаффа-Заальшютца. Далее в параграфе 1.2.5 покажем, как следуя иному вычислению, используя эту факторизацию, получить явную формулу для ограничения \(R \)-оператора на произвольное конечномерное подпространство, но на этот раз в первом тензорном множителе \(V_{\frac{1}{2}} \otimes V_{\ell} \).

Отметим также, что предыдущее вычисление наглядно демонстрирует, что только для \(R \)-оператора существуют конечномерные инвариантные подпространства при специальных значениях параметра спина. Составляющие его блоки \(R^1 \) и \(R^2 \), взятые по отдельности, выводят из этого пространства. Они хорошо определены лишь на бесконечномерном пространстве \(\mathbb{C}[z_1] \otimes \mathbb{C}[z_2] \). Оказывается, что то же самое явление имеет место и для Q-операторов.

1.2.3. Q-оператор и уравнение Бакстера

Левая часть уравнения Бакстера (1.46) содержит произведение трансфер матрицы \(t(u) \) и \(Q_2 \), которые построены из L-операторов и операторов \(R^2 \) соответственно. Поэтому для вывода этого уравнения воспользуемся локальным соотношением, которое содержит произведение \(R^2 \) и \(L \). В качестве него возьмём определяющее уравнение для \(R^2 \) (1.21).

Воспользуемся формулой факторизации (1.56) для \(L_1(u_1, u_2) \) и \(L_2(v_1, v_2) \) и коммутативностью \(R^2 z_2 = z_2 R^2 \) для того, чтобы переписать (1.21) в виде

\[
Z_i^{-1} R_{12}^2(u - v_2) L_1(u_1, u_2) Z_2 =
\]

\[
= \begin{pmatrix} u_1 & -\partial_1 \\ 0 & v_2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -z_{12} & 1 \end{pmatrix} \begin{pmatrix} v_1 & -\partial_2 \\ 0 & u_2 \end{pmatrix} \cdot \frac{\Gamma(\ell + \frac{1}{2} - u)}{\Gamma(\ell + \frac{1}{2} - u)} \cdot \left(\begin{pmatrix} v_1 & -\partial_2 \\ 0 & v_2 \end{pmatrix} \right)^{-1}.
\]
Зависимость R^2 от v_2 сводится к сдвигу спектрального параметра u. Z_k - треугольные матрицы.

$$R^2_{12}(u-v_2) = \partial_1^{u_1-v_2} z_{12}^{u_2-v_2} \partial_1^{u_2-u_1} ; \quad Z_k \equiv \begin{pmatrix} 1 & 0 \\ z_k & 1 \end{pmatrix}.$$

Далее вычислим произведение матриц в правой части. Нам потребуются лишь диагональные матричные элементы. Верхнедиагональный элемент $(u_1+\partial_1 z_{12}) R^2_{12}(u-v_2)$ преобразуем при помощи

$$\partial_1 z_{12} R^2_{12}(u-v_2) = R^2_{12}(u+1-v_2) - (u_1-v_2) R^2_{12}(u-v_2).$$

Нижнедиагональный элемент, $u_2 R^2_{12}(u-v_2) + z_{12} \left[\partial_2 , R^2_{12}(u-v_2) \right]$, преобразуем при помощи

$$z_{12} \left[\partial_2 , R^2_{12}(u-v_2) \right] = (v_2 - u_2) R^2_{12}(u-v_2) + (u_2-v_2)(u_2-v_2) R^2_{12}(u-1-v_2).$$

При таких вычислениях используются лишь простейшие коммутационные свойства степени операции дифференцирования (1.57). Окончательно получаем

$$Z_k^{-1} R^2_{12}(u-v_2) L_1(u_1,u_2) Z_2 =$$

$$= \begin{pmatrix} R^2_{12}(u+1-v_2) + v_2 R^2_{12}(u-v_2) & - R^2_{12}(u-v_2) \partial_1 \\ - v_2 z_{12} R^2_{12}(u-v_2) - v_2 R^2_{12}(u-v_2) & (u_1-v_2)(u_2-v_2) R^2_{12}(u-1-v_2) + v_2 R^2_{12}(u-v_2) \end{pmatrix}.$$

Ключевое свойство этого локального соотношения состоит в том, что при $v_2 = 0$ матрица в правой части становится верхнетреугольной. Положим здесь $v_2 = 0$, в качестве первого квантового пространства выберем локальное квантовое пространство в k-ом узле, а в качестве второго пространства - в $(k+1)$-ом узле

$$Z_k^{-1} \cdot R^2_{kk+1}(u) L_k(u_1,u_2) \cdot Z_{k+1} = \begin{pmatrix} R^2_{kk+1}(u+1) & - R^2_{kk+1}(u) \partial_k \\ u_1 u_2 R^2_{kk+1}(u-1) & 0 \end{pmatrix}.$$

Получившееся локальное соотношение производит уравнение Бакстера. Перемножим набор таких локальных уравнений по узлам цепочки

$$Z_1^{-1} \cdot R^2_{12}(u) R^2_{23}(u) \cdots R^2_{N0}(u) \cdot L_1(u)L_2(u) \cdots L_N(u) \cdot Z_0 =$$

$$= \begin{pmatrix} R^2_{12}(u+1) & - R^2_{12}(u) \partial_1 \\ 0 & u_1 u_2 R^2_{12}(u-1) \end{pmatrix} \cdots \begin{pmatrix} R^2_{N0}(u+1) & - R^2_{N0}(u) \partial_N \\ 0 & u_1 u_2 R^2_{N0}(u-1) \end{pmatrix},$$

добавляя вспомогательный фиктивный узел 0. В этом произведении матрицы Z_k и Z^{-1}_k ($k = 2, 3, \ldots, N$) сокращаются попарно. Затем вычислим след по двумерному пространству
\(\mathbb{C}^2 \) и воспользуемся коммутативностью \(R_{kk+1}^2 \) и \(L_k \) с \(z_0 \), чтобы передвинуть \(Z_0 \) налево. После этого отождествляем узлы 0 и 1, что даёт уравнение Бакстера

\[
t(u)Q_2(u) = Q_2(u + 1) + (u_1u_2)^N \cdot Q_2(u - 1)
\]

для оператора

\[
Q_2(u) = P \cdot R_{12}^2(u)R_{23}^2(u) \cdots R_{N-1,N}^2(u) \cdot R_{N0}^2(u) |_{z_0 \rightarrow z_1}.
\]

Обсуждая общую схему в параграфе 1.1, указали, что \(Q_2 \) имеет вид следа моносимии по бесконечномерному вспомогательному пространству (1.35). Предыдущее выражение (1.63) в самом деле переписывается в таком виде при помощи формулы (1.52) для вычисления следа, поскольку зависимость \(R^2 \) от канонических пар соответствующая.

Отметим, что уравнение Бакстера (5) можно преобразовать к более привычному виду изменением нормировки оператора \(Q_2(u) \), которая появится естественным образом в следующем параграфе.

1.2.4. Явная формула для действия оператора Бакстера \(Q_2 \) на полиномы

В этом параграфе установим как \(Q_2 \) действует на полиномы. Для этого воспользуемся производящей функцией векторов локального пространства представления \(V_\ell \),

\[
e^{xS^+} \cdot 1 = (1 - xz)^{2\ell},
\]

где \(x \) вспомогательный параметр. Производная \(\partial_x^k \) предыдущего выражения при \(x = 0 \) порождает базовые векторы \(S_x^k \cdot 1 \sim z^k \). Далее вычислим результат применения \(Q_2(u) \) к глобальной производящей функции \((1 - x_1z_1)^{2\ell} \cdots (1 - x_Nz_N)^{2\ell}\), которая содержит все векторы состояний цепочки.

Формула (1.63) для \(Q_2(u) \), в которой явно вычислен след по вспомогательному пространству, позволяет свести исходную глобальную задачу к локальной. В самом деле выражение

\[
R_{12}^2(u)R_{23}^2(u) \cdots R_{N0}^2(u) \cdot (1 - x_1z_1)^{2\ell}(1 - x_2z_2)^{2\ell} \cdots (1 - x_Nz_N)^{2\ell} =
\]

\[
= R_{12}^2(u) \cdot (1 - x_1z_1)^{2\ell} \cdot R_{23}^2(u) \cdot (1 - x_2z_2)^{2\ell} \cdots R_{N0}^2(u) \cdot (1 - x_Nz_N)^{2\ell}
\]

факторизуется на локальные множители, так что достаточно вычислить \(R_{kk+1}^2(u) (1 - x_kz_k)^{2\ell} \). Из определяющего соотношения для \(R^2 \) (1.21) легко получается сплетающее соот-
Постоянная \(C = R \) принимает вид, что с учётом явного вида производящей функции (1.64) и формулы связи двух наборов параметров

\[
R_{12}^2 \cdot \exp x \left(S_1^+(u_1 - u_2 + 1) + S_2^+(v_1 - v_2 + 1) \right) = \exp x \left(S_1^+(u_1 - u_2 + 1) + S_2^+(v_1 - v_2 + 1) \right) \cdot R_{12}^2, \tag{1.66}
\]

где \(S^+(a) = z^2 \partial + az \). Оно отражает тот факт, что \(L_1 \cdot L_2 \) содержит структуру копроизведения. Теперь заменим в предыдущем выражении генераторы на экспоненциальную функцию от них и применим его к 1,

\[
R_{12}^2 \cdot \exp x \left(S_1^+(u_1 - u_2 + 1) + S_2^+(v_1 - v_2 + 1) \right) \cdot 1 = \exp x \left(S_1^+(u_1 - u_2 + 1) + S_2^+(v_1 - v_2 + 1) \right) \cdot R_{12}^2 \cdot 1,
\]

что с учётом явного вида производящей функции (1.64) и формул связи двух наборов параметров принимает вид

\[
R_{kk+1}^2(u)(1 - x_k z_k)2^\ell = C \cdot (1 - x_k z_k)^{\ell - u} \cdot (1 - x_k z_{k+1})^{\ell + u}, \tag{1.67}
\]

где постоянная \(C = R_{12}^2 \cdot 1 = \frac{\Gamma(-u + \ell)}{\Gamma(-\ell)} \). Отсюда в силу сделанных выше замечаний немедленно находит \(Q_2 \). Однако нам будет удобно сменить нормировку этого оператора, чтобы избавиться от постоянной \(C \),

\[
Q(u) = \frac{\Gamma^N(-2\ell)}{\Gamma^N(-\ell + u)} \cdot Q_2(u). \tag{1.68}
\]

Результат действия этого оператора на производящую функцию выглядит весьма просто

\[
Q(u) \cdot (1 - x_1 z_1)^{2\ell} \cdots (1 - x_N z_N)^{2\ell} = \tag{1.69}
\]

\[
= (1 - x_1 z_N)^{\ell - u} (1 - x_1 z_1)^{\ell + u} \cdots (1 - x_N z_{N-1})^{\ell - u} (1 - x_N z_N)^{\ell + u}.
\]

Эта формула в сжатом виде содержит всю информацию о действии \(Q \)-оператора на полиномы. В самом деле, вычислив производную \(\partial_{x_1} \partial_{x_2} \cdots \partial_{x_N} \) при \(x_1 = \ldots = x_N = 0 \), получаем результат применения \(Q(u) \) к моному \(z_1^{k_1} \cdots z_N^{k_N} \). При этом \(Q(u) \) нормирован условием \(Q(u) \cdot 1 = 1 \). Он отображает мономы в полиномы по \(z_1, \ldots, z_N \) и спектральному параметру,

\[
Q(u) : \mathbb{C}[z_1 \cdots z_N] \to \mathbb{C}[u, z_1 \cdots z_N].
\]

Это означает, что собственные значения \(Q(u) \) полиномиальны по \(u \), а следовательно полиномы \(Q_k(u) \) из алгебраического анзатца Бете (7) являются собственными значениями \(Q(u) \). При введённой нормировке уравнение Бакстера принимает стандартный вид

\[
t(u) Q(u) = (u - \ell)^N \cdot Q(u+1) + (u + \ell)^N \cdot Q(u-1). \tag{1.70}
\]

Отметим, что оператор \(Q(u) \) совпадает с \(Q \)-оператором, построенным в [19] другим методом.
1.2.5. Редукция общего R-оператора на конечномерное подпространство

Выше в параграфе 1.2.2 при помощи факторизации 1.59 выполнили ограничение R-оператора на двумерное инвариантное подпространство в одном из тензорных сомножителей. В настоящем параграфе существенным образом обобщим этот результат и выполним ограничение на произвольное конечномерное подпространство в одном из тензорных сомножителей. Для этого воспользуемся первой формулой факторизации из (1.26)

\[
R_{12}(u_1, u_2|v_1, v_2) = P_{12} R^1(u_1|v_1, u_2) R^2(u_1, u_2|v_2)
\]

для R-оператора, заданного на пространстве \(V_{\ell_1} \otimes V_{\ell_2}\), выберем \(\ell_1 = n\), \(n = 0, 1, 2, \ldots\) и выполним его ограничение на \(C^{n+1} \otimes V_\ell\). Чтобы избежать расходящихся выражений в нашем вычислении, для начала примем, что спиновый параметр в первом пространстве не в точности (полу)целый \(2\ell_1 = n - \varepsilon\), а после выполним предельный переход \(\varepsilon \to 0\).

Чтобы описать действие R-оператора на конечномерное инвариантное подпространство в первом тензорном сомножителе, подаем им на произведение производящей функции представления (1.64) для первого пространства, \((1 - xz_1)^{2\ell_1}\), и произвольной функции \(\Psi(z_2)\) на втором пространстве. Для начала применим \(R_2\), согласно полученной выше формуле (1.67),

\[
R^2_{12}(u_1, u_2|v_2) \cdot (1 - xz_1)^{2\ell_1} = \frac{\Gamma(u_1 - v_2 + 1)}{\Gamma(-2\ell_1)} \cdot (1 - xz_1)^{v_2-u_1-1} \cdot (1 - xz_2)^{u_2-v_2}.
\]

Напомним, что \(R_2\) действует тривиально во втором пространстве \(R^2 z_2 = z_2 R^2\), поэтому он не изменяет функцию \(\Psi(z_2)\). На следующем шаге нужно применить \(R_1\). Этот оператор действует нетривиально во втором пространстве и тривиально в первом, \(R^1 z_1 = z_1 R^1\), так что из предыдущей формулы нужно учесть лишь подчёркнутое слагаемое. Отметим, что нормировочный коэффициент в предыдущей формуле заносится при \(\varepsilon \to 0\), так что примения \(R^1\), нам будет достаточно выделить лишь полюсный вклад. Далее воспользуемся явной формулой для \(R^1\) (1.58) как отношение двух \(\Gamma\)-функций, и представим \(B\)-функцию в виде интеграла по вспомогательному параметру,

\[
R^1_{12}(u_1|v_1, u_2) = \frac{1}{\Gamma(v_1 - u_1)} \int_0^1 dt \frac{t^{u_1-u_2}(1-t)^{v_1-u_1-1}t^{z_2|\partial_2}}{t^{z_2|\partial_2} \cdot \Phi(z_2) = \Phi ((1 - t)z_1 + tz_2)}.
\]
Далее, заметим, что (1.71) заметно упрощается, если учесть, что $u_1 - u_2 = -2\ell_1 - 1 = -n - 1 + \varepsilon$ и воспользоваться вспомогательной формулой,

$$
\int_0^1 dt \, t^{-n-1+\varepsilon} F(t) = \frac{1}{\varepsilon} \frac{\partial^n}{n!} F(t) \bigg|_{t=0} + O(1) \text{ при } \varepsilon \to 0,
$$

для выделения полюсного вклада. Собирая вместе все предыдущие формулы, переходя к привычному набору параметров (1.55) и сдвигая спектральный параметр $u - v \to u$, имеем

$$
R_{12}(u|n/2, \ell) \cdot (1 - xz_1)^n \Psi(z_2) = (-)^{n+1} \frac{\Gamma(-\ell + \frac{n}{2} + u)}{\Gamma(-\ell + \frac{n}{2} - u)} \cdot (1 - xz_2)^n \cdot \partial^n_t \Psi(tz_1 + (1 - t)z_2) (1 - t)^{-\ell + \frac{n}{2} - u - 1} \left(1 + \frac{tz_2}{1-xz_2}\right)^{-\ell + \frac{n}{2} + u} \bigg|_{t=0}.
$$

(1.72)

Отметим, что предыдущая формула лишний раз подтверждает, что R-оператор отображает мономы по двум переменным z_1, z_2 в мономы по этим переменным и не выводит из подпространства $\mathbb{C}^{n+1} \otimes V$, т.е. в правой части этой формулы присутствуют лишь слагаемые, содержащие степени z_1 не выше n-ой.

В качестве иллюстрации предыдущей формулы подставим в неё $u = 0$, $\ell = \frac{n}{2}$ и заметим, что в силу

$$
\frac{\partial^n}{n!} \frac{(1 - tyz_1 - (1 - t)yz_2)^n}{1 - t} \bigg|_{t=0} = (1 - yz_1)^n
$$

имеет место ожидаемое соотношение нормировки,

$$
R_{12}(0|\frac{n}{2}, \frac{n}{2}) = P_{12}.
$$

(1.73)

Используя эту формулу можно мгновенно воспроизвести результаты из параграфа 1.2.2, а следовательно и L-оператор (1.60). Примечательно, что это рассуждение допускает обобщение и для деформированных алгебр симметрии и в том случае, когда R-оператор и его составные блоки понимаются как интегральные операторы.

1.3. Тригонометрическая деформация

1.3.1. Тригонометрический L-оператор и операторы перестановки

Применим схему, очерченную в параграфе 1.1, к случаю q-деформированной симметрии $U_q(sl_2)$. Генераторы S^+, S^-, K квантовой алгебры $U_q(sl_2)$ подчинены коммутационным соотношениям

$$
[S^+, S^-] = \frac{K^2 - K^{-2}}{q - q^{-1}} ; \quad KS^+ = q S^+ K ; \quad KS^- = q^{-1} S^- K.
$$

(1.74)
Нас интересуют бесконечномерные представления квантовой алгебры на модулях Вержма, т.е. пространство представления \mathbb{V}_ℓ совпадает с пространством полиномов $\mathbb{C}[z]$, а генераторы алгебры представлены конечно-разностными операторами,

$$S^+(\ell) = z \cdot [z\partial_z - 2\ell] ; \quad S^- (\ell) = \frac{1}{z} \cdot [z\partial_z] ; \quad K(\ell) = q^{2\ell} - \ell^2,$$

(1.75)

зависимыми от параметра спина ℓ; здесь использовано стандартное обозначение для q-числа $[x] = \frac{q^x - q^{-x}}{q - q^{-1}}$. Оператор Казимира алгебры $\mathcal{U}_q(sl_2)$

$$C = -(q - q^{-1})^2 \cdot S^- S^+ - qK^2 - q^{-1}K^{-2}$$

(1.76)

на неприводимых представлениях \mathbb{V}_ℓ принимает значения $C_\ell = q^{2\ell+1} + q^{-2\ell-1}$. Это указывает на то, что представления спина ℓ и $-\ell - 1$ эквивалентны, т.е. существует нетривиальный сплетающий оператор для генераторов алгебры в этих двух представлениях.

Теперь подставим генераторы (1.75) в общую формулу для L-оператора (1.6),

$$L(u|\ell) = \begin{pmatrix} q^n K(\ell) - q^{-n} K^{-1}(\ell) & (q - q^{-1}) \cdot S^- (\ell) \\ (q - q^{-1}) \cdot S^+ (\ell) & q^n K^{-1}(\ell) - q^{-n} K(\ell) \end{pmatrix}.$$

(1.77)

В результате [37] L-оператор, удовлетворяющий RLL-соотношению (1.5), представляется в факторизованном виде

$$L(u_1, u_2) = \begin{pmatrix} 1 & 1 \\ zq^{-u_2} & zq^{u_2} \end{pmatrix} \begin{pmatrix} q^{2\partial_z + 1} & 0 \\ 0 & q^{-2\partial_z - 1} \end{pmatrix} \begin{pmatrix} q^{u_1} & -z^{-1} \\ -q^{-u_1} & z^{-1} \end{pmatrix},$$

(1.78)

где два параметра связаны в согласии с (1.9) линейными соотношениями

$$u_1 = u - \ell - 1 ; \quad u_2 = u + \ell.$$

(1.79)

Далее укажем операторы элементарных перестановок S^1, S^2, S^3, которые являются составляющими блоками для общего R-оператора, построенного в [37].

- $S^1(a)$ и $S^3(a)$ (1.12), (1.14) обозначает две копии оператора $W(a)$, действующего нетривиальным образом на втором и первом квантовых пространствах соответственно (1.47). Он имеет явный вид

$$W(a) = \frac{q^2}{z^a} \cdot \frac{(q^{2z\partial_z + 2 - 2a}; q^2)}{(q^{2z\partial_z + 2}; q^2)} \cdot q^{-az\partial_z}.$$

(1.80)

В предыдущей формуле $(x; q^n)$ обозначает q-произведение (A.1). $W(2\ell + 1)$ сплетает представления с параметрами ℓ и $-\ell - 1$ (1.18). Отметим, что вставки к необходимости и сложности для нашей конструкции соотношениям симметрической группы имеет место
дополнительное соотношение для строительных блоков, а именно экспоненциальное свойство: \(W(a)W(b) = W(a + b) \).

- Оператор \(S^2 \), определенный соотношением (1.13) действует нетривиально в тензорном произведении двух квантовых пространств. Выберем его в следующем виде

\[
S^2(a) = z^a_1 \cdot \left(\frac{z^1_q^{1-a}; q^2}{z^2_q^{1+a}; q^2} \right). \tag{1.81}
\]

Отметим, что определяющие соотношения (1.18) и (1.13) не фиксируют обозначенно операторы \(W(a) \) и \(S^2(a) \). В самом деле, рассмотрим уравнение на оператор

\[
S(u) \cdot L_1(u_1, u_2) L_2(v_1, v_2) = L_1(u'_1, u'_2) L_2(v'_1, v'_2) \cdot S(u) \tag{1.82}
\]

где \((v'_1, v'_2, u'_1, u'_2)\) перестановка набора \(u = (v_1, v_2, u_1, u_2)\). Ясно, что если умножить любое решение \(S \) предыдущего уравнения на произвольный оператор \(\varphi \), такой что

\[
[z_1, \varphi] = [z_2, \varphi] = 0; \quad [q^{2z_1}q^{z_2}, \varphi] = [q^{2z_2}q^{z_1}, \varphi] = 0, \tag{1.83}
\]

tо получим другое решение (1.82). В частности допускается умножение (1.81) на произвольную мультипликативно-периодическую функцию \(\varphi(z_1, z_2) \) с периодом \(q^2 \): \(\varphi(q^2 z_1, z_2) = \varphi(z_1, q^2 z_2) = \varphi(z_1, z_2) \). Такая свобода приводит к новому решению (1.13), которое пригодится нам в дальнейшем,

\[
S^2(a) = z^a_1 \cdot \left(\frac{z^1_q^{1-a}; q^2}{z^2_q^{1+a}; q^2} \right). \tag{1.84}
\]

Имея в распоряжении операторы элементарных перестановок, автоматически строим операторы \(R_1, R_2 \). В [86] они были получены иным образом, а именно непосредственно решая систему операторных соотношений (1.20), (1.21). В параграфе 1.3.2 показано, что обе конструкции согласованы.

В [37] соотношения Кокстера (1.16), (1.17) были доказаны при помощи разложения в ряд оператора (1.80) и формального использования формулы \(q \)-суммирования. В параграфе 1.3.3 показано, что соотношения Кокстера следуют исключительно из соотношения пентагона (A.5).

Общий \(R \)-оператор подходит для пары произвольных представлений \(\ell_1, \ell_2 \) алгебры симметрии и зависит аналитически от параметров представления. Рассматривая предельный случай целых или полуцелых значений параметров представлений, извлекаем из \(R \)-оператора более простые объекты типа \(L \)-оператора. В для недеформированной алгебры
симметрии \(s \ell_2 \) в параграфе 1.2.2 показали, как вывести \(L \)-operator из \(\mathbb{R}(u|\ell, s) \) при \(s = \frac{1}{2} \), ограничивая его на инвариантное подпространство \(V_\ell \otimes \mathbb{C}^2 \). В параграфе 1.3.4 проведено аналогичное вычисление для тригонометрической деформации.

1.3.2. Операторы \(R^1 \) и \(R^2 \) в случае тригонометрической деформации

В этом параграфе установим связь между несколькими явными выражениями для операторов \(R^1 \) и \(R^2 \), которые заданы соотношениями сплетения (1.20) и (1.21) соответственно. В (1.22) и (1.23) указаны несколько различных выражений для них. Рассмотрим \(R^2 \) и воспользуемся явным видом его строительных блоков (1.80), (1.81)

\[
S^2(a) S^4(a + b) S^2(b) = c \cdot \left(\frac{u_3; q^2}{u_1; q^2} \right) (v_1; q^2) q^{-(a+b)z_1 \partial z_1} (v_2; q^2)^{-1} \left(\frac{u_2; q^2}{u_4; q^2} \right),
\]

где постоянная \(c = q^2 \frac{\partial^2}{\partial^2} \), а переменные \(u_i \) и \(v_j \) образуют пару Вейля: \(u_i, v_j = q^2 v_j u_i \),

\[
u_1 = \frac{z_2}{z_1} q^{1+a}; u_2 = \frac{z_2}{z_1} q^{1-b}; u_3 = \frac{z_2}{z_1} q^{1-a}; u_4 = \frac{z_2}{z_1} q^{1+b}; v_1 = q^{2z_1 \partial z_1 + 2-2a}; v_2 = q^{2z_1 \partial z_1 + 2+2b}.
\]

Перепишем (1.85) в нескольких эквивалентных формах. При помощи соотношения пентагона (A.5) \((u; q^2)^{-1}(v; q^2) = (v - v u; q^2)(u; q^2)^{-1} \) получаем

\[
(1.85) = c \cdot (u_3; q^2) (v_1 - v_1 u_1; q^2) (u_1; q^2)^{-1} q^{-(a+b)z_1 \partial z_1} (u_2; q^2) (v_2 - v_2 u_2; q^2)^{-1} (u_4; q^2)^{-1}.
\]

Далее отметим, что подчёркнутое выражение в предыдущей формуле равно \(q^{-(a+b)z_1 \partial z_1} \) и воспользуемся формулой Шютценбергера (A.4), чтобы переписать предыдущее выражение в виде

\[
(1.85) = c \cdot (u_3 + v_1 - v_1 u_1; q^2) q^{-(a+b)z_1 \partial z_1} (u_4 + v_2 - v_2 u_2; q^2)^{-1}.
\]

В итоге исходное выражение (1.85) с шестью \(q \)-экспонентами преобразованное к виду с двумя \(q \)-экспонентами.

Далее выведем представление из четырёх \(q \)-экспонент. Воспользуемся два раза соотношением пентагона (A.5) \((v - v u; q^2) = (u; q^2)^{-1} (v; q^2) (u; q^2) \), чтобы преобразовать предыдущую формулу к виду

\[
c \cdot (u_1 - v_1^{-1} u_3; q^2)^{-1} (v_1; q^2) (u_1 - v_1^{-1} u_3; q^2) q^{-(a+b)z_1 \partial z_1} (u_2 - v_2^{-1} u_4; q^2)^{-1} (v_2; q^2)^{-1} (u_2 - v_2^{-1} u_4; q^2)^{-1}.
\]

и учтём, что подчёркнутое выражение равно \(q^{-(a+b)z_1 \partial z_1} \). В результате имеем

\[
c \cdot (u_1 - v_1^{-1} u_3; q^2)^{-1} (v_1; q^2) q^{-(a+b)z_1 \partial z_1} (v_2; q^2)^{-1} (u_2 - v_2^{-1} u_4; q^2).
\]

48
В итоге проверили, что (1.85) допускает два других эквивалентных представления (1.86) и (1.87), которые указаны в [86]

\[S^2(a) S^3(a+b) S^2(b) = c \cdot (U(a); q^2) q^{-(a+b)z_1 \partial_1} (U(-b); q^2)^{-1}, \quad (1.88) \]

где

\[U(a) = \frac{z_2}{z_1} q^{1-a} + q^{2z_1 \partial_1 + 2-2a} - \frac{z_2}{z_1} q^{2z_1 \partial_1 + 1-a}. \]

\[S^2(a) S^3(a+b) S^2(b) = c \cdot (q^{1+a} \bar{u}; q^2)^{-1} q^{-(a+b)z_1 \partial_1} \left(\frac{q^{2-2a} \bar{v}; q^2}{q^{2+2b} v; q^2} \right) (q^{1-b} \bar{u}; q^2), \quad (1.89) \]

где

\[\bar{u} = \frac{z_2}{z_1} (1 - q^{-2z_1 \partial_1}) ; \quad \bar{v} = q^{2z_1 \partial_1}. \]

Обратимся теперь к оператору \(R^1 (1.22) \). Сразу же отметим, что его невозможно переписать в виде типа (1.85), в силу того что множители \(z_1^a \) и \(z_1^b \) из \(S^2(a) \) и \(S^2(b) \) (1.81) не компенсируют множитель \(z_2^{-a+b} \) из \(S^1(a+b) \) (1.80). Для того чтобы преодолеть это затруднение, напомним, что определяющее соотношение (1.13) не фиксирует однозначно оператор \(S^2 \); допускается умножение \(S^2 \) на произвольную функцию \(\varphi \), удовлетворяющую условию периодичности (1.83). В силу этого замечания выберем \(S^2(1.84) \) взамен \(S^2(1.81) \). Поскольку замены \(S^2 \to S^2 \) и \(S^3 \to S^1 \) отвечают перестановке \(z_1 \leftrightarrow z_2 \), предыдущее вычисление с оператором \(R^2 \) подходит и для \(R^1 \) после такой замены.

Отметим, что исходный набор операторов \(S^1, S^2, S^3 \) удовлетворяет соотношениям Кокстера (1.16), (1.17), и их достаточно чтобы построить общий \(R \)-оператор. Однако формула (1.89) оказывается исключительно важной, если ограничивать общий \(R \)-оператор на инвариантное подпространство с целью восстановить \(L \)-оператор. Таким образом, если иметь дело только лишь с исходным исходным набором элементарных операторов \(S^1, S^2, S^3 \), то невозможно воспроизвести \(L \)-оператор (1.78).

1.3.3. От пентагона к соотношениям Кокстера

В этом параграфе в случае \(q \)-деформации докажем соотношения Кокстера (1.16), (1.17) для элементарных сплетающих операторов \(S^1, S^2, S^3 \) при помощи соотношения пентагона (A.5) для Вейлевской пары

\[u = \frac{z_2}{z_1} q ; \quad v = q^{2z_1 \partial_1 + 2} ; \quad u v = q^2 v u. \]
Начнём преобразовывать правую часть (1.17), воспользуемся явным видом строительных блоков (1.81), (1.80) и введём постоянную \(c = q^2 - \frac{s^2}{\pi} \),

\[
S^2(b) S^3(a + b) S^2(a) = c \cdot \left(\frac{uq^{-b}; q^2}{uq^{-b}; q^2} \right) \left(\frac{vq^{2a}; q^2}{vq^{2a}; q^2} \right)^{-1} \cdot q^{-(a+b)z_1 \theta_{z_1}} \cdot \left(\frac{vq^{-2b}; q^2}{vq^{-2b}; q^2} \right) \left(\frac{uq^{-a}; q^2}{uq^{-a}; q^2} \right).
\]

(1.90)

Затем дважды применим соотношение пентагона (A.5) в левой части предыдущей формулы

\[
\left(\frac{uq^{-b}; q^2}{uq^{-b}; q^2} \right) \left(\frac{uq^{-a}; q^2}{uq^{-a}; q^2} \right)^{-1} \left(\frac{vq^{2a}; q^2}{vq^{2a}; q^2} \right)^{-1} = \left(\frac{uq^{-b}; q^2}{uq^{-b}; q^2} \right) \left(\frac{vq^{2a}; q^2}{vq^{2a}; q^2} \right)^{-1} \left(\frac{-v \cdot q^{2a+b}; q^2}{-v \cdot q^{2a+b}; q^2} \right) \left(\frac{uq^{-a}; q^2}{uq^{-a}; q^2} \right)^{-1} \left(\frac{vq^{-2b}; q^2}{vq^{-2b}; q^2} \right).
\]

(1.91)

а также в правой части

\[
\left(\frac{vq^{-2b}; q^2}{vq^{-2b}; q^2} \right) \left(\frac{uq^{-a}; q^2}{uq^{-a}; q^2} \right)^{-1} = \left(\frac{uq^{-a}; q^2}{uq^{-a}; q^2} \right) \left(\frac{-v \cdot q^{-a-2b}; q^2}{-v \cdot q^{-a-2b}; q^2} \right) \left(\frac{vq^{-2b}; q^2}{vq^{-2b}; q^2} \right) \left(\frac{uq^{-a}; q^2}{uq^{-a}; q^2} \right)^{-1} \left(\frac{vq^{-2b}; q^2}{vq^{-2b}; q^2} \right).
\]

(1.92)

Далее возвращаемся к (1.90), отмечим, что подчёркнутые двойной чертой множители в (1.91) и (1.92), окрашиваются друг с другом. В результате (1.90) переписывается в виде

\[
c \cdot \left(\frac{vq^{2a}; q^2}{vq^{2a}; q^2} \right)^{-1} \left(\frac{uq^{-b}; q^2}{uq^{-b}; q^2} \right) \left(\frac{-v \cdot q^{-b}; q^2}{-v \cdot q^{-b}; q^2} \right) \left(\frac{q^{-(a+b)z_1 \theta_{z_1}}}{q^{-(a+b)z_1 \theta_{z_1}}} \right) \left(\frac{vq^{-2b}; q^2}{vq^{-2b}; q^2} \right) \left(\frac{uq^{-a}; q^2}{uq^{-a}; q^2} \right)^{-1} \left(\frac{vq^{-2b}; q^2}{vq^{-2b}; q^2} \right) = S^3(a) S^3(a+b) S^3(b).
\]

Схожим образом проверим второе соотношение Кокстера (1.16), используя Вейлевскую пару

\[
\Pi = q^{2z_2 \theta_{z_2} + 2} ; \quad \nu = \frac{z_2}{z_1} q ; \quad \Pi \nu = q^2 \nu \Pi.
\]

Воспользуемся формулами для элементарных сплетений (1.80) и (1.81), чтобы представить левую часть соотношения Кокстера (1.16) в явном виде (\(c = q^{(a+b)^2} \))

\[
S^1(a) S^2(a+b) S^1(b) = c_{z_1} q^{(a+b)} \left(\frac{\Pi q^{-a}; q^2}{\Pi q^{-a}; q^2} \right) \left(\nabla q^{-b}; q^2 \right)^{-1} \cdot \frac{1}{z_2} \cdot q^{-(a+b)z_2 \theta_{z_2}} \cdot \left(\nabla q^{-a}; q^2 \right) \left(\frac{\Pi q^{-2b}; q^2}{\Pi q^{-2b}; q^2} \right).
\]

(1.93)

Как и до этого дважды применим соотношение пентагона в левой и правой части предыдущего выражения

\[
\left(\nabla q^{-a}; q^2 \right) \left(\frac{\Pi q^{-2b}; q^2}{\Pi q^{-2b}; q^2} \right)^{-1} = \left(\frac{\Pi q^{-2b}; q^2}{\Pi q^{-2b}; q^2} \right) \left(\frac{\Pi q^{-a}; q^2}{\Pi q^{-a}; q^2} \right)^{-1} \left(\frac{\Pi q^{-a-2b}; q^2}{\Pi q^{-a-2b}; q^2} \right) \left(\frac{\Pi q^{-2b}; q^2}{\Pi q^{-2b}; q^2} \right).
\]

(50)
где множители, подчёркнутые двойной чертой, сокращают друг друга после подстановки обоих предыдущих выражений в (1.93). Таким образом, (1.93) принимает вид

\[c z_1^{a+b} (\nabla q^b; q^2) (\nabla q^{-b}; q^2) \cdot \frac{1}{z_2^{a+b} q^{-(a+b)z_2 \partial_{z_2}}} (\nabla q^a; q^2) (\nabla q^{-a}; q^2) \]

и воспользовавшись ещё два раза соотношением пентагона (A.5), получаем желаемый результат

\[c z_1^{a+b} (\nabla q^b; q^2) (\nabla q^{-b}; q^2) \cdot \frac{1}{z_2^{a+b} q^{-(a+b)z_2 \partial_{z_2}}} (\nabla q^a; q^2) (\nabla q^{-a}; q^2) = S^2(b) S^1(a + b) S^2(a). \]

1.3.4. Редукция общего R-оператора к L-опператору в случае
трigonометрической деформации

Оператор \(R_{12}(u|\ell, s) \) определён на тензорном произведении \(V_\ell \otimes V_s \approx \mathbb{C}[z_1] \otimes \mathbb{C}[z_2] \) двух бесконечномерных пространств. При полном спиновом параметре \(s \) пространство \(V_s \) содержит инвариантное конечномерное подпространство \(\mathbb{C}^{2s+1} \). Выберем \(s = \frac{1}{2} \) и ограничим общий R-оператор на подпространство \(V_\ell \otimes \mathbb{C}^2 \) функций вида

\[\Psi(z_1, z_2) = \phi(z_1) + \psi(z_1) z_2, \]

где \(\phi \) и \(\psi \) полиномы. Нам будет удобно ввести регуляризацию \(2s = 1 - \varepsilon \) при помощи \(\varepsilon \), а затем перейти к пределу \(\varepsilon \to 0 \) во втором факторизованном представлении из (1.26) для R-оператора

\[R(u_1, u_2|v_1, v_2) = R^2(v_1, u_2|v_2) R^1(u_1|v_1, v_2), \]

где

\[u_1 = u - \ell - 1; u_2 = u + \ell; v_1 = -1 - \frac{1}{2} + \frac{\varepsilon}{2}; v_2 = \frac{1}{2} - \frac{\varepsilon}{2}. \]

Операторы \(R^1 \) и \(R^2 \) выбраны в виде (1.89), т.е. каждый из них содержит по четыре \(q \)-экспоненциальных фактора. Начнём с оператора

\[R^1(u_1|v_1, v_2) = (q^{3-\varepsilon} u; q^2)^{-1} q^{(v_1-u_1)z_2 \partial_{z_2}} \left(q^{2u_1+2\varepsilon} v; q^2 \right) \left(q^{v_2-u_1+1} u; q^2 \right), \]

где

\[u = \frac{z_1}{z_2} (1 - q^{-2z_2 \partial_{z_2}}); v = q^{2z_2 \partial_{z_2}}. \]
и подаём им на функцию вида (1.94). В связи с весьма специальной формой зависимости оператора R_1 от переменной z_1, для наших целей будет достаточно применить оператор к мономам 1 и z_2. Для этого нам потребуются вспомогательные формулы (A.3)

$$(x; q^2) = 1 - \frac{x}{1-q^2} + O(x^2) ; \quad (x; q^2)^{-1} = 1 + \frac{x}{1-q^2} + O(x^2). \quad (1.99)$$

Поскольку $u \cdot 1 = 0$, то $R_1(u_1|v_1, v_2) \cdot 1 = \left(\frac{q^{-2+2\epsilon} q^2}{(q^{2u_1-2v_2+2} q^2)}\right)$. Далее, замечая что $u^2 \cdot z_2 = 0$, и применив (1.99), имеем

$$\left(q^{v_2-u_1+1} u; q^2\right) \cdot z_2 = z_2 + q^{v_2-u_1+1} z_1 ; \quad \left(q^{3-\epsilon} u; q^2\right)^{-1} \cdot z_2 = z_2 - q^{1-\epsilon} z_1$$

и после простых алгебраических преобразований получаем ответ для второго монома

$$R_1(u_1|v_1, v_2) \cdot z_2 =$$

$$= \frac{(q^{2z}; q^2)}{(q^{2u_1-2v_2+2}; q^2)} [q^{u_1-v_2+1} (1 - q^{2v_2-2u_1-4}) \cdot z_1 + q^{v_1-u_1} (1 - q^{2u_1-2v_2+2}) \cdot z_2] + O(\epsilon^2).$$

Из предыдущих результатов следует, что $R_1 \cdot 1 = O(\epsilon)$ и $R_1 \cdot z_2 = O(\epsilon)$. Это вызвано множителем $(q^{-2+2\epsilon} v; q^2)$ в (1.97). Значит, чтобы вычислить $R \cdot \Psi(z_1, z_2)$ при $\epsilon = 0$, достаточно извлечь простые полюсы из R_2.

Теперь рассмотрим второй множитель в (1.95):

$$R_2(v_1, u_2|v_2) = (q^{v_2-u_1+1} u; q^2)^{-1} q^{v_2-u_2} z_1 \partial z_1 \left(\frac{q^{2u_1-2u_2+2} v; q^2}{q^{2v_2+2} v; q^2}\right) \left(q^{3-\epsilon} u; q^2\right), \quad (1.100)$$

где

$$\mathfrak{u} = \frac{z_2}{z_1} (1 - q^{-2z_1 \partial z_1}) ; \quad v = q^{2z_1 \partial z_1}. \quad (1.101)$$

В предыдущей записи оператора лишь множитель $(q^{-2+2\epsilon} v; q^2)^{-1}$ может породить полюсные вклады. Поскольку нас интересуют исключительно сингулярные вклады в R_2, то можем положить $\epsilon = 0$ в остальных множителях в R_2. Оператор R_2 тривиально действует на переменную z_2 и весьма нетривиально на функцию $\phi(z_1)$. Ввиду последнего замечания, применим его к мономам z_1^m. Из формулы

$$\mathfrak{u}^k \cdot z_1^m = (-)^k q^{k(k-1)-2mk} \frac{(q^2; q^2)_m}{(q^2; q^2)_m} z_1^{m-k} z_2^k$$

и разложения в ряд (A.3) находим ответ

$$\left(q^2 \mathfrak{u}; q^2\right) \cdot z_1^m = \sum_{k=0}^{m} q^{m-k(1-2k)} \frac{(q^2; q^2)_m}{(q^2; q^2)_k(q^2; q^2)_{m-k}} z_1^k z_2^{m-k} = q^m z_1^m + q^{1-m} \frac{1 - q^{2m}}{1 - q^2} z_1 z_2^m + O(z_1^2)$$
для крайнего множителя в (1.100) при \(\varepsilon = 0 \). Используя разложение (1.99) и \(\mathbf{u}^2 \cdot z_1 = 0 \) находим
\[
(q^{u_2-v_1+1} \mathbf{u}; q^2)\cdot z_1 = z_1 - q^{u_2-v_1-1}z_2,
\]
tак что после простых алгебраических преобразований вклад простых полюсов в \(R^2(v_1, u_2|v_2) \cdot z_1^m \) равен
\[
\frac{(q^{2v_1-2u_2+4}, q^2)q^{2-m}}{(q^{2v_1-2u_2-4}, q^2)} [q^{v_2-u_2-1}(1-q^{2m}) \cdot z_1z_2 - (1-q^{2v_1-2u_2+2m}) \cdot z_2^m] + O(1),
\]
где подразумеваем, что первое слагаемое отсутствует при \(m = 0 \). Теперь всё готово для того, чтобы определить ограничение R-оператора на подпространство (1.94)
\[
z_1^m \rightarrow \left(\frac{q^{2u-\ell+\frac{1}{2}}; q^2}{q^{2u-\ell-\frac{1}{2}}; q^2} \right) q^{-u-\ell-\frac{1}{2}} \left[(q^{u+m+\frac{1}{2}} - q^{-u-\ell+m-\frac{1}{2}}) \cdot z_2^m - (q^{m-q^{-m}} \cdot z_1z_2^m) \right],
\]
\[
z_1^m z_2 \rightarrow \left(\frac{q^{2u-\ell+\frac{1}{2}}; q^2}{q^{2u-\ell-\frac{1}{2}}; q^2} \right) q^{-u-\ell-\frac{1}{2}} \left[-(q^{m-2\ell} - q^{-m+2\ell}) \cdot z_2^m + (q^{u+m-\ell+\frac{1}{2}} - q^{-u-m+\ell-\frac{1}{2}}) \cdot z_1z_2^m \right].
\]
Осталось учесть перестановку пространств \(R_{12} = P_{12}R_{12} \) и выбрать базис в двумерном пространстве \(\mathbb{C}^2 \)
\[
e_1 = -z_2; \quad e_2 = 1,
\]
чтобы получить желаемую формулу редукции R-оператора к L-оператору (1.78)
\[
R_{12}(u|\ell, s = \frac{1}{2}) \bigg|_{\mathbb{V} \otimes \mathbb{C}^2} = \left(\frac{q^{2u-\ell+\frac{1}{2}}; q^2}{q^{2u-\ell-\frac{1}{2}}; q^2} \right) q^{-u-\ell-\frac{1}{2}} \cdot L\left(u + \frac{1}{2} | \ell \right).
\]

1.3.5. Тригонометрические рекуррентные соотношения

Установим несколько рекуррентных соотношений, связывающих друг с другом операторы элементарных перестановок со сдвинутыми аргументами, т.е. установим связь между \(S_i(a) \) и \(S_i(a \pm 1) \) (\(i = 1, 2, 3 \)). Эти соотношения нам понадобятся при выводе уравнения Бакстера.

Рассмотрим сначала рекуррентные соотношения для \(S^1 \), \(S^3 \), являющихся копиями сплетающего оператора \(W(a) \). Начнём с соотношения
\[
-q^{-\frac{1}{2}} W(a + 1) = W(a) \frac{1}{z} \left(q^{z_0} - q^{-z_0} \right) = \frac{1}{z} \left(q^{z_0} - q^{-z_0} \right) W(a),
\]
которое легко проверить используя явное выражение (1.80) для сплетающего оператора.
Отметим, что начиная с $W(0) = \mathbb{1}$ и применяя предыдущую формулу получаем факторизованное представление для $W(n)$ при неотрицательном целом n,

$$W(n) = q^n \left[\frac{1}{z} \left(q^{-z\partial_z} - q^{z\partial_z} \right) \right]^n.$$ (1.103)

Из этой формулы следует, что $W(n)$ занимает мономы $z^k, k = 0, 1, ..., n - 1$, линейные комбинации которых порождают инвариантное подпространство при $2\ell + 1 = n \in \mathbb{N}$.

Далее укажем пару матричных соотношений,

$$-q^\frac{1}{4}(q^a - q^{-a}) W(a - 1) \begin{pmatrix} 1, 1 \end{pmatrix} = \left(\begin{array}{cc} -z & 1 \\ 1 & 1 \end{array} \right) W(a) \left(\begin{array}{cc} 1 & 1 \\ zq^{-a} & zq^a \end{array} \right) \left(\begin{array}{cc} q^{z\partial_z + 1} & 0 \\ 0 & q^{-z\partial_z - 1} \end{array} \right),$$ (1.104)

$$q^\frac{1}{4}(q^a - q^{-a}) z^{-1} W(a - 1) \begin{pmatrix} 1, -1 \end{pmatrix} = \left(\begin{array}{cc} q^{z\partial_z + 1} & 0 \\ 0 & q^{-z\partial_z - 1} \end{array} \right) \left(\begin{array}{cc} q^a & -z^{-1} \\ -q^{-a} & z^{-1} \end{array} \right) W(a) \begin{pmatrix} 1, 1 \end{pmatrix}.$$ (1.105)

Для того, чтобы показать, что правая часть (1.104) пропорциональна строке $\begin{pmatrix} -z, 1 \end{pmatrix}$, умножим слева соотношение сплетения (1.18) $W(a) L(0, a) = L(a, 0) W(a)$ на строку $\begin{pmatrix} -z, 1 \end{pmatrix}$, что даёт $\begin{pmatrix} -z, 1 \end{pmatrix} W(a) L(0, a) = \begin{pmatrix} 0, 0 \end{pmatrix}$ или в подробной (1.78) записи

$$\begin{pmatrix} -z, 1 \end{pmatrix} W(a) \left(\begin{array}{cc} 1 & 1 \\ zq^{-a} & zq^a \end{array} \right) \left(\begin{array}{cc} q^{z\partial_z + 1} & 0 \\ 0 & q^{-z\partial_z - 1} \end{array} \right) \begin{pmatrix} 1, -1 \end{pmatrix} = 0.$$

Последняя формула говорит о линейной зависимости двух уравнений системы (1.104). Следовательно, чтобы убедиться в справедливости двух соотношений (1.104), достаточно проверить лишь первое, что несложно сделать используя явное выражение (1.80) для $W(a)$. Аналогичным образом доказывается и вторая система (1.105) операторных соотношений. Для вывода уравнения Бакстера нам потребуется только (1.105).

Нам также необходимы рекуррентные соотношения для S^2 (1.81)

$$q^{2z\partial_z} S^2(a) q^{-z\partial_z} = z^{-1} \left(1 - \frac{z\partial_z}{z_1} q^{-a} \right)^{-1} S^2(a + 1),$$ (1.106)

$$q^{2z\partial_z} S^2(a) q^{-z\partial_z} = (z_1 - z_2 q^a) S^2(a - 1),$$ (1.107)

$$q^{-z\partial_z} S^2(a) q^{z\partial_z} = (z_1 - z_2 q^{-a}) S^2(a - 1).$$ (1.108)

Все предыдущие формулы устроены весьма просто. Однако есть смысл подробно на них останавливаться, поскольку для них существуют непосредственные аналоги в случае эллиптической деформации, представляющие собой намного более сложные соотношения, как показано в параграфе 1.4.2.
1.3.6. Тригонометрическое уравнение Бакстера

Выше проделали все необходимые подготовительные шаги для вывода уравнения Бакстера на оператор Q_2 (1.35). Он строится из нескольких копий локального оператора R^2, заданного соотношением сплетания (1.21), которое подразумевает перестановку пары параметров $u_2 \leftrightarrow v_2$ в произведении двух L-операторов. В дальнейшем воспользуемся вторым факторизованным представлением для R^2 из (1.23).

Уравнение Бакстера будет получено из соответствующего локального соотношения для строительных блоков трансфер матрицы $t(u)$ (1.31) и оператора Q_2 (1.35). А именно, вычислим диагональные элементы матрицы (см. (1.45))

$$
\begin{pmatrix}
1 & 0 \\
-z_1 & 1
\end{pmatrix}
R^2_{u_1, u_2|v_2} L_1(u_1, u_2)
\begin{pmatrix}
1 & 0 \\
z_2 & 1
\end{pmatrix}
$$

(1.109)

в пределе $v_2 = 0$. Далее покажем, что в этом пределе зануляются матричный элемент под диагональю. Начнём с RLL-соотношения (1.21), подставим в него L-оператор в факторизованном виде (1.78) и учтём коммутативность R^2 и z_2,

$$
R^2(u_1, u_2|v_2) L_1(u_1, u_2) \begin{pmatrix}
1 & 1 \\
z_2q^{-v_2} & z_2q^{v_2}
\end{pmatrix}
= L_1(u_1, v_2) \begin{pmatrix}
1 & 1 \\
z_2q^{-u_2} & z_2q^{u_2}
\end{pmatrix}
\times
\begin{pmatrix}
q^{z_2\partial_2} R^2(u_1, u_2|v_2) q^{-z_2\partial_2} & 0 \\
0 & q^{-z_2\partial_2} R^2(u_1, u_2|v_2) q^{z_2\partial_2}
\end{pmatrix},
$$

(1.110)

что также будет полезно переписать в виде

$$
R^2(u_1, u_2|v_2) L_1(u_1, u_2) = L_1(u_1, v_2) \begin{pmatrix}
1 & 1 \\
z_2q^{-u_2} & z_2q^{u_2}
\end{pmatrix}
\times
\begin{pmatrix}
q^{z_2\partial_2} R^2(u_1, u_2|v_2) q^{-z_2\partial_2} & 0 \\
0 & q^{-z_2\partial_2} R^2(u_1, u_2|v_2) q^{z_2\partial_2}
\end{pmatrix}
\begin{pmatrix}
q^{v_2} & -1 \\
-z_2q^{v_2} & 1
\end{pmatrix}
\begin{pmatrix}
1 \\
z_2(q^{-v_2} - q^{-v_2})
\end{pmatrix}.
$$

(1.111)

Это два основных соотношения, на которых основано всё дальнейшее вычисление из этого параграфа.

Рассмотрим для начала поддиагональный матричный элемент в (1.109). Учитывая вид L-оператора (1.78) получаем, что

$$
(-z_1, 1) L_1(u_1, 0) \sim (-z_1, 1) \begin{pmatrix}
1 & 1 \\
z_1 & z_1
\end{pmatrix} = (0, 0),
$$

55
и следовательно рассматриваемый матричный элемент зануляется ввиду (1.110).

Далее обратимся к верхнему диагональному элементу в (1.109),

\[
\begin{pmatrix}
1, & 0
\end{pmatrix}
R^2(u_1, u_2|0) L_1(u_1, u_2)
\begin{pmatrix}
1
\end{pmatrix}.
\]

Покажем, что он пропорционален оператору R^2 со сдвинутыми аргументами. Отбираем из (1.110) пару соотношений

\[
R^2(u_1) L_1(u_1, u_2)
\begin{pmatrix}
1
\end{pmatrix} = L_1(u_1, 0)
\begin{pmatrix}
1 & 1 \\
z_2q^{-u_2} & z_2q^{u_2}
\end{pmatrix}
\begin{pmatrix}
q^{z_2\partial_2} R^2(u) q^{-z_2\partial_2} \\
0
\end{pmatrix},
\]

где использовано сокращённое обозначение $R^2(u_1) = R^2(u_1, u_2|0)$. Принимая во внимание предыдущую формулу, вторую формулу факторизации (1.23) для $R^2(u)$

\[
q^{z_2\partial_2} R^2(u) q^{-z_2\partial_2} = S^3(u_1) q^{z_2\partial_2} S^2(u_2) q^{-z_2\partial_2} S^3(u_2 - u_1),
\]

и соотношение сплетания (1.14) рассматриваемый матричный элемент переписываем в виде

\[
S^3(u_1) \cdot \begin{pmatrix}
1, & 0
\end{pmatrix}
L_1(0, u_1)
\begin{pmatrix}
1
\end{pmatrix} \cdot q^{z_2\partial_2} S^2(u_2) q^{-z_2\partial_2} S^3(u_2 - u_1).
\]

С учётом явного вида L-оператора (1.78) подчёркнутое выражение из предыдущей формулы принимает вид

\[
\begin{pmatrix}
1, & 1
\end{pmatrix}
\begin{pmatrix}
q^{z_1\partial_1} + 1 & 0 \\
0 & q^{-z_1\partial_1 - 1}
\end{pmatrix}
\begin{pmatrix}
1 \\
-1
\end{pmatrix}
\cdot
\begin{pmatrix}
1 - \frac{z_2}{z_1} q^{-u_2}
\end{pmatrix},
\]

и воспользовавшись рекуррентной формулой (1.106) для сдвига аргумента в операторе S^2 ещё раз переписываем искомый матричный элемент

\[
S^3(u_1) \frac{1}{z_1} \left(q^{z_1\partial_1} - q^{-z_1\partial_1}\right) S^2(u_2 + 1) S^3(u_2 - u_1).
\]

Чтобы получить окончательное выражение для него воспользуемся рекуррентной формулой для оператора S^3 (1.102), чтобы произвести сдвиг аргумента. Таким образом верхний диагональный элемент равен

\[-q^{-\frac{1}{2}} S^3(u_1 + 1) S^2(u_2 + 1) S^3(u_2 - u_1).\]

Теперь произведём похожее вычисление нижнего диагонального элемента в (1.109):

\[
\begin{pmatrix}
-z_1, & 1
\end{pmatrix}
R^2(u_1, u_2|0) L_1(u_1, u_2)
\begin{pmatrix}
0 \\
1
\end{pmatrix}.
\]

Из второго основного матричного соотношения (1.111)
заключаем, что он равен
\[
\frac{1}{z_2(q^{z_2} - q^{-z_2})} \begin{pmatrix} -z_1, & 1 \end{pmatrix} L_1(u_1, v_2) \begin{pmatrix} 1 & 1 \\ z_2q^{-u_2} & z_2q^{u_2} \end{pmatrix} \begin{pmatrix} -q^{z_2\partial_2} R^2(u_1, u_2|v_2) q^{-z_2\partial_2} \\ q^{-z_2\partial_2} R^2(u_1, u_2|v_2) q^{z_2\partial_2} \end{pmatrix}, \tag{1.113}
\]
где теперь необходимо аккуратно вычислить предел \(v_2 \to 0 \). В этом пределе
\[
\frac{1}{z_2(q^{v_2} - q^{-v_2})} \begin{pmatrix} -z_1, & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ z_1q^{v_2} & z_1q^{-v_2} \end{pmatrix} \to \frac{1}{2z_2} \begin{pmatrix} 1 \\ z_1 \end{pmatrix} (-1, 1),
\]
так что теперь учитывая факторизацию L-оператора (1.78), выполняя сдвиг аргумента в \(S^2 \) при помощи (1.107), (1.108)

\[
\begin{pmatrix} 1 & 1 \\ z_2q^{-u_2} & z_2q^{u_2} \end{pmatrix} \begin{pmatrix} -q^{z_2\partial_2} S^2(u_2)q^{-z_2\partial_2} \\ q^{-z_2\partial_2} S^2(u_2)q^{z_2\partial_2} \end{pmatrix} = z_2(q^{u_2} - q^{-u_2}) \begin{pmatrix} 1 \\ z_1 \end{pmatrix} S^2(u_2 - 1),
\]
видим, что в пределе \(v_2 \to 0 \) искомый матричный элемент (1.113) принимает вид

\[
\frac{1}{2z_2} \begin{pmatrix} 1 \\ z_1 \end{pmatrix} (-1, 1) \begin{pmatrix} z_1\partial_1+1 & 0 \\ 0 & q^{-z_1\partial_1-1} \end{pmatrix} \begin{pmatrix} q^{u_1} & -z_1^{-1} \\ -q^{-u_1} & z_1^{-1} \end{pmatrix} S^3(u_1) \begin{pmatrix} 1 \\ z_1 \end{pmatrix} \times
\cdot z_2(q^{u_2} - q^{-u_2}) S^2(u_2 - 1) S^3(u_2 - u_1).
\]

В предыдущей формуле подчёркнутый фактор преобразуем матричным рекуррентным соотношением (1.105), что в итоге приводит нас к нижнему диагональному элементу

\[-q^{\frac{1}{2}}(q^{u_1} - q^{-u_1})(q^{u_2} - q^{-u_2}) S^3(u_1 - 1) S^2(u_2 - 1) S^3(u_2 - u_1).
\]

Отметим, что вычисление можно провести схожим образом, воспользовавшись рекуррентным соотношением (1.104) вместо (1.105).

Результатом предыдущего вычисления служит матрица (1.109) (см. (1.45))

\[
\begin{pmatrix} 1 & 0 \\ -z_1 & 1 \end{pmatrix} R^2(u) L_1(u_1, u_2) \begin{pmatrix} 1 & 0 \\ z_2 & 1 \end{pmatrix} =
\begin{pmatrix} -q^{\frac{1}{2}} R^2(u + 1) & \cdots \\ 0 & -q^{\frac{1}{2}}(q^{u_1} - q^{-u_1})(q^{u_2} - q^{-u_2}) R^2(u - 1) \end{pmatrix}.
\]

Как было пояснено в параграфе 1.1, отсюда немедленно следует уравнение Бакстера (см. (1.46))

\[
t(u) Q_i(u) = (-)^N q^{-\frac{N}{2}} Q_i(u + 1) + (-)^N q^{\frac{N}{2}} \Delta^N(u_1, u_2) Q_i(u - 1), \quad i = 1, 2, \tag{1.114}
\]
где \(\Delta(u_1, u_2) = (q^{u_1} - q^{-u_1})(q^{u_2} - q^{-u_2}) \) симметричная функция своих аргументов. Уравнение Бакстера для \(Q_1 \) следует из того, что \(Q \)-операторы связаны преобразованием подобия (1.50).
1.3.7. Действие тригонометрического Q-оператора на производящую функцию представления

В этом параграфе выведем явную формулу для оператора Q_2 (1.35), установив как он действует на производящую функцию представления алгебры симметрии в квантовом пространстве состояний спиновой цепочки. Оказывается, что вывиду (1.52) достаточно вычислить, как R^2 действует на производящую функцию представления в одном узле цепочки. Это наблюдение сильно упрощает задачу, сводя глобальную задачу к локальной. Более того, локальную задачу можно решить с точностью до постоянного множителя не используя явное выражение для оператора R^2 (типа (1.23)), а используя исключительно определяющее соотношение для него (1.21). Явное выражение для R^2 понадобится только на последнем шаге, чтобы фиксировать нормировку. Напомним, что участвующие в соотношении (1.21) L-операторы, действуют в двух различных квантовых пространствах.

Учитывая (1.5), видим, что $L_1 \cdot L_2$ определяет структуру типа ко-произведения на квантовой алгебре $U_q(s\ell_2)$. Далее сдвигаем все четыре параметра $u_i \rightarrow u_i + \lambda, v_i \rightarrow v_i + \lambda (i = 1, 2)$ в (1.21), что не меняет оператор R^2, извлекаем матричный элемент под диагональю и рассматриваем асимптотику $\lambda \rightarrow +\infty$, что даёт

$$R^2(u_1, u_2|v_2) \left[S^+_1(u_1 - u_2 + 1) K_2(-v_1 - 1) + K_1^{-1}(u_2) S^+_2(v_1 - v_2 + 1) \right] = (1.115)$$

$$\left[S^+_1(u_1 - v_2 + 1) K_2(-v_1 - 1) + K_1^{-1}(v_2) S^+_2(v_1 - u_2 + 1) \right] R^2(u_1, u_2|v_2),$$

где использованы обозначения $S^+(a) = z[z\partial_+ + a] ; K(a) = q^{z\partial_- - a}$. Структура типа ко-произведения, участвующая в (1.115), зависит от набора спектральных параметров

$$(\Delta S^+)(a, b, c, d) = S^+_1(a) K_2(-b) + K^{-1}_1(c) S^+_2(d).$$

Принимая это обозначение, сплетающее соотношение (1.115) перепишем в виде

$$R^2(u_1, u_2|v_2) \mathcal{F}(\lambda(\Delta S^+)(u_1 - u_2 + 1, v_1 + 1, u_2, v_1 - v_2 + 1)) \cdot 1 =$$

$$= \mathcal{F}(\lambda(\Delta S^+)(u_1 - v_2 + 1, v_1 + 1, v_2, v_1 - u_2 + 1)) R^2(u_1, u_2|v_2) \cdot 1,$$

где \mathcal{F} произвольная функция. В дальнейшем выберем её в виде q-ряда

$$\mathcal{F}(x) = \sum_{k \geq 0} \frac{q^{n(n+1)/2}}{(q^2;q^2)_n} (q^{-1} - q)^n x^n \quad (1.117)$$

по причине, которая скоро станет понятна. Чтобы вычислить $\mathcal{F}(\lambda(\Delta S^+)) \cdot 1$, воспользуемся формулой

$$((\Delta S^+)(a, b, c, d))^n \cdot 1 = \sum_{k=0}^{n} \frac{(q^{2a}; q^2)_k (q^{2d}; q^2)_{n-k} (q^{2b}; q^2)_{n-k} (q^{2c}; q^2)_{n-k} q^{(b-a)(c-d)(n-k) - n(n+1)/2 z_1 z_2}}{(q^{-1} - q)^n (q^2;q^2)_k (q^2;q^2)_{n-k} z_1 z_2},$$

58
которую легко доказать по индукции. В итоге при помощи \(q \)-биномиальной формулы (A.2) получаем
\[
F(\lambda(\Delta S^+))(a, b, c, d) \cdot 1 = \frac{(q^{1+a+b}\lambda z_1, q^{1+c+d}\lambda z_2; q^2)}{(q^{1-a+b}\lambda z_1, q^{1+c-d}\lambda z_2; q^2)}.
\]
Таким образом, видим, что специфической особенностью функции \(F \) (1.117), поясняющей наш выбор, является то, что \(F(\lambda(\Delta S^+)) \cdot 1 \) распадается в произведение двух факторов, зависящих по отдельности от \(z_1 \) и \(z_2 \). Эта факторизация играет для нас ключевую роль, поскольку вывиду коммутативности \(R^2 \) и \(z_2 \) формула (1.116) переписывается как
\[
R^2_{12}(u) \frac{(q^{22}\lambda z_1; q^2)}{(q^{22}\lambda z_1; q^2)} = c \cdot \frac{(q^{u-\ell}\lambda z_1, q^{-u-\ell}\lambda z_2; q^2)}{(q^{u+\ell}\lambda z_1, q^{u+\ell}\lambda z_2; q^2)},
\]
gде положено \(v_1 = -2, v_2 = 0 \), а постоянную \(c = R^2(u) \cdot 1 \) можно вычислить при помощи явного выражения для \(R^2 \) (1.89)
\[
c = R^2(u) \cdot 1 = q^{-u_1 u_2+\frac{u_1}{2}} \frac{(q^{22} u_1-2 u_2; q^2)}{(q^{22} u_1; q^2)}.
\]
Зная как \(R^2 \) действует на производящую функцию, определим теперь действие \(Q_2 \). Для этого будет удобно сменить нормировку оператора \(Q_2 \): \(Q_2(u) \to c^{-N} \cdot Q(u) \), в результате чего уравнение Бакстера принимает вид
\[
t(u) Q(u) = \Delta_+(u) Q(u + 1) + \Delta_-(u) Q(u - 1),
\]
где \(\Delta_\pm(u) = (q^{u+\ell}-q^{-u-\ell})^N \). Как следствие (1.52) в итоге получаем, как оператор Бакстера \(Q(u) \) действует на производящую функцию спиновой цепочки
\[
Q(u) \cdot \prod_{i=1}^N \frac{(q^{-2i}\lambda_i z_i; q^2)}{(q^{2i}\lambda_i z_i; q^2)} = \prod_{i=1}^N \frac{(q^{-u-\ell}\lambda_i z_i, q^{u-\ell}\lambda_{i+1} z_i; q^2)}{(q^{u+\ell}\lambda_i z_i, q^{u+\ell}\lambda_{i+1} z_i; q^2)},
\]
где подразумевается цикличность, \(N + 1 \equiv 1 \).

В параграфе 1.3.8 проведено альтернативное доказательство (1.118), которое основано исключительно на тройных соотношениях Кокстера (1.17) и очень схоже с вычислением для эллиптического случая в параграфе 1.4.5.

Таким образом, для спиновой цепочки с тригонометрически деформированной алгеброй симметрии построена пара \(Q \)-операторов Бакстера, выведенено соответствующее уравнение Бакстера и для них получена явная формула. Эти глобальные операторы коммутируют друг с другом (1.36) и удовлетворяют соотношению факторизации (1.37), как это было показано в параграфе 1.1.

1 Здесь и далее принимается обозначение \((a, b, c, \ldots ; q^2) = (a; q^2)(b; q^2)(c; q^2) \ldots \).
1.3.8. Явная формула для Q-оператора из соотношений Кокстера

В этом параграфе представим альтернативное доказательство локального соотношения (1.118), которое порождает явную формулу для Q-оператора Бакстера (1.119). Настоящий вывод использует исключительно соотношения Кокстера (1.17). Для начала перепишем (1.118), учтев факторизацию R^2 (1.23),

$$
\frac{(q^{2z_1\partial z_1} + 2 + 2h; q^2)}{(q^{2z_1\partial z_1} + 2 + 2a + 2b; q^2)} \cdot \frac{(q^{1-b\frac{z_2}{z_1}}; q^2)}{(q^{1+2a+b\frac{z_2}{z_1}}; q^2)} \cdot \frac{(q^{2-a+b\frac{z_1}{z_2}}; q^2)}{(q^{2-a+b\frac{z_1}{z_3}}; q^2)} = \frac{(q^{2+2b}; q^{1-b\frac{z_2}{z_1}}; q^{1-a\frac{z_2}{z_3}}; q^{2+a+b\frac{z_1}{z_3}}; q^2)}{(q^{2+2a+2b}; q^{1+b\frac{z_2}{z_1}}; q^{1+a\frac{z_2}{z_3}}; q^{2-a-b\frac{z_1}{z_3}}; q^2)}.
$$

(1.120)

Для того чтобы доказать эту формулу, подставим в соотношение Кокстера (1.17) явные выражения для S^2, S^3 (1.80), (1.81)

$$
\frac{(vu^b; q^2)}{(vu^2a+b; q^2)} = \frac{(uv^b; q^2)}{(uv^2a+b; q^2)} \cdot \frac{(v; q^2)}{(v^2; q^2)} = \frac{(uv^b; q^2)}{(uv^2a+b; q^2)} \cdot \frac{(v; q^2)}{(v^2; q^2)} = \frac{(u^b; q^2)}{(u^2a+b; q^2)} \cdot \frac{(v; q^2)}{(v^2; q^2)}.
$$

(1.121)

где u и v образуют Вейланскую пару: $u = \frac{z_2}{z_3} q$; $v = q^{2z_1\partial z_1+2}$; $u v = q^2 v u$.

Далее применим обе части соотношения (1.121) к дельта-функции, представленной в виде ряда

$$
\sum_{k=-\infty}^{+\infty} \left(\frac{z_1}{z_3} \right)^k = z_3 \delta(z_1 - z_3).
$$

На самом деле такой ряд воспроизводит δ распределение на единичной окружности, т.e. с учётом ограничения на переменные $|z_i| = 1$. Применим формально такое разложение в ряд, игнорируя ограничение на переменные.

Таким образом в левой части имеем выражение

$$
q^{-(a+b)z_1\partial z_1} \frac{(v; q^2)}{(v^2; q^2)} = \sum_{k=0} \frac{(q^{2+2k}; q^2)}{(q^{2+2a+2k}; q^2)} q^{-(a+b)k} \left(\frac{z_1}{z_3} \right)^k = \frac{(q^2; q^2)}{(q^{2+a+b}; q^2)} \left(\frac{z_2}{z_3} q^{2-a-b}; q^2 \right),
$$

где на последнем шаге воспользовались q-биномиальной формулой (A.2). Отметим, что суммирование по всем целым k сводится к суммированию по неотрицательным k из-за множителя $(q^{2+2k}; q^2)$. Схожим образом вычисляем правую часть

$$
= \frac{(uv^b; q^2)}{(uv^2a+b; q^2)} \sum_{k=0} \frac{(q^{2+2k}; q^2)}{(q^{2+2a+2k+2k}; q^2)} q^{-(a+b)k} \left(\frac{z_1}{z_3} \right)^k = \frac{(z_2}{z_3} q^{1-a}; q^2} \frac{(z_2}{z_3} q^{1+a}; q^2} \frac{(z_2}{z_3} q^{2+a+b}; q^2} \frac{(z_2}{z_3} q^{2-a-b}; q^2}.
$$

(1.122)

Сравнивая левую и правую часть, получаем искомую формулу (1.120).
1.4. Эллиптическая деформация

1.4.1. Эллиптический \(L \)-оператор и перестановки параметров

Перейдём теперь к наиболее сложному виду деформации, используя общие построения из параграфа 1.1. Эллиптическая деформация алгебры \(s\ell_2 \) была введена в [4, 87] и называется алгеброй Склянинна. Её определяющие соотношения эквивалентны (1.5), для случая числовой \(R \)-матрицы, введённой Бакстером в его решении восьми-вершинной модели [3, 14].

Далее нас будут интересовать бесконечномерные представления алгебры на пространстве чётных мероморфных функций одной комплексной переменной [87]. Генераторы алгебры в этом представлении реализованы конечно-разностными операторами второго порядка, которые строятся из тета-функций Якоби (см. Приложение А) и зависят от двух параметров деформации \(\eta, \tau \) и параметра спина \(\ell \), который считаем произвольным комплексным числом. Используя такое операторное представление генераторов алгебры, факторируем \(L \)-оператор [23, 37, 43] в виде

\[
L(u_1, u_2) = \frac{1}{\theta_1(2z)} M(z \mp u_2) \begin{pmatrix} e^{\eta \theta_z} & 0 \\ 0 & e^{-\eta \theta_z} \end{pmatrix} N(z \mp u_1), \tag{1.122}
\]

где введено специальное обозначение для матриц из тета-функций

\[
M(a \mp b) = \begin{pmatrix} (a - b)_3 & -(a + b)_3 \\ -(a - b)_4 & (a + b)_4 \end{pmatrix}, \quad N(a \mp b) = \begin{pmatrix} (a + b)_4 & (a + b)_3 \\ (a - b)_4 & (a - b)_3 \end{pmatrix}, \tag{1.123}
\]

а связь между двумя наборами параметров устанавливается при помощи формул \((u_1, u_2)\) и \((u, \ell)\) согласно (1.9) при помощи

\[
u_1 = \frac{u}{2} - \eta \ell - \eta, \quad u_2 = \frac{u}{2} + \eta \ell. \tag{1.124}
\]

Все обозначения и нужные для дальнейшего свойства тета-функций собраны в Приложении А. Отметим, что ввиду (А.16) матрицы \(M \) и \(N \) (1.123) обратны друг к другу

\[
M(a \mp b) N(a \mp b) = 2 \theta_1(2a) \theta_1(2b) \cdot 1. \tag{1.125}
\]

Такой \(L \)-оператор (1.122) был использован в [37], для того чтобы построить операторы элементарных перестановок \(S^i(a) \) \((i = 1, 2, 3)\) — элементарные строительные блоки для общего \(R \)-оператора, удовлетворяющего (1.11). Однако в [42] было показано, что...
удобнее работать с немного подправленной версией L-оператора (1.122). Инвариантность \mathcal{R}-матрицы Бакстера: $\sigma_3 \otimes \sigma_3 \mathcal{R}(u) = \mathcal{R}(u) \sigma_3 \otimes \sigma_3$, ведёт к тому, что L-оператор, умноженный слева на σ_3 матрицу Паули $\sigma_3 L(u)$ по-прежнему решает (1.5) и следовательно может быть использован наравне с L-оператором (1.122).

Предобразование $L(u) \to \sigma_3 L(u)$ соответствует автоморфизму алгебры Склянина. При этом естественное пространство представления V_ℓ принимает вид $e^{-\pi i \eta z^2} \Phi(z)$, где $\Phi(z) - чётные периодические функции с периодом 1 [42, 88]. Далее будем рассматривать RLL-соотношение (1.11) вида

$$R_{12}(u_1, u_2|v_1, v_2) \sigma_3 L_1(u_1, u_2) \sigma_3 L_2(v_1, v_2) = \sigma_3 L_1(v_1, v_2) \sigma_3 L_2(u_1, u_2) R_{12}(u_1, u_2|v_1, v_2),$$

(1.126)

где L-оператор задан в (1.122). Такую же подстановку $L(u) \to \sigma_3 L(u)$ нужно выполнить в остальных формулах параграфа 1.1: (1.12), (1.13), (1.14), (1.20), (1.21).

Укажем теперь операторы элементарных перестановок S^1, S^2 и S^3. Их конструкция, а следовательно и интегрируемая структура спиновой цепочки, основана на свойствах эллиптической гамма-функции $\Gamma(z|\tau, 2\eta)$. В дальнейшем используем для неё сокращённое обозначение $\Gamma(z)$. Её определение и важные для нашей конструкции свойства собраны в Приложении А.

- Оператор S^2 нетривиально действует в двух квантовых пространствах и задан операторным соотношением (1.13) где выполнено преобразование L-оператора (1.122): $L(u) \to \sigma_3 L(u)$. Одно из возможных решений этого соотношения, которое подходит наших целей, имеет вид2 [42]

$$S^2(a) = \Gamma(\mp z_1 \mp z_2 + a + \eta + \frac{i}{\tau}).$$

(1.127)

Пожалуй, выражение, содержащее экспоненциональный фактор и без сдвига $\frac{i}{\tau}$, использовалось в [37]. Также самое выражение было использовано в [82, 83] в соотношении звездо-треугольник.

- Бесконечномерные представления алгебры Склянина с параметрами ℓ и $-\ell - 1$ эквивалентны, поскольку операторы Казимира принимают одинаковые численные значения в обоих представлениях. Соответствующий сплетающий оператор двух представлений $W(\eta(2\ell + 1))$ (1.18) выберем в виде интегрального оператора [42] на про-

2 Здесь и далее используется обозначение $\Gamma(\mp a \mp b) = \Gamma(a + b)\Gamma(-a + b)\Gamma(a - b)\Gamma(-a - b)$.

62
странице чётных функций

\[
W(a) \Phi(z) = \frac{1}{\Gamma(-2a)} \int_{0}^{1} dx \mu(x) e^{-\frac{\pi i}{2}(x^2+2x)} \Gamma(\mp z \mp x - a) \Phi(x) ; \quad \mu(x) = \frac{C e^{\frac{2\pi i x^2}{\eta}}}{\Gamma(\mp 2x)},
\]

где \(\mu(x)\) обозначает меру интегрирования, а постоянная \(C = \frac{1}{2} (e^{4\pi i \eta}; e^{4\pi i \eta}) (e^{2\pi i \tau}; e^{2\pi i \tau}).\)

Примечательно, что подобный оператор был использован в [89] в конструкции интегрального преобразования Бейли. Формула, эквивалентная двойному соотношению в группе перестановок \(W(a)W(-a) = 1\) была доказана в [90]. В отличие от случая \(q\)-деформации экспоненциальное свойство для сплетающего оператора неверно. Операторы \(S_1(a)\) и \(S_3(a)\) (1.12), (1.14) – это две копии сплетающего оператора \(W(a)\), действующего нетривиально во втором и в первом квантовых пространствах соответственно (1.47).

Кроме того, указанные операторы \(S_1, S_2, S_3\) удовлетворяют соотношениям Кокстера (1.16), (1.17) [42], что является прямым следствием формулы для эллиптического бета интеграла В. Спиридонова [44].

Для сравнения с работой [37] отметим, что в ней операторы элементарных перестановок были построены, исходя из \(L\)-оператора (1.122). Получающийся при этом оператор \(S_2\) не симметричен при перестановке \(z_1 \leftrightarrow z_2\) в противоположность решению (1.127). Кроме того, сплетающий оператор \(W\) представлений алгебры Склянина был выбран в форме операторного ряда, построенного А. Забродином. Не смотря на то, что такое представление для сплетающего оператора нельзя считать хорошо определённым (в частности при действии на постоянную получаем расходящийся ряд), при помощи формальных алгебраических манипуляций с такими рядами и использования формулы суммирования Френкеля-Тураева [91] удалось проверить соотношения Кокстера для операторов элементарных перестановок.

1.4.2. Эллиптические рекуррентные соотношения

Найдём рекуррентные соотношения, связывающие \(S_i(a)\) и \(S_i(a \pm \eta)\) \((i = 1, 2, 3)\). Показем, что они имеют вид схожий с аналогичными тождеств в случае недеформированной симметрии и тригонометрической деформации (1.3.5).
Начнем с рекуррентных соотношений для сплетающего оператора $W(a)$ (1.128)

$$R(\tau) e^{-\pi i n(z)} W(a + \eta) = W(a) \frac{1}{\theta_1(2z)} \left[(z - a) e^{\eta \partial_z} - (z + a) e^{-\eta \partial_z} \right], \quad (1.129)$$

$$R(\tau) e^{-\pi i n} W(a + \eta) (z) = \frac{1}{\theta_1(2z)} \left[(z + a + \eta) e^{\eta \partial_z} - (z - a - \eta) e^{-\eta \partial_z} \right] W(a), \quad (1.130)$$

где $i = 3, 4$, $R(\tau)$ постоянная (см. Appendix A). Второе соотношение следует из первого вида $W(a) W(-a) = \mathbb{I}$.

Формулы (1.129), (1.130) можно переписать в матричном виде

$$R(\tau) e^{-\pi i n} \begin{pmatrix} (z)_3 \\ -(z)_4 \end{pmatrix} W(a + \eta) = W(a) \frac{1}{\theta_1(2z)} M(z \mp a) \begin{pmatrix} e^{\eta \partial_z} \\ e^{-\eta \partial_z} \end{pmatrix}, \quad (1.131)$$

$$R(\tau) e^{-\pi i n} W(a + \eta) \begin{pmatrix} (z)_4 \\ (z)_3 \end{pmatrix} = \frac{1}{\theta_1(2z)} \begin{pmatrix} e^{\eta \partial_z} & -e^{-\eta \partial_z} \end{pmatrix} N(z \mp a) W(a). \quad (1.132)$$

Исходя из рекуррентных соотношений (1.131) и (1.132) легко проверить, что $W(a)$ является сплетающим оператором представлений, т.е. $W(a) L(0,a) = L(a,0) W(a)$. В самом деле из (1.131) и (1.128) следует, что левая часть соотношения сплетения имеет вид

$$W(a) L(0,a) = W(a) \frac{1}{\theta_1(2z)} M(z \mp a) \begin{pmatrix} e^{\eta \partial_z} \\ e^{-\eta \partial_z} \end{pmatrix} \otimes \begin{pmatrix} (z)_4 \\ (z)_3 \end{pmatrix} =$$

$$= c \begin{pmatrix} (z)_3 \\ -(z)_4 \end{pmatrix} W(a + \eta) \otimes \begin{pmatrix} (z)_4 \\ (z)_3 \end{pmatrix},$$

где $c = R(\tau) e^{-\pi i n}$, а из (1.132) и (1.128) находим правую часть

$$L(a,0) W(a) = \begin{pmatrix} (z)_3 \\ -(z)_4 \end{pmatrix} \otimes \frac{1}{\theta_1(2z)} \begin{pmatrix} e^{\eta \partial_z} & -e^{-\eta \partial_z} \end{pmatrix} N(z \mp a) W(a) =$$

$$= c \begin{pmatrix} (z)_3 \\ -(z)_4 \end{pmatrix} \otimes W(a + \eta) \begin{pmatrix} (z)_4 \\ (z)_3 \end{pmatrix}. $$

Два других тождества со сплетателем $W(a)$ (1.128), представляющие для нас интерес,

$$-2 R(\tau)^{-1} e^{\pi i n} \theta_1(2a) W(a - \eta) \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} e^{\eta \partial_z} & 0 \\ 0 & e^{-\eta \partial_z} \end{pmatrix} N(z \mp a) W(a) \begin{pmatrix} (z)_3 \\ -(z)_4 \end{pmatrix}, \quad (1.133)$$

$$-2 R(\tau)^{-1} e^{\pi i n} \frac{\theta_1(2a)}{\theta_1(2z)} W(a - \eta) \begin{pmatrix} 1 \\ -1 \end{pmatrix}^T = \begin{pmatrix} (z)_4, (z)_3 \end{pmatrix} W(a) \frac{1}{\theta_1(2z)} M(z \mp a) \begin{pmatrix} e^{\eta \partial_z} & 0 \\ 0 & e^{-\eta \partial_z} \end{pmatrix}. \quad (1.134)$$

64
Чтобы понять, что правая часть (1.134) пропорциональна строке \(\begin{pmatrix} 1, & -1 \end{pmatrix} \), умножим соотношение сплетения \(W(a) L(0, a) = L(a, 0) W(a) \) слева на строку \(\begin{pmatrix} (z)_4, & (z)_3 \end{pmatrix} \), что даёт зануление правой части \((z)_4, (z)_3 \) \(W(a) L(0, a) = \begin{pmatrix} 0 & 0 \end{pmatrix} \) и подставим сюда явное выражение для \(L \)-оператора (1.122),

\[
\begin{pmatrix} (z)_4, & (z)_3 \end{pmatrix} W(a) \frac{1}{\theta_1(2z)} M(z \mp a) \begin{pmatrix} e^{\eta \theta_1}, & 0 \\ 0, & e^{-\eta \theta_1} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 0.
\]

Следовательно, чтобы проверить систем из двух соотношений в (1.133) (или в (1.134)), достаточно проверить только первое из них. В следующем параграфе, доказывая уравнение Бакстера, будем использовать (1.133).

Нам также нужен набор соотношений для \(S^2 \) (1.127)

\[
e^{\eta \theta_2} S^2(a) e^{-\eta \theta_2} = -R^{-2}(\tau) e^{-\frac{\pi i}{2}} \theta_4^{-1}(\mp z_1 - z_2 + a) S^2(a + \eta), \tag{1.135}
\]

\[
e^{\eta \theta_2} S^2(a) e^{-\eta \theta_2} = -R^2(\tau) e^{\frac{\pi i}{2}} \theta_4(\mp z_1 + z_2 + a) S^2(a - \eta), \tag{1.136}
\]

\[
e^{-\eta \theta_2} S^2(a) e^{\eta \theta_2} = -R^2(\tau) e^{\frac{\pi i}{2}} \theta_4(\mp z_1 - z_2 + a) S^2(a - \eta). \tag{1.137}
\]

Все эти рекуррентные соотношения могут быть легко проверены с использованием явного выражения для сплетающего оператора \(W \) (1.128). Для иллюстрации докажем соотношение (1.130). Рассмотрим выражение

\[
[(z + b)_i e^{\eta \theta_1} - (z - b)_i e^{-\eta \theta_1}] W(b - \eta) \Phi(z), \tag{1.138}
\]

конечно-разностным оператором выполним сдвиг переменных ядра интегрального оператора \(W(b - \eta) \) (1.128) и сдвигом аргумента эллиптической гамма-функции при помощи (A.21),

\[
R(\tau) e^{-\pi i \eta} \int_0^1 dx \mu(x) \frac{e^{-\frac{\pi i}{2}(z^2 + x^2)}}{\Gamma(-2b)} [(z + b)_i \theta_1(z \mp x - b) - (z - b)_i \theta_1(-z \mp x - b)] \Gamma(\mp z \mp x - b) \Phi(x).
\]

Далее упростим комбинации тета-функций в предыдущей формуле при помощи (A.17)

\[
(z + b)_i \theta_1(z \mp x - b) - (z - b)_i \theta_1(-z \mp x - b) = (x)_i \theta_1(2z) \theta_1(-2b)
\]

в результате чего получаем, что выражение (1.138) равно \(R(\tau) e^{-\pi i \eta} \theta_1(2z) W(b) (z)_3 \Phi(z) \) согласно (1.130).

Аналогичным образом при помощи формулу для сдвига аргумента в эллиптической гамма функции (A.21) и формулу (A.16) (или (A.17)), связывающих тета-функции с квази-периодами \(\tau \) и \(\frac{\tau}{2} \), несложно проверить остальные рекуррентные соотношения. При такой
проверке не нужно использовать тождеств Римана для тета-функций, а значит без них можно обойтись, доказывая, что W (1.18) сплетает эквивалентные представления.

1.4.3. Факторизация сплетающего оператора

В этом параграфе отклонимся от нашей основной цели — построить Q-оператор для значений спинового параметра ℓ в случае общего положения — и укажем приложение рекуррентных соотношений для (полу)целых спиновых параметров 2ℓ + 1 = n ∈ N. Поскольку.

W(0) = 1, применяя (1.129), (1.130), факторизуем сплетающий оператор W(ηn) (1.18) двух эквивалентных представлений с параметрами

\[\ell = \frac{n-1}{2} \quad \text{и} \quad -\ell - 1 = -\frac{n+1}{2} \quad \text{при} \quad n = 1, 2, \cdots \]

в произведение n более простых конечно-разностных операторов,

\[W(\eta n) = c^n \cdot \prod_{k=0}^{n-1} \frac{1}{\theta_1(2z)} [(z - \eta k)_i e^{\eta \theta_k} - (z + \eta k)_i e^{-\eta \theta_k}] = \]

(1.139)

где

\[c = R^{-1}(\tau) e^{\pi i n}. \]

Для иллюстрации укажем подробные выражения для n = 1, 2, соответствующие спинам ℓ = 0 и ℓ = 1/2 соответственно.

\[W(\eta) = c \cdot \frac{1}{\theta_1(2z)} \left[e^{\eta \theta_z} - e^{-\eta \theta_z} \right], \]

(1.140)

\[W(2\eta) = c^2 \cdot \frac{1}{\theta_1(2z)} \left[e^{\eta \theta_z} - e^{-\eta \theta_z} \right] \cdot \frac{1}{\theta_1(2z)} \left[(z - \eta)_i e^{\eta \theta_z} - (z + \eta)_i e^{-\eta \theta_z} \right]. \]

Раскладывая предыдущую формулу в сумму четырёх конечно-разностных операторов, и производя упрощения с помощью (A.17), находим

\[W(2\eta) = \frac{c^2}{\theta_1(2z - 2\eta)\theta_1(2z + 2\eta)} \left[\theta_1(2z - 2\eta) e^{2\eta \theta_z} - \frac{\theta_1(4\eta)}{\theta_1(2\eta)} \theta_1(2z) + \theta_1(2z + 2\eta) e^{-2\eta \theta_z} \right]. \]

Аналогичным образом, используя (A.17), легко переписать факторизованный сплетатель (1.139) в виде суммы

\[W(\eta n) = c^n \cdot \sum_{k=0}^{n} (-1)^k \begin{bmatrix} n \\ k \end{bmatrix} \frac{\theta_1(2z + 2\eta n - 4\eta k)}{\prod_{j=0}^{n} \theta_1(2z - 2\eta k + 2\eta j)} e^{(n-k)\eta \theta_z} ; \]

(1.141)

\[\begin{bmatrix} n \\ k \end{bmatrix} = \frac{\prod_{j=1}^{n} \theta_1(2\eta j) \cdot \prod_{j=1}^{n-k} \theta_1(2\eta j)}{\prod_{j=1}^{k} \theta_1(2\eta j) \cdot \prod_{j=1}^{n-k} \theta_1(2\eta j)}. \]

Предыдущее выражение для сплетающего оператора при (полу)целом спине впервые было в работе [85] и позже было извлечено из интегрального представления для сплетателя в [42].
Отметим, что факторизованное представление (1.139) для сплетателя $W(\eta n)$ является весьма специальным, поскольку все факторы содержат либо третью либо четвёртую тета-функцию Якоби. Набор более общих соотношений также легко получить из рекуррентных соотношений (1.129), (1.130). Удобно рассмотреть их линейную комбинацию, что позволяет объединить весь набор тождеств в одну формулу при помощи (A.16),

$$
\prod_{k=0}^{n-1} \theta_1(z \mp a_k) \cdot W(\eta n) = c^n \cdot \prod_{k=0}^{n-1} \frac{1}{\theta_1(2z)} \left[\theta_1(z - \eta k \mp a_k) e^{\eta \theta_1 z} - \theta_1(z + \eta k \mp a_k) e^{-\eta \theta_1 z} \right],
$$

где a_0, \ldots, a_{n-1} обозначают произвольные параметры.

Неприводимые представления алгебры Склянина при (полу)целом спине $\ell = \frac{n-1}{2}$ имеют размерность n и могут быть реализованы на пространстве Θ^+_{2n-2} чётных тета-функций порядка $2n - 2$. Из факторизованного представления для $W(\eta n)$ легко усмотреть, что этот оператор в самом деле зануляет пространство неприводимого представления. Покажем это при помощи рекуррентных соотношений. Набор n функций

$$(z)^k \cdot (z)^{n-1-k} ; \quad k = 0, 1, \ldots, n - 1$$

образует базис в пространстве Θ^+_{2n-2}. Далее применяем $n - 1$ раз (1.130) и учитываем, что

$$W(\eta) \cdot 1 = \frac{c}{\theta_1(2z)} \left[e^{\eta \theta_1 z} - e^{-\eta \theta_1 z} \right] \cdot 1 = 0.$$

В результате $W(\eta n) \cdot (z)^k \cdot (z)^{n-1-k} = 0$.

1.4.4. Эллиптическое уравнение Бакстера

Сейчас у нас есть все необходимые инструменты, чтобы вывести уравнение Бакстера. Вычисление в этом параграфе повторяет точь-в-точь аналогичное вычисление в параграфе 1.3.6 для случая q-деформации. Наша цель в том, чтобы получить локальное соотношение, из которого незамедлительно следует уравнение Бакстера. Вычислим матричные элементы (см. (1.45)) в

$$
R^2(u) \sigma_3 L(u_1, u_2) \left(\begin{array}{cc} (z_1)_4 & 0 \\ -(z_1)_3 & (z_2)_3 \\ (z_2)_4 & 0 \end{array} \right),
$$

используя определяющее соотношение для $R^2 (1.21)$ где как и ранее $R^2(u) = R^2(u_1, u_2|0)$. Напомним, что во всех формулах L-оператор (1.122) нужно умножать слева на σ_3 матрицу Паули: $L(u) \rightarrow \sigma_3 L(u)$. Начнём с RLL-соотношения (1.21) для случая эллиптической
деформации, подставим туда факторизованный L-оператор (1.122) и воспользуемся коммутативностью R^2 и z_2, что даёт

$$R^2(u_1, u_2|v_2) \sigma_3 L_1(u_1, u_2) \sigma_3 M(z_2 \mp v_2) =$$

$$= \sigma_3 L_1(u_1, v_2) \sigma_3 M(z_2 \mp u_2) \begin{pmatrix} e^{\eta \partial_{z_2}} R^2 e^{-\eta \partial_{z_2}} & 0 \\ 0 & e^{-\eta \partial_{z_2}} R^2 e^{\eta \partial_{z_2}} \end{pmatrix}$$

или в эквивалентной форме виду (1.125), которая нам тоже пригодится,

$$R^2(u_1, u_2|v_2) \sigma_3 L_1(u_1, u_2) \sigma_3 = \sigma_3 L_1(u_1, v_2) \sigma_3 M(z_2 \mp u_2) \times$$

$$. \begin{pmatrix} e^{\eta \partial_{z_2}} R^2(u_1, u_2|v_2) e^{-\eta \partial_{z_2}} & 0 \\ 0 & e^{-\eta \partial_{z_2}} R^2(u_1, u_2|v_2) e^{\eta \partial_{z_2}} \end{pmatrix} N(z_2 \mp v_2) \frac{1}{2\theta_1(2z_2)\theta_4(2v_2)}.$$}

Это два основных соотношения, на которых основано последующее вычисление.

Начнём с матричного элемента в (1.142) под диагональю. С учётом явного выражения для L-оператора (1.122),

$$(z_1)_4, -(z_1)_3 \ L(u_1, 0) \sim (z_1)_4, -(z_1)_3 \ M(z_1) = (0, 0),$$

и нашего основного соотношения (1.143) при $v_2 = 0$, заключаем, что искомый матричный элемент равен нулю, как и утверждалось в (1.45).

Далее вычислим верхний диагональный элемент в (1.142):

$$\begin{pmatrix} 1, 0 \end{pmatrix} R^2(u) \sigma_3 L(u_1, u_2) \begin{pmatrix} (z_2)_3 \\ (z_2)_4 \end{pmatrix}.$$ Из основного соотношения (1.143) при $v_2 = 0$ выводим, что он равен

$$\begin{pmatrix} 1, 0 \end{pmatrix} L_1(u_1, 0) \sigma_3 M(z_2 \mp u_2) \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{\eta \partial_{z_2}} R^2(u) e^{-\eta \partial_{z_2}}.$$}

Затем воспользуемся факторизацией R^2 (1.23)

$$e^{\eta \partial_{z_2}} R^2(u) e^{-\eta \partial_{z_2}} = S^3(u_1) e^{\eta \partial_{z_2}} S^2(u_2) e^{-\eta \partial_{z_2}} S^3(u_2 - u_1)$$

и протащим $S^3(u_1)$ налево при помощи соотношения сплетания (1.14) $S^3(u_1) L(0, u_1) = L(u_1, 0) S^3(u_1)$, в результате чего исключаем элемент принимает вид

$$S^3(u_1) \begin{pmatrix} 1, 0 \end{pmatrix} \frac{1}{\theta_4(2z_1)} M(z_1 \mp u_1) \begin{pmatrix} e^{\eta \partial_{z_1}} & 0 \\ 0 & e^{-\eta \partial_{z_1}} \end{pmatrix} N(z_1) \sigma_3 \begin{pmatrix} (z_2 - u_2)_3 \\ (z_2 - u_2)_4 \end{pmatrix} \times$$

$$\cdot e^{\eta \partial_{z_2}} S^2(u_2) e^{-\eta \partial_{z_2}} S^3(u_2 - u_1).$$

68
Подчёркнутая матрица в предыдущей формуле равна

\[2 \theta_4(z_1 + z_2 - u_2) \theta_4(z_1 - z_2 + u_2) \begin{pmatrix} 1 \\ 1 \end{pmatrix} \]

в силу (1.123) и (A.16). Теперь применим рекуррентное соотношение (1.135), чтобы преобразовать матричный элемент к виду

\[-2 R^{-2}(\tau) e^{-\frac{\pi i \tau}{2}} S^3(u_1) \frac{1}{\theta_1(2z_1)} \left([z_1 - u_1, z_1 + u_1] e^{i \theta_{1,3}} - (z_1 + u_1) e^{-i \theta_{1,3}} \right) S^3(u_2 + \eta) S^3(u_2 - u_1).\]

Чтобы получить окончательный ответ применим рекуррентное соотношение (1.133) для сплетающего оператора \(S^3 \) в подчёркнутом множителе и воспользуемся факторизацией \(R^2 \) (1.23)

\[-2 R^{-2}(\tau) e^{-\pi i \eta - \frac{\pi i \tau}{2}} (z_1) R^2(u + 2\eta).\]

Нам осталось вычислить нижний диагональный элемент в (1.142):

\[(z_1)_4, - (z_1)_3 \begin{pmatrix} R^2(u) \sigma_3 L(u_1, u_2) & 0 \\ 0 & -1 \end{pmatrix} \]

Ввиду второго основного соотношения (1.144) он равен

\[M(z_1 \pm u_2) \begin{pmatrix} e^{i \theta_{1,3}} R^2(u) e^{-i \theta_{1,3}} & 0 \\ 0 & e^{-i \theta_{1,3}} R^2(u) e^{i \theta_{1,3}} \end{pmatrix} \begin{pmatrix} z_2 + u_2, z_2 - u_2 \end{pmatrix} \frac{1}{2 \theta_1(2z_2) \theta_1(2v_2)} , \]

где нужно аккуратно выполнить предельный переход \(v_2 = 0. \) Для этого заметим, что в силу (1.123) и (A.16)

\[\frac{1}{\theta_1(2v_2)} (z_1)_4, (z_1)_3 M(z_1 \pm v_2) = \frac{2}{\theta_1(2v_2)} \begin{pmatrix} \theta_1(2z_1 - v_2) \theta_1(v_2) \\ \theta_1(2z_1 + v_2) \theta_1(v_2) \end{pmatrix} \rightarrow \theta_1(2z_1) \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ при } v_2 \rightarrow 0. \]

В результате искомый матричный элемент принимает вид (1.122)

\[\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} e^{i \theta_{1,3}} & 0 \\ 0 & e^{-i \theta_{1,3}} \end{pmatrix} N(z_1 \mp u_1) S^3(u_1) \sigma_3 M(z_1 \mp u_2) \begin{pmatrix} e^{i \theta_{1,3}} S^2(u_2) e^{-i \theta_{1,3}} \\ e^{-i \theta_{1,3}} S^2(u_2) e^{i \theta_{1,3}} \end{pmatrix} \frac{1}{\theta_1(2z_2)} S^3(u_2 - u_1). \]

Далее применяем рекуррентные соотношения (1.136), (1.137) и формулы преобразования тета-функций (1.123), (A.16), чтобы преобразовать подчёркнутую матрицу в предыдущей формуле

\[-R^2(\tau) e^{\frac{i \pi \tau}{2}} S^2(u_2 - \eta) \frac{1}{2} N(z_2 \mp u_2) \begin{pmatrix} (z_1)_3 \\ (z_1)_4 \end{pmatrix}.\]

Чтобы выполнить ещё одно упрощение, учтём, что матрицы \(M \) и \(N \) обратны друг к другу (1.125): \(M(z_2 \mp u_2) N(z_2 \mp u_2) = 2 \theta_1(2u_2) \theta_1(2z_2) \mathbb{I}, \) так что матричный элемент принимает

69
Вид

\[-\frac{1}{2} R^2(\tau) e^{\frac{2\pi}{\tau} \theta_1(2u_2)(z_2)_{3}} \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \left(\begin{array}{cc} 0 & -\eta \partial_{z_1} \\ -\eta \partial_{z_1} & 0 \end{array} \right) N(z_1 \mp u_1) S^3(u_1) \left(\begin{array}{c} (z_1)_{3} \\ -(z_1)_{4} \end{array} \right) \times \cdot S^2(u_2 - \eta) S^3(u_2 - u_1).\]

Воспользуемся рекуррентным соотношением (1.133), и окончательно получаем

\[-2 R^{-1}(\tau) e^{\frac{2\pi}{\tau} + \pi \eta} \theta_1(2u_1) \theta_1(2u_2) (z_2)_{3} R^2(u - 2\eta),\]

что завершает вычисление (1.142).

Сделаем ещё несколько необходимых преобразований. Умножим на оператор перестановки P_{12} и выполним преобразование подобия в (1.142), в результате чего (см. (1.45))

\[Z_2 R^2_{12}(u) \sigma_3 L_1(u_1, u_2) Z_2^{-1} = \left(\begin{array}{cl} 2 \kappa^{-1} R^2_{12}(u + 2\eta) & \cdots \\ 0 & 2 \kappa \theta_1(2u_1) \theta_1(2u_2) R^2_{12}(u - 2\eta) \end{array} \right), \quad (1.145)\]

где как обычно $R^2_{12} = P_{12} R^2_{12}$; постоянная $\kappa = -R(\tau) e^{\pi \eta + \frac{2\pi}{\tau}}$, матрица $Z_2 = \left(\begin{array}{ccc} (z_2)_{3}^{-1} & 0 \\ (z_2)_{4} & -(z_2)_{3} \end{array} \right)$. Из этого локального соотношения немедленно выводится, как показано в параграфе 1.1, уравнение Бакстера (см. (1.46))

\[t(u) Q_2(u) = 2^N \kappa^{-N} Q_2(u + 2\eta) + 2^N \kappa^N \Delta^N(u_1, u_2) Q_2(u - 2\eta), \quad (1.146)\]

где использовано обозначение $\Delta(u_1, u_2) = \theta_1(2u_1) \theta_1(2u_2)$ для симметрической функции.

Трансфер матрица $t(u)$ (1.31) строится из $\sigma_3 L(u)$, как это было оговорено ранее.

1.4.5. Явная формула для эллиптического Q-оператора

Для случая q-деформации в параграфе 1.3.7 устанавливали, что результат действия оператора R_{12}^2 на некоторую функцию от z_1 и вспомогательного параметра λ устроен очень просто (1.118). В параграфе 1.3.8 также показано, что эта формула может быть получена (по крайней мере уровень формальных манипуляций исключительно) из соотношений Кокстера (1.17). Выведем теперь аналогичный результат для эллиптического случая. В случае эллиптической деформации сплетающий оператор W можно представить как интегральный оператор (1.128), что даёт твёрдую почву для вывода эллиптического аналога формулы (1.118) из соотношений Кокстера, поскольку такие соотношения эквивалентны формуле для эллиптического бета интеграла.
Начнём с соотношений Кокстера (1.17) $S^2(u_2 - u_1) S^3(u_2) S^2(u_1) S^3(u_1 - u_2) = S^3(u_1) S^2(u_2)$ и применим обе его части к $\delta(z_1 - z_3)$. Используя представление для S^1, S^3 интегральными операторами (1.128), предполагаем, что координатные переменные принимают вещественные значения.

Далее учтём явный вид S^2 и S^3 (1.127), (1.128),

$$S^3(a) \cdot \delta(z_1 - z_3) = \frac{C e^{-\frac{\pi i}{2}z^2 + \frac{\pi i}{4}z_3^2}}{\Gamma(-2a)\Gamma(2z_3)} \Gamma(\mp z_1 \mp z_3 - a); \quad S^2(a) \delta(z_1 - z_3) = S^2(a)|_{z_1 \rightarrow z_3} \delta(z_1 - z_3)$$

и факторизацию $R^2(u) = S^2(u_2 - u_1) S^3(u_2) S^2(u_1)$ (1.23), и получаем незамедлительно локальную формулу

$$R_{12}^2(u) \cdot e^{-\frac{\pi i}{2}z^2} \Gamma(\mp z_1 \mp z_3 + 2\eta \ell + \eta) = (1.147)$$

где учтено определение спектральных параметров (1.124) и обозначение для постоянной

$$c = \frac{\Gamma(4\eta\ell + 2\eta)}{\Gamma(-u + 2\eta\ell + 2\eta)}.$$

Теперь перейдём от локальной формулы к глобальной формуле для Q_2. Сменим нормировку Q_2: $Q_2(u) \rightarrow c^{-N} \cdot Q(u)$, так что уравнение Бакстера примет вид

$$t(u) Q(u) = \Delta_+(u) Q(u + 2\eta) + \Delta_-(u) Q(u - 2\eta),$$

где $\Delta_{\pm}(u) = 2^N e^{-\pi i u} e^{\pm N(\pi u - 2\pi i \ell + \frac{\pi i}{2})} \theta_1^N(u) \pm 2\eta \ell)$. В силу формулы (1.52) находим как оператор Бакстера $Q(u)$ действует на производящую функцию, зависящую от набора произвольных $\lambda_1, \ldots, \lambda_N$,

$$Q(u) \cdot \prod_{i=1}^{N} e^{-\frac{\pi i}{2}z_i^2} \Gamma(\mp z_1 \mp \lambda_i + 2\eta \ell + \eta) =$$

$$= \prod_{i=1}^{N} e^{-\frac{\pi i}{2}z_i^2} \Gamma(\mp z_1 \mp \lambda_i + \frac{u}{2} + \eta \ell + \eta + \frac{\tau}{2}) \Gamma(\mp z_1 \mp \lambda_{i+1} - \frac{u}{2} + \eta \ell + \eta).$$

Функция аналитичная $\Gamma(\mp z \mp \lambda + 2\eta \ell + \eta)$ была использована в [92] в качестве производящей функции бесконечномерного модуля алгебры Скланина.

1.4.6. Редукция общего R-оператора на конечномерное подпространство и эллиптический L-оператор

В этом параграфе покажем, что эллиптический R-оператор, использованный для построения Q-операторов Бакстера, воспроизводит эллиптический L-оператор при ограничении его на двумерное подпространство в одном из тензорных сомножителей. Для этого
установим общую формулу ограничения R-оператора на $\mathbb{C}^{n+1} \otimes V_\ell$, а затем убедимся что из неё следует и формула для L-оператора, использованного выше (1.122). Это вычисление во многом аналогично приведённому в параграфе 1.2.5 для случая алгебры $s\ell_2$, но в отличие от последнего теперь работаем с интегральными операторами.

Нам будет удобно несколько подправить положения из начала этой главы, и, в частности, изменить выражения для элементарных сплетающих операторов S^1, S^2 и S^3, из которых строится R-оператор. Для этого выполним преобразование подобия эллиптического L-оператора (1.122) при помощи формулы сдвига аргумента тета-функций (А.15),

$$e^{-\frac{\pi i z^2}{\eta}} \cdot L(u_1 - \frac{\tau}{2}, u_2) \cdot e^{-\frac{\pi i u^2}{\eta}} = -e^{-\frac{\pi i u^2}{\eta} + \pi i u + 2\pi i u_1} \cdot L(u_1, u_2) \sigma_3. \quad (1.148)$$

Эта формула проясняет, почему выше повсюду в этой главе использовался автоморфизм алгебры Склянина, порождаемый матрицей Паули σ_3 в RLL-соотношении (1.126), и подсказывает естественное переопределение спектрального параметра $u_1 \rightarrow u_1 - \frac{\tau}{2}$, так что вместо (1.124) удобнее использовать параметры

$$u_1 = \frac{u}{2} - \eta \ell - \eta - \frac{\tau}{2}, \quad u_2 = \frac{u}{2} + \eta \ell. \quad (1.149)$$

Соответственно формуле преобразования подобия (1.148) для L-оператора преобразуется пространство функций $\Phi(z) \rightarrow e^{-\frac{\pi i u^2}{\eta}} \Phi(z)$, а сплетающий оператор эквивалентных представлений $W(a)$ принимает вид

$$W(a) \Phi(z) = C \cdot \int_0^1 dx \frac{\Gamma(\mp z \mp x - a)}{\Gamma(-2a) \Gamma(\mp 2x)} \Phi(x), \quad (1.150)$$

так что в отличие от (1.128) ядро этого интегрального оператора не содержит экспонент. Очевидно, что оператор S^2 (1.127), будучи оператором умножения на функцию, не претерпевает никаких изменений.

В предыдущем параграфе вычислили результат применения оператора R^2 к некоторой функции, зависящей от координат z_1 первого пространства, соответствующего ему параметра представления, и также от некоторой вспомогательной координаты z_3, которую по аналогии с представлениями на модулях Верма в недеформированном и тригонометрически деформированном случае естественно назвать параметром произво дящей функции. С учётом введённых модификаций сплетающих операторов аналогичная (1.147) формула имеет вид

$$R^2_{12}(u_1, u_2|v_2) \cdot \Gamma(\mp z_1 \mp z_3 + u_2 - u_1) =$$

$$= \frac{\Gamma(2u_2 - 2u_1)}{\Gamma(2u_2 - 2u_1)} \cdot \Gamma(\mp z_1 \mp z_3 + v_2 - u_1) \Gamma(\mp z_2 \mp z_3 + u_2 - v_2 + \eta + \frac{\tau}{2}). \quad (1.151)$$
Предыдущая формула выводится так же, как и (1.147), применением тройного соотношения Кокстера к дельта-функции.

В качестве замечания отметим, что нормировочная постоянная в правой части формулы (1.151) запуляется при \(u_2 - u_1 = (n + 1)\eta + (m + 1)\tau \), где \(n, m = 0, 1, 2, \cdots \). Для аналогичных формул в случае недеформированной (1.67) и тригонометрически деформированной (1.118) симметрии запуление этой постоянной однозначно соответствует конечномерным представлениям. Итак, анализ конечномерных представлений при помощи формулы (1.151) подсказывает следующее естественное обобщение. Представления можно охарактеризовать не одним параметром, а парой параметров \(\ell \rightarrow (\ell_\eta, \ell_\tau) \). В случае конечномерных представлений они принимают произвольные (полу)целые значения \(\ell_\eta = \frac{n}{2} \), \(\ell_\tau = \frac{m}{2} \), где \(n, m = 0, 1, 2, \cdots \). Пара параметров \((\ell_\eta, \ell_\tau) \) появляется во всех формулах симметрично, так что их удобно объединить в линейную комбинацию

\[
2g = 2\eta\ell_\eta + \tau\ell_\tau \quad (1.152)
\]

и использовать спектральные параметры вида

\[
u_1 = \frac{u}{2} - g - \eta - \frac{\tau}{2}, \quad u_2 = \frac{u}{2} + g.
\]

Формулы (1.149) являются частным случаем предыдущих соотношений. Чтобы это увидеть, нужно выбрать \(\ell_\eta \rightarrow \ell, \ell_\tau \rightarrow 0 \). Тогда

\[
u_2 - u_1 = 2\eta\ell_\eta + \tau\ell_\tau + \eta + \frac{\tau}{2} = 2g + \eta + \frac{\tau}{2},
\]

посому при (полу)целых спиновых параметрах \(\ell_\eta = \frac{n}{2}, \ell_\tau = \frac{m}{2} \) функция из (1.151)

\[
\Gamma(\mp z_1 \mp z_3 + (n + 1)\eta + (m + 1)\tau) \quad (1.153)
\]

при помощи формул сдвига для аргумента эллиптической \(\Gamma \)-функции на 2\(\eta \) и \(\tau \) (см. (А.21)) и формулы отражения (см. (А.22)) сводится к произведению \(n \) тета-функций с квазипериодом \(\tau \) и \(m \) тета-функций с квазипериодом 2\(\eta \). Это пространство является конечномерным пространством представления для эллиптического модульного дубля. Таким образом функция (1.153) в самом деле является производящей функцией конечномерного представления в отличие от функции (1.147). Отметим, что для бесконечномерных представлений эту функцию можно также интерпретировать как производящую при помощи соотношения полноты [92]

\[
\int_0^1 \frac{dz_3 dz'_3}{\Gamma(\mp 2z_3)} \Gamma(\mp z_1 \mp z_3 + a) \Gamma(\mp z_3 \mp z'_1 - a) \Phi(z'_1) \sim \Gamma(\mp 2z_1) \cdot (\Phi(z_1) + \Phi(-z_1)).
\]
В дальнейшем не будем подробно останавливаться на эллиптическом модульном дубле, который учитывает симметричным образом параметры представления ℓ_η и ℓ_τ, а выберем $\ell_\tau = 0$. Этого будет достаточно для наших целей. Однако аналогичная ситуация обсуждается подробно в главе 3 для модульного дубля тригонометрически деформированной алгебры.

Теперь перейдем к выводу формулы для ограничения R-оператора. Воспользуемся его первой факторизацией из (1.26). Выше разобрались с блоком R^2 (1.151). Нам осталось применить оператор R^1. Он, в свою очередь, факторизуется в произведение трёх элементарных операторов (1.22), и это единственное доступное нам представление для оператора R^1 в случае эллиптической деформации в противоположность двум рассмотренным ранее алгебрам симметрии. Далее воспользуемся обозначениями W_1, W_2, S_{12} для сплатающих операторов (1.47), которое явно учитывают в каких пространствах данные операторы действуют непривязно. Таким образом

$$R^1_{12}(u_1|v_1, u_2) = S_{12}(u_2 - v_1) W_2(u_1 - v_1) S_{12}(u_1 - u_2). \quad (1.154)$$

Подействуем для начала двумя подчеркнутыми операторами из предыдущей формулы на те факторы из правой части (1.151), которые содержат непривязную зависимость от координаты второго пространства z_2 (напомним, что R^1_{12} непривязно действует в первом пространстве),

$$W_2(u_1 - v_1) S_{12}(u_1 - u_2) \cdot \Gamma(\mp z_2 \mp z + u_2 - v_2 + \eta + \frac{\tau}{2}) \Phi(z_2) =$$

$$= C \cdot \int_0^1 dz \frac{\Gamma(\mp z_2 + z + u_1 - u_2 + \eta + \frac{\tau}{2})}{\Gamma(2v_1 - 2u_1) \Gamma(\mp 2z)} \frac{\Gamma(\mp z_1 + z + u_1 - u_2 + \eta + \frac{\tau}{2})}{\Gamma(\mp z_1 - u_2 + v_2 + \eta + \frac{\tau}{2})} \Phi(z) = C \times$$

$$\cdot \frac{\Gamma(2u_1 - 2u_2 + 2\eta + \tau)}{\Gamma(2v_1 - 2u_1)} \int_0^1 dz \frac{\Gamma(\mp z_1 + z + u_1 - u_2 + \eta + \frac{\tau}{2})}{\Gamma(2u_1 - 2u_2 + 2\eta + \tau) \Gamma(\mp 2z)} \frac{\Gamma(\mp z_2 + z + u_1 - u_2)}{\Gamma(\mp z_2 - u_2 + v_2 + \eta + \frac{\tau}{2})} \Phi(z).$$

Обратим внимание на расходящийся нормировочный множитель для конечномерных представлений. В предыдущей формуле сначала воспользовались явными выражениями для S_{12} (1.127) и W (1.150), а затем переписали тождественным образом. В предыдущей формуле в рамке отмечено ядро сплатающего оператора W. Важно то, что тождественное переписывание позволяет перейти к сплатающему оператору W с иной зависимостью от параметра. Тот факт, что это оказалось возможным основан исключительно на дуальности сплатающих операторов — основных строительных блоков всей конструкции, т.е. дуальности локального оператора W и билокального оператора S_{12}. Она проявляется в том, что
ядро интегрального оператора W совпадает с оператором умножения на функцию S_{12}. В дальнейшем в следующих главах ещё не раз встретимся с этой дуальностью. Она лежит в основе всей конструкции и обеспечивает саму возможность найти S_{12}, решая сплатающее соотношение (1.13).

Полезно переписать последнее равенство в сжатой форме

$$W_2(u_1 - v_1) S_{12}(u_1 - u_2) \cdot S_{23}(u_2 - v_2) \Phi(z_2) =$$

$$= \frac{\Gamma(2u_1 - 2u_2 + 2\eta + \tau)}{\Gamma(2v_1 - 2u_1)} \cdot W_1(-u_1 + u_2 - \eta - \frac{\tau}{2}) \cdot S_{12}(v_1 - u_1 - \eta - \frac{\tau}{2}) S_{13}(u_2 - v_2) \Phi(z_1).$$

Как уже сказали, оно следует из формулы, переставляющей роли локального и билокального сплетателя,

$$W_2(a) \cdot S_{12}(b) \Psi(z_2) = \frac{\Gamma(2b + 2\eta + \tau)}{\Gamma(-2a)} \cdot W_1(-b - \eta - \frac{\tau}{2}) \cdot S_{12}(-a - \eta - \frac{\tau}{2}) \Psi(z_1).$$

Теперь, собирая вместе результаты с предыдущих шагов, получаем желаемую формулу

$$\Re_{12}(u|g_0, g) \cdot \Gamma(\mp z_1 \mp z_3 + 2g_0 + \eta + \frac{\tau}{2}) \Phi(z_2) =$$

$$= c \cdot \frac{\Gamma(\mp z_2 \mp z_3 - \frac{n}{2} + g_0 + g + \eta + \frac{\tau}{2})}{\Gamma(\mp z_1 \mp z_2 - \frac{n}{2} - g_0 - g)} \cdot W_2(2g_0) \cdot \frac{\Gamma(\mp z_1 \mp z_2 - \frac{n}{2} + g_0 - g)}{\Gamma(\mp z_2 \mp z_3 - \frac{n}{2} - g_0 + g + \eta + \frac{\tau}{2})} \Phi(z_2).$$

Здесь g_0 обозначает спиновый параметр (1.152) в первом пространстве, а g — во втором. Нормировочная постоянная $c = C \cdot \frac{\Gamma(n-2g_0-2g)}{\Gamma(-n+2g_0-2g)}$. Достоинство формулы (1.155) в том, что при помощи неё легко получить явные выражения для ограничения эллиптического R-оператора на конечномерные представления в первом пространстве. В самом деле, во-первых, для конечномерных представлений $g_0 = n\eta + m\frac{\tau}{2}$, где $n, m = 0, 1, 2, \ldots$, так что эллиптическая Γ-функция (1.153) является производящей функцией конечномерного представления в первом пространстве. Во-вторых, при этих значениях параметра представления g_0 интегральный оператор $W_2(2g_0)$ сильно упрощается, принимая вид (1.141) конечной суммы операторов сдвигв, как показано в [42]. Значит применение сплетающего оператора $W_2(2g_0)$ не составляет проблемы, и в правой части (1.155) стоит конечная сумма эллиптических Γ-функций и тета-функций со сдвинутыми аргументами. Выполняя сдвиги аргументов эллиптических Γ-функций при помощи (A.21), легко убедиться, что в итоге все Γ-функции уходят, а остаются только тета-функции. Таким образом после ограничения общего R-оператора на конечномерное подпространство в одном из тензорных сомноожителей он принимает вид конечно-разностного оператора, построенного из тета-функций Якобы.
Подчеркнём ещё раз, что сплетающий оператор $W(u_1 - v_1)$ в (1.154) является весьма нетривиальным интегральным (1.150), поскольку параметр $u_1 - v_1$ в общем положении. Формула для ограничения R-оператора возникает из-за того, что удалось применить сплетающий оператор W и явно вычислить соответствующие интегралы. Для этого пришлось поменять роли операторов $W_2(u_1 - v_1)$ и $S_{12}(u_1 - u_2)$, так чтобы заполучить $W_1(u_2 - u_1 - \eta - \frac{\tau}{2})$, который сводится к конечной сумме.

Продемонстрируем на примере как применить формулу (1.155) и вычислить ограничение R-оператора на $C^2 \otimes \mathcal{V}_c$. Увидим, что полученный результат в точности совпадает с эллиптическим L-оператором, который послужил основой для построения общего R-оператора при решении RLL-соотношений. Всёбо в дальнейшем вычислении не будем следить за постоянными мультипликативными множителями. Итак выберем параметры представления в первом пространстве $(\ell_{0,\eta}, \ell_{0,\tau}) = (1/2, 0)$, так что $2g_0 = \eta$. В результате производящая функция (1.153) принимает вид

$$
\Gamma(\mp z_1 \mp z_3 + 2g_0 + \eta + \frac{\tau}{2}) = -\frac{1}{2} R^{2}(\tau) e^{\frac{\pi i}{2}} \cdot [(z_1)_4 (z_3)_3 + (z_1)_3 (z_3)_4].
$$

Как уже обсуждалось в параграфе 1.4.3 базис в двумерном пространстве C^2 составляют тета-функции $(z_1)_3, (z_1)_4$. Выделив в правой части (1.155) множители при $(z_3)_4$ и $(z_3)_3$, получим $R_{12}(u) \cdot (z_3)_4 \Phi(z_2)$ и $R_{12}(u) \cdot (z_1)_4 \Phi(z_2)$ соответственно. Разностный оператор из (1.155) имеет весьма простой вид (1.140),

$$
W(\eta) = R^{-1}(\tau) e^{\pi i \eta} \cdot \frac{1}{\theta_1(2z)} [e^{\eta \theta_4} - e^{-\eta \theta_4}].
$$

Подставляя его в (1.155) и выполняя сдвиги аргумента на 2η эллиптических Г-функций (A.21) получаем с точностью до несущественного постоянного множителя

$$
\frac{1}{\theta_1(2z)} \left(e^{4\pi iz_2} \theta_1(\mp z_1 + z_2 - u - \frac{\eta}{2} - g) \theta_1(\mp z_3 + z_2 + u + \frac{\eta}{2} + \frac{\tau}{2} - g) \Phi(z_2 + \eta) -
\right.
\left. - e^{-4\pi iz_2} \theta_1(\mp z_1 - z_2 - u - \frac{\eta}{2} + \frac{\tau}{2} - g) \theta_1(\mp z_3 - z_2 + u + \frac{\eta}{2} + \frac{\tau}{2} - g) \Phi(z_2 - \eta) \right].
$$

Чтобы получить окончательный ответ, т.е. записать исходный оператор в виде матрицы 2×2 с операторными элементами, осталось выделить в этом выражении множители при $(z_3)_a (z_1)_b$, где $a, b = 3, 4$. Для этого воспользуемся формулой (A.16) и выразим каждую θ_1 в числителе через $\tilde{\theta}_3, \tilde{\theta}_4$, так что каждое слагаемое содержит произведение четырёх тета-функций, $(z_3)_a (z_1)_b$ и $(\chi_\pm)_c (\xi_\pm + \frac{\tau}{2})_d$, где $c, d = 3, 4$ и

$$
\chi_\pm = \pm z_2 - \frac{u}{2} - \frac{\eta}{2} - g, \quad \xi_\pm = \pm z_2 + \frac{u}{2} + \frac{\eta}{2} + g.
$$
Теперь воспользуемся формулами (А.18), (А.19), чтобы вернуться от тета-функций с квазиperiодом \(\frac{\tau}{2} \) к тета-функциям с квазиperiодом \(\tau \),

\[
\begin{align*}
& e^{4\pi i z} (\xi_+)_4 (\xi_+ + \frac{\tau}{2})_4 = c \cdot e^{2\pi i z} [\theta_2(\xi_+ + \xi_+) - \theta_3(\xi_+ + \xi_-)] \\
& - e^{-4\pi i z} (\xi_-)_4 (\xi_- + \frac{\tau}{2})_4 = c \cdot e^{-2\pi i z} [\theta_3(\xi_- + \xi_-) - \theta_2(\xi_- + \xi_-)] \\
& e^{-\pi i z} (\xi_-)_3 (\xi_- + \frac{\tau}{2})_3 = c \cdot e^{-\pi i z} [\theta_1(\xi_- + \xi_-) - \theta_1(\xi_- + \xi_-)] \\
& e^{-\pi i z} (\xi_-)_3 (\xi_+ + \frac{\tau}{2})_3 = c \cdot e^{-\pi i z} [\theta_1(\xi_+ + \xi_-) - \theta_3(\xi_- + \xi_-)] \\
& e^{-\pi i z} (\xi_-)_3 (\xi_+ + \frac{\tau}{2})_3 = c \cdot e^{-\pi i z} [\theta_2(\xi_+ + \xi_-) - \theta_3(\xi_- + \xi_-)]
\end{align*}
\]

где \(c = e^{-\frac{\pi i}{2} - \pi i(u + \eta - 2g)} \) и

\[
\chi \pm \xi = \pm 2z_2 - 2g, \quad \chi_+ - \xi_+ = -u - \eta.
\]

Теперь естественно ввести обозначения

\[
w_a(u) = \frac{\theta_{a+1}(u + \eta)}{\theta_{a+1}(\eta)}
\]

и набор из четырёх разностных операторов \(S^a \ (a = 0, 1, 2, 3) \),

\[
[S^a \Phi](z) = \frac{i^{a+2} \theta_{a+1}(\eta)}{\theta_1(2z)} \left[e^{2\pi i z} \theta_{a+1}(2z - 2g) \Phi(z + \eta) - e^{-2\pi i z} \theta_{a+1}(-2z - 2g) \Phi(z - \eta) \right].
\]

В результате с точностью до постоянного множителя (1.156) принимает вид

\[
(z_3)_3 (z_1)_3 [w_1(u) S^1 + iw_2(u) S^2] + (z_3)_3 (z_1)_4 [w_3(u) S^3 + w_0(u) S^0] + (z_3)_3 (z_1)_3 [w_3(u) S^3 - w_0(u) S^0] + (z_3)_3 (z_1)_3 [-w_1(u) S^1 + iw_2(u) S^2].
\]

Вводим теперь базис в \(\mathbb{C}^2 \): \(e_1 = (z_1)_4, \ e_2 = (z_1)_3 \), так что с точностью до несущественного постоянного множителя ограничение общего эллиптического \(\mathbb{R} \)-оператора

\[
\mathbb{R}_{12}(u \mid \frac{\tau}{2}, g) |_{\mathbb{C}^2 \otimes \mathbb{V}_g} = L'(u | g) \cdot \sigma_3
\]

совпадает с эллиптическим \(L \)-оператором вида

\[
L'(u | g) = \begin{pmatrix}
w_0(u) S^0 + w_3(u) S^3 & w_1(u) S^1 - iw_2(u) S^2 \\
w_1(u) S^1 + iw_2(u) S^2 & w_0(u) S^0 - w_3(u) S^3
\end{pmatrix}
\]

(1.157)
Заметим, что это выражение в точности соответствует (1.6). Отметим связь этого L-оператора с факторизованным представлением из (1.122):

\[L'(u|g) \sigma_3 = -e^{-\pi i u + 2\pi i g + \pi i \frac{n}{2}} \cdot L \left(\frac{u}{2} - g - \eta - \frac{r}{2}, \frac{u}{2} + g \right), \]

(см. (1.148)). Именно оператор \(L'(u|g) \sigma_3 \) употребляется при решении RLL-соотношений для построения модифицированных элементарных сплетателей, использованных в этом параграфе.

1.5. Заключение

В этой главе изучена спиновая цепочка, квантовые состояния в каждом узле которой образуют неприводимое бесконечномерное представление. Рассмотрены представления алгебры симметрии \(s\ell_2 \) и её тригонометрической и эллиптической деформации, для которых параметр спина \(\ell \) комплексное число в общем положении, \(\ell \neq n/2, n = 0, 1, 2, \ldots \)

Для недеформированной алгебры и тригонометрической деформации представления реализованы на пространстве полиномов, а операторы Янга–Бакстера представлены в виде функций канонических и Вейлевских пар соответственно. Для эллиптической деформации рассматриваемые операторы имеют интегральную форму. Принципиальное отличие эллиптической деформации от двух других случаев заключается в отсутствии трансляционной инвариантности, т.е. ядра соответствующих интегральных операторов зависят не только от разности координат, но и от их суммы, а значит такие операторы не коммутируют с оператором сдвига. Этот факт очень сильно ограничивает нашу свободу в выборе методов исследования эллиптической деформации, с чем и связаны основные трудности.

Примечательно, что удалось выделить те свойства сплетающих операторов, которые справедливы для всех типов деформаций, рассмотренных в этой главе, а значит их можно по праву признать основополагающими для описания интегрируемых моделей.

В следующей главе будет подробнее разобран случай конечномерных представлений недеформированной симметрии, при котором \(2\ell \) становится неотрицательным целым. Подобный анализ операторов Бакстера для конечномерных представлений можно провести и для тригонометрической деформации. В обоих случаях он основан на представлении \(R^1, R^2 \) в виде гамма-функций и \(q \)-гамма-функций соответственно от некоторых оператора. В случае эллиптической деформации подобное представление для базовых локальных операторов неизвестно. Тем не менее в настоящей главе проведено исследование сплетателей...
таючих операторов представлений алгебры Склянина для (полу)целых значений спина. Кроме того показано, как ограничить общий \mathbb{R}-оператор на произвольное конечномерное инвариантное подпространство в одном из тензорных сомножителей и, в частности, как воспроизвести эллиптический L-оператор из интегрального \mathbb{R}-оператора. Соответствующее вычисление использует представление R^1 и R^2 в виде произведения трёх элементарных сплетающих операторов, так что кажется отнюдь не важным иметь на руках представление для R^1 и R^2 в виде произведения нескольких функций от дифференциального оператора (как в случае недеформированной и тригонометрически деформированной симметрии), чтобы подойти к вопросу о конечномерных представлениях.

В качестве локальных строительных блоков использованы факторы общего решения уравнения Янга–Бакстера, связанные с операторами элементарных перестановок параметров представлений. Основные свойства и соотношения между этими блоками идентичны во всех случаях. Однако ясные выражения для них усложняются при каждой дополнительной деформации алгебры симметрии, что связано с усложнением специальных функций типичных в теории представлений соответствующей алгебры. Такая формулировка позволяет легко перейти от недеформированной симметрии к деформированной, объединив их в рамках одной схемы.

Параллельное рассмотрение трёх алгебр симметрии поднято с уровня локальных на уровень глобальных операторов, действующих непривильно на всём квантовом пространстве состояний спиновой цепочки. Помимо фундаментальной трансфер матрицы введена общая трансфер матрица $T_u(u)$ и пара операторов Бакстера Q_1, Q_2. Все они являются производящими функциями семейства коммутирующих операторов. Показано, что их конструкция, доказательство их свойств и проверка уравнения Бакстера переносятся на случай деформированной симметрии. Предлагаемая конструкция ведёт к ясным формулам для операторов. В частности во всех трёх случаях определён результат действия оператора Q_2 на производящую функцию состояний спиновой цепочки.

Для бесконечномерных представлений эллиптически деформированной алгебры симметрии Q-операторы были ранее построены другим методом А.Забродиным в работе [23], где они имеют вид нормально упорядоченных эллиптических гипергеометрических рядов от набора Гейзенберговых пар. Было бы интересно сравнить два построения между собой.
Глава 2

Операторы Бакстера для конечномерных представлений $s\ell_2$ - симметричной спиновой цепочки

В предыдущей главе единым образом рассмотрели квантовые системы с тремя различными симметриями: алгебра $s\ell_2$, её тригонометрическая и эллиптическая деформации. В частности предъявили конструкцию пары операторов Бакстера и для одного оператора из пары в каждом случае получили явную формулу. Во всех трёх случаях все шаги нашего построения абсолютно аналогичны и следуют общей схеме. Происхождение деталей этой схемы потребовало специальных вычислений в каждом отдельном случае, причём, как того и следовало ожидать, они оказались наиболее сложными для случая эллиптической деформации. Именно, вычисления основываются на некоторых соотношениях для специальных функций, причём сложность как самих специальных функций, так и соотношений для них возрастает согласно последовательности: отсутствие деформации \to тригонометрическая деформация \to эллиптическая деформация. Поскольку случай недеформированной $s\ell_2$ наиболее прост, то для спиновой цепочки с этой симметрией можно продвинуться несколько дальше и в частности получить явные формулы для обоих операторов Бакстера. В этой главе подробнее остановимся на квантовой системе с недеформированной симметрией. Выполним дополнительные построения для представлений некомпактного спина, которые не фигурировали в предыдущей главе, а также детально разберём случай компактных представлений и предъявим соответствующие операторы Бакстера. Важно то, что в предлагаемом подходе формулы для конечномерных представлений получаются в результате аккуратного анализа предельных переходов в формулах для некомпактных представлений.

Перед тем как переходить к систематическим построениям, сначала продемонстрируем часть общих результатов на простейшем примере — для спиновой цепочки с фундаментальным представлением в квантовом пространстве, т.е. локальное квантовое пространство состояний в каждом узле двумерно. Предельным включением двух наборов операторов Q и установим связь между ними. Итак, выполним ограничение общего R-оператора на подпространство $C^2 \otimes V_s$, которое будем обозначать $R(u|_{\frac{1}{2}}, s)$, получим L-оператор с точностью до сдвига спектрального параметра и нормировки, как это было показано в
параграфе (1.2.2),
\[R\left(\frac{1}{2}, s\right) = \frac{\Gamma\left(-s - \frac{1}{2} + u\right)}{\Gamma\left(-s + \frac{1}{2} - u\right)} \cdot L\left(u + \frac{1}{2}\right) \quad ; \quad L(u) = u + \sigma \otimes \vec{S} = \begin{pmatrix} u + S & S_- \\ S_+ & u - S \end{pmatrix}. \]

Генераторы \(\vec{S} \) алгебры \(s\ell_2 \) заданы дифференциальными операторами из (1.53) и реализуют бесконечномерное представление \(\mathbb{V}_s \) спина \(s \in \mathbb{C} \). Допуская сдвиг спектрального параметра и смену нормировки, выберём \(L(u) \) в качестве локального строительного блока общей трансфер матрицы
\[T_s(u|q) = \text{tr}_z q^{z\partial} \left(u + \sigma_1 \otimes \vec{S} \right) \left(u + \sigma_2 \otimes \vec{S} \right) \cdots \left(u + \sigma_N \otimes \vec{S} \right). \]

В этих обозначениях пространство состояний цепочки \(\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 \), \(\sigma \)-матрицы Паули \(\sigma_k \) действуют в локальном квантовом пространстве \(\mathbb{C}^2 \) в \(k \)-ом узле, генераторы \(\vec{S} \) действуют во вспомогательном пространстве \(\mathbb{C}[z] \), по которому берётся след \(\text{tr}_z \). Существование следа обеспечивает введённый параметр \(q, |q| < 1 \).

Помимо \(L \)-оператора, указанного выше, известны и более простые решения [20, 47, 93] Янгианного соотношения (1.5), которые допускают факторизацию на треугольные матрицы схожую с (1.56),
\[L^+(u) = u e^+ + e \otimes A^+ = \begin{pmatrix} u + \partial z & -\partial \\ -z & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\partial \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} u & 0 \\ -z & 1 \end{pmatrix}, \]
\[L^-(u) = u e^- + e \otimes A^- = \begin{pmatrix} 1 & -\partial \\ z & u - z \partial \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ z & u \end{pmatrix} \cdot \begin{pmatrix} 1 & -\partial \\ 0 & 1 \end{pmatrix}. \]

Используем обозначения \(e^+ = e_{11}, e^- = e_{22}, \) где \(e_{ik} \) стандартный базис в пространстве матриц размера \(2 \times 2 \), и \(e \otimes A = e_{11} A_{11} + e_{12} A_{12} + e_{21} A_{21} + e_{22} A_{22} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \). Введённые объекты действуют как матрицы в квантовом пространстве и как дифференциальные операторы по \(z \) во вспомогательном пространстве. Аналогично случаю \(L(u) \) построим общие трансфер матрицы из этих более простых решений,
\[Q_s(u) = \text{tr}_z q^{z\partial} \left(u e^+_1 + e_1 \otimes A^+ \right) \left(u e^+_2 + e_2 \otimes A^+ \right) \cdots \left(u e^+_N + e_N \otimes A^+ \right). \]

Отметим, что помимо \(L, L^\pm \) решением Янгианного соотношения (1.5) также является \(\begin{pmatrix} 1 & 0 \\ z & 1 \end{pmatrix} \). Для Янгианной алгебры имеет место свойство коумножения. Пусть \(L_1(u) \)
и $L_2(u)$ два решения (1.5), заданные на пространствах полиномов $\mathbb{C}[z_1]$ и $\mathbb{C}[z_2]$ соответственно. Тогда матрица $L_1(u + \delta_1) L_2(u + \delta_2)$ тоже решает (1.5) и задана на пространстве $\mathbb{C}[z_1, z_2] = \mathbb{C}[z_2] \otimes \mathbb{C}[z_2]$. Такая возможность умножать решения позволяет построить множество новых решений из простейших. В частности можно построить два составных решения: $L_1^- (u_2) L_2^+ (u_1)$ и $\begin{pmatrix} 1 & 0 \\ z_1 & 1 \end{pmatrix} L_2(u_1, u_2)$. Из общей теории представлений Янгиана [94, 95] следует существование сплетающего оператора для двух таких представлений Янгиевой алгебры. Оказывается, что для этого сплетающего оператора можно предъявить явную формулу,

$$e^{z_2 \partial_1} \cdot L_1^- (u_2) L_2^+ (u_1) = \begin{pmatrix} 1 & 0 \\ z_1 & 1 \end{pmatrix} L_2(u_1, u_2) \cdot e^{z_2 \partial_1} .$$

Аналогично рассмотрим другую пару решений: $L_1^+ (u_1) L_2^- (u_2)$ и $\begin{pmatrix} 1 & -\partial_1 \\ 0 & 1 \end{pmatrix} L_2(u_1, u_2)$. Представления Янгиевой алгебры снова эквивалентны и для них существует сплетающий оператор,

$$r \cdot L_1^+ (u_1) L_2^- (u_2) = \begin{pmatrix} 1 & -\partial_1 \\ 0 & 1 \end{pmatrix} L_2(u_1, u_2) \cdot r , \quad r \equiv \Gamma (z_2 \partial_2 + u_1 - u_2 + 1) e^{z_1 \partial_2} .$$

При помощи стандартной аргументации, использованной ранее в главе 1, из соотношений сплетения следуют формулы факторизации общей трансфер матрицы T_s в произведение операторов Q_\pm,

$$\frac{1}{1 - q} T_s(u|q) = Q_-(u + s) Q_+(u - s - 1) = Q_+(u - s - 1) Q_-(u + s) .$$

Нетрудно убедиться, что q-регуляризация необходима, чтобы сделать след по бесконечномерному пространству конечным. Из двух формул факторизации следует коммутативность $[Q_-(u), Q_+(v)] = 0$. Чтобы удостовериться в справедливости двух других соотношений коммутативности $[Q_-(u), Q_-(v)] = [Q_+(u), Q_+(v)] = 0$ нужно воспользоваться локальными соотношениями сплетения [20, 93]

$$P_{12} (1 - z_2 \partial_1)^{u-v} \cdot L_1^- (u) L_2^- (v) = L_2^- (v) L_1^- (u) \cdot P_{12} (1 - z_2 \partial_1)^{u-v} ,$$

$$P_{12} (1 + z_1 \partial_2)^{u-v} \cdot L_1^+ (u) L_2^+ (v) = L_2^+ (v) L_1^+ (u) \cdot P_{12} (1 + z_1 \partial_2)^{u-v} .$$

Итого все трансфер матрицы коммутируют $[T_s(u|q), Q_-(v)] = [T_s(u|q), Q_+(v)] = 0$. Кроме того, имеем место уравнение Бакстера для Q_\pm,

$$t(u|q) Q_-(u) = u^N Q_-(u + 1) + q(u + 1)^N Q_-(u - 1) ,$$

$$t(u|q) Q_+(u) = qu^N Q_+(u + 1) + (u + 1)^N Q_+(u - 1) ,$$

82
где след в трансфер матрице \(t(u|q) = \text{tr} \left(\begin{array}{cc} q & 0 \\ 0 & 1 \end{array} \right) L_1(u) L_2(u) \cdots L_N(u) \) вычислен по двумерному вспомогательному пространству. Далее в этой главе будут получены намного более явные формулы для операторов Бакстера \(Q_\pm \).

Опишем теперь альтернативную конструкцию операторов Бакстера для спиновой цепочки с фундаментальным представлением в каждом узле. На этот раз воспользуемся другими локальными строительными блоками для трансфер матриц. Для этого перепишем \(R(u|v)\), ограничение общего \(R\)-оператора на \(C^2 \otimes V_s \), в терминах набора спектральных параметров (1.55): \(u_1 = u - \frac{3}{2}, \quad u_2 = u + \frac{1}{2}; \quad v_1 = v - s - 1, \quad v_2 = v + s \),

\[
R(u_1, u_2|v_1, v_2) = \left(\begin{array}{ccc} 1 & 0 & \frac{u_2 - v_2 - 1}{z} & -\frac{u_1 - v_1 + 1}{z} \\ z & 1 & 0 & \frac{u_1 - v_1 + 1}{z} \end{array} \right),
\]

и вычислим пределы \(v_2 \rightarrow u_2 \) и \(v_1 \rightarrow u_1 \),

\[
R(u_1, u_2|v_1, u_2) = R^1(u - v_1) = \left(\begin{array}{ccc} 1 & 0 & -1 & -\frac{u_1 - v_1 + 1}{z} \\ z & 1 & 0 & \frac{u_1 - v_1 + 1}{z} \end{array} \right),
\]

\[
R(u_1, u_2|u_1, v_2) = R^2(u - v_2) = \left(\begin{array}{ccc} 1 & 0 & u_2 - v_2 - 1 & -\frac{u_1 - v_1 + 1}{z} \\ z & 1 & 0 & \frac{u_1 - v_1 + 1}{z} \end{array} \right).
\]

Аналогично первой конструкции строим общие трансфер матрицы \(Q_1, Q_2 \) из \(R^1, R^2 \),

\[
Q_1(u) = \text{tr}_0 q^\circ \partial_0 R^1_{10}(u) \cdots R^1_{N0}(u), \quad Q_2(u) = \text{tr}_0 q^\circ \partial_0 R^2_{10}(u) \cdots R^2_{N0}(u).
\]

Семейство операторов \(Q_1, Q_2 \) коммутативно, и для них справедливы уравнения Бакстера. Помимо этого нам требуется ещё одна трансфер матрица \(S = \text{tr}_0 q^\circ \partial_0 S_{10} S_{20} \cdots S_{N0} \), которая строится из локальных блоков, полученных двойным пределом \(v_1 \rightarrow u_1 \) и \(v_2 \rightarrow u_2 \),

\[
R(u_1, u_2|u_1, u_2) = S_{12} = \left(\begin{array}{ccc} 1 & 0 & -1 & -\frac{u_1 - v_1 + 1}{z} \\ z & 1 & 0 & \frac{u_1 - v_1 + 1}{z} \end{array} \right).
\]

При этом соответствующая формула факторизации имеет вид

\[
S T_s(u) = Q_2(u - s) Q_1(u + s + 1) = Q_1(u + s + 1) Q_2(u - s).
\]

Итого предъявили два набора операторов Бакстера. Оказывается, что они коммутируют друг с другом и связаны простыми соотношениями. Чтобы это увидеть, заметим, что \(T_s \) преобразуется в \(Q_1 \) при \(v_2 = u_2 \) и в \(Q_2 \) при \(v_1 = u_1 \). Налагая такие ограничения на параметры в формуле факторизации общей трансфер матрицы в произведение \(Q_\pm \), имеем

\[
Q_1(u + 1) = (1 - q) Q_+ \left(-\frac{3}{2} \right) \cdot Q_-(u) ; \quad Q_2(u + 1) = (1 - q) Q_- \left(\frac{3}{2} \right) \cdot Q_+(u).
\]

В дальнейшем установим и другие формулы связи.
2.1. Альтернативная конструкция общего \mathbb{R}-оператора

В параграфе 1.2.1 был указан общий \mathbb{R}-оператор для \mathfrak{sl}_2-симметричной цепочки. А именно было решено RLL-соотношение (1.11) с L-оператором (1.56), так что \mathbb{R}-оператор представлял перестановку специального вида на множестве четырёх спектральных параметров. В этом параграфе предложена альтернативная конструкция, которая использует вырожденные решения L^\pm Янгианного соотношения (1.5), уже обсуждавшиеся в начале этой главы. При помощи операторов L^\pm формулируется DST спиновая цепочка [20, 93]. L^+ и L^- получаются из стандартного L-оператора (1.54) в пределе $u_2 \to \infty$ и $u_1 \to \infty$ соответственно. В самом деле из формулы факторизации L-оператора (1.56) следует:

$$L(u_1, u_2) = \begin{pmatrix} 1 & 0 \\ z & u_2 \end{pmatrix} L^+(u_1) = L^-(u_2) \begin{pmatrix} u_1 & 0 \\ -z & 1 \end{pmatrix}.$$ \hspace{1cm} (2.1)

С другой стороны, как легко проверить непосредственным вычислением, из пары вырожденных строится стандартный L-оператор,

$$L_1^- (v) L_2^+(u) = e^{-z_1 \partial_2} \cdot L_1(u, v) \begin{pmatrix} 1 & 0 \\ -z_2 & 1 \end{pmatrix} \cdot e^{z_1 \partial_2},$$ \hspace{1cm} (2.2)

$$L_1^- (v) L_2^+(u) = e^{-z_2 \partial_1} \cdot \begin{pmatrix} 1 & 0 \\ z_1 & 1 \end{pmatrix} L_2(u, v) \cdot e^{z_2 \partial_1}.$$ \hspace{1cm} (2.3)

Воспользуемся соотношением сплетания $\partial_1^{u-v} L_1(v, u) = L_1(u, v) \partial_1^{u-v}$ для эквивалентных представлений \mathfrak{sl}_2 (см. (1.57)), умножим его справа на \begin{pmatrix} 1 & 0 \\ -z_2 & 1 \end{pmatrix}, и перепишем произведение двух решений Янгианного соотношения согласно (2.2),

$$(\partial_1 + \partial_2)^{u-v} L_1^-(v) L_2^+(u) = L_1^+(v) L_2^+ (u) (\partial_1 + \partial_2)^{u-v}.$$ \hspace{1cm} (2.4)

Здесь учи, что $e^{-z_1 \partial_2} \partial_1^{u-v} e^{z_1 \partial_2} = (\partial_1 + \partial_2)^{u-v}$. Таким образом получили соотношение сплетания для произведения $L_1^- \cdot L_2^+$ двух вырожденных L-операторов. Чтобы вывести аналогичное соотношение сплетания для $L_1^+ \cdot L_2^-$, заметим, что L^+ и L^- связаны каноническим преобразованием,

$$\sigma_1 L^-(u) \sigma_1 |_{z \to -\partial, \partial \to z} = L^+(u), \quad \sigma_1 L^+(u) \sigma_1 |_{z \to -\partial, \partial \to z} = L^- (u).$$ \hspace{1cm} (2.5)

Применяя его к (2.4), немедленно получаем нужное нам соотношение,

$$z_{12}^{u-v} L_1^+(u) L_2^-(v) = L_1^+(v) L_2^-(u) z_{12}^{u-v}. $$ \hspace{1cm} (2.6)
Имея в распоряжении пару соотношений сплетания (2.4) и (2.6) для двух эквивалентных представлений Янгиана, легко выразить общий О-оператор в терминах соответствующих сплетающих операторов, которые теперь выступают элементарными строительными блоками вместо $S^i (i = 1, 2, 3)$. Как и ранее решаем RLL-соотношение (1.11). Для этого домножим его слева на $\begin{pmatrix} 1 & 0 \\ z_a & 1 \end{pmatrix}$ и справа на $\begin{pmatrix} 1 & 0 \\ -z_b & 1 \end{pmatrix}$ и перепишем в терминах L^\pm-операторов согласно (2.2) и (2.3),

$$R' L_a^- (u_2) L_1^+ (u_1) L_2^- (v_2) L_b^+ (v_1) = L_a^- (v_2) L_1^+ (v_1) L_2^- (u_2) L_b^+ (u_1) R', \quad (2.7)$$

где $R' = e^{-z_1 \partial_a} e^{-z_2 \partial_b} R_{12} (u_1, u_2 | v_1, v_2) e^{z_1 \partial_a} e^{z_2 \partial_b}$. Видим, что действие R' на произведение четырёх вырожденных L-операторов, заданных в разных узлах цепочки, приводит к перестановке параметров $(u_2, u_1, v_1, v_2) \rightarrow (v_2, v_1, u_2, u_1)$, которую можно осуществить за четыре шага ввиду ключевых соотношений (2.4) и (2.6),

$$R' = z_1^{u_2 - v_1} (\partial_a + \partial_1)^{u_2 - v_2} (\partial_2 + \partial_b)^{u_1 - v_1} z_1^{u_1 - v_2}. \quad (2.7)$$

В итоге, учитывая формулу связи R' и R_{12}, имеем: $R_{12} (u_1, u_2 | v_1, v_2) = z_1^{u_2 - v_1} \partial_1^{u_2 - v_2} \partial_2^{u_1 - v_1} z_1^{u_1 - v_2}$. Ясно, что таким же образом строятся R^1, R^2.

Предыдущая конструкция основана на подмене стандартного L-оператора произведением двух вырожденных L-операторов и перестановке параметров при помощи пары сплетающих операторов (2.4) и (2.6). Предыдущее построение может показаться весьма тривиальным, однако мы подробно остановились на нём, поскольку эта схема применима и в гораздо более сложных ситуациях. В главе 3 предъявим аналогичную конструкцию для общего R-оператора модулярного дубля.

2.2. Явные формулы для действия Q-операторов на полиномы:

некомпактный спин

Ранее в параграфе 1.1 построили пару Q-операторов (1.34) и (1.35), заданных на бесконечномерном пространстве состояний $s\ell_2$-симметричной спиновой цепочки для спинового параметра $\ell \in \mathbb{C}$ в общем положении. При этом конструкция носила в основном алгебраический характер. Кроме того, для оператора Q_2 предъявили гораздо более явное выражение (1.69), вычислив след по бесконечномерному пространству состояний. Это позволило определить результат применения Q_2 к производящей функции пространства.

85
состояний спиновой цепочки. Вернёмся снова к вопросу о действии Q-операторов на пространство полиномов.

Для этого перепишем \(Q_1 \) и \(Q_2 \) ((1.34) и (1.35)), вынося из под знака следа зависимость от параметров \(u \) и \(\ell \),

\[
Q_1(u) = R_1(\lambda_1 \partial_{\lambda_1}) \cdots R_N(\lambda_N \partial_{\lambda_N})|_{\lambda_1=1} \cdot \text{tr}_V P_{10} \lambda_1 z_1^{\partial_1} \cdots P_{N0} \lambda_N z_N^{\partial_N}, \tag{2.8}
\]

\[
Q_2(u) = R_2(\lambda_1 \partial_{\lambda_1}) \cdots R_N(\lambda_N \partial_{\lambda_N})|_{\lambda_1=1} \cdot \text{tr}_V P_{10} \lambda_1 z_1^{\partial_1} \cdots P_{N0} \lambda_N z_N^{\partial_N}.
\]

Здесь учли формулу \(\Phi(\lambda \partial)|_{\lambda_1=1} \cdot \lambda = \Phi(x) \) и явный вид локальных строительных блоков \(R_1 \) и \(R_2 \) (1.58),

\[
R_1(x) = \frac{\Gamma(x - 2\ell)}{\Gamma(x + 1 - \ell - u)}; \quad R_2(x) = \frac{\Gamma(x + u - \ell)}{\Gamma(x - 2\ell)}. \tag{2.9}
\]

Теперь задача свелась к вычислению следов в (2.8) по пространству полиномов \(\mathbb{C}[z_0] \). Для этого используем стандартный базис \(e_k = z_0^k \) \((k = 0, 1, 2, \cdots) \) в пространстве \(\mathbb{C}[z_0] \). След оператора \(A \), такого что \(A e_i = \sum_k e_k A_{ki} \), равен сумме диагональных матричных элементов \(\text{tr} A = \sum_k A_{kk} \).

Второй след в (2.8) мгновенно вычисляется при помощи формулы (1.52) ввиду специфической зависимости от канонических пар,

\[
\text{tr}_V P_{10} \lambda_1 z_1^{\partial_1} \cdots P_{N0} \lambda_N z_N^{\partial_N} = P \cdot \lambda_1 z_1^{\partial_1} \lambda_2 z_2^{\partial_2} \cdots \lambda_N z_N^{\partial_N} \bigg|_{z_0 = z_1}. \tag{2.10}
\]

Далее подействуем этим оператором на функцию \(\Psi(z_1, \ldots, z_N) = \Psi(z) \) и представим результат в матричной форме

\[
\lambda_1 z_1^{\partial_1} \lambda_2 z_2^{\partial_2} \cdots \lambda_N z_N^{\partial_N} \bigg|_{z_0 = z_1} : \Psi(z) = \Psi(\Lambda z), \tag{2.11}
\]

где

\[
\Lambda = \begin{pmatrix}
\lambda_1 & 1 - \lambda_1 & 0 & 0 & \cdots & 0 \\
0 & \lambda_2 & 1 - \lambda_2 & 0 & \cdots & 0 \\
0 & 0 & \lambda_3 & 1 - \lambda_3 & \cdots & 0 \\
& & & & & \\
0 & 0 & \cdots & \lambda_{N-1} & 1 - \lambda_{N-1} & 0 \\
1 - \lambda_N & 0 & 0 & 0 & \cdots & \lambda_N
\end{pmatrix}; \quad z = \begin{pmatrix}
z_1 \\
z_2 \\
z_3 \\
\vdots \\
z_N
\end{pmatrix}
\]

Для первого следа в (2.8) имеет место схожий результат

\[
\text{tr}_V P_{10} \lambda_1 z_1^{\partial_1} \cdots P_{N0} \lambda_N z_N^{\partial_N} : \Psi(z) = \frac{1}{1 - \lambda_1 \cdots \lambda_N} \cdot \Psi(\Lambda^{-1} z), \tag{2.12}
\]

86
где

\[
\Lambda' = \begin{pmatrix}
1 - \frac{1}{\lambda_1} & \frac{1}{\lambda_1} & 0 & 0 & \cdots & 0 \\
0 & 1 - \frac{1}{\lambda_2} & \frac{1}{\lambda_2} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1 - \frac{1}{\lambda_{N-1}} & \frac{1}{\lambda_{N-1}} & 0 \\
\frac{1}{\lambda_N} & 0 & 0 & 0 & \cdots & 0 & 1 - \frac{1}{\lambda_N}
\end{pmatrix}.
\]
(2.13)

Получим формулу (2.12). Соответствующее вычисление основано на формуле на формуле

\[
\sum_{k=0}^{\infty} \frac{1}{k!} \partial_0^k \cdot (a + b \cdot z_0)^k \Phi(z_0) \big|_{z_0=0} = \frac{1}{1 - b} \cdot \Phi \left(\frac{a}{1 - b} \right)
\]
(2.14)

и локальным соотношения сплетения

\[
P_{K_0} \lambda^{z_0 \partial_0} \cdot P_{K_0'} (1 - \frac{1}{\lambda})^{z_{0'} \partial_{0'}} = P_{K_0} \lambda^{z_0 \partial_0} \cdot P_{K_0'} P_{K_0} \lambda^{z_0 \partial_0} (1 - \frac{1}{\lambda})^{z_{0} \partial_0},
\]

в справедливости которого легко убедиться. Обсуждая общую схему построения операторов Бакстера и общих трансфер матриц, постоянно использовали тот факт, что локальные соотношения сплетения порождают соответствующие глобальные соотношения для следов монодромий. Аналогично, предыдущее локальное соотношение ведёт к формуле факторизации

\[
A \cdot B = P \cdot C
\]
(2.15)

для трансфер матриц

\[
A \equiv \text{tr}_{V_0} P_{10} \lambda_{101}^{z_{101} \partial_{0}} \cdots P_{N0} \lambda_{N0}^{z_{N0} \partial_{0}}
\]

\[
B \equiv \text{tr}_{V_0'} P_{10'} (1 - \frac{1}{\lambda})_{10'}^{z_{10'} \partial_{10'}} \cdots P_{N0'} (1 - \frac{1}{\lambda_{N}})_{N0'}^{z_{N0'} \partial_{N0'}}
\]

\[
C \equiv \text{tr}_{V_0} P_{10} \lambda_{101}^{z_{101} \partial_{0}} \cdots P_{N0} \lambda_{N0}^{z_{N0} \partial_{0}} (1 - \frac{1}{\lambda_{N}})_{N0}^{z_{N0} \partial_{N}}.
\]

Определим теперь как A, B, C действуют на полиномиальные функции. Воспользуемся (2.10), (2.11) в которых сделана подстановка \(\lambda \rightarrow 1 - \frac{1}{\lambda}\),

\[
B \cdot \Psi(\tilde{z}) = P \cdot \Psi(\Lambda' \tilde{z}).
\]

Далее вычислим след в определении трансфер матрицы C. Зная как составляющие её локальные блоки действуют действуют на полиномы

\[
P_{K_0} \lambda^{z_0 \partial_0} (1 - \frac{1}{\lambda})^{z_{0} \partial_{0}} \Phi(z_{k}, z_{0}) = \Phi(z_{k}, \lambda z_{k} + \bar{\lambda} z_{0}),
\]
87
заключаем, что после применения оператора C к функции Ψ(\(\vec{z}\)) её аргументы не изменяются, а появляется лишь общий множитель, который легко вычислить по формуле (2.14),

\[C \cdot \Psi(\vec{z}) = \frac{1}{1 - \lambda_1 \cdots \lambda_N} \cdot \Psi(\vec{z}). \]

Теперь применим обе части соотношения факторизации (2.15) к функции Ψ(\(\vec{z}\)),

\[A \cdot P \Psi(\Lambda' \vec{z}) = \frac{1}{1 - \bar{\lambda}_1 \cdots \bar{\lambda}_N} \cdot P \Psi(\vec{z}). \]

Предыдущее выражение преобразуется к виду (2.12) посредством линейного преобразования переменных \(\vec{z}\).

В итоге получили очень схожие выражения для операторов Бакстера, применённых к полиномиальной функции,

\[Q_1(u) \Psi(\vec{z}) = R_1(\lambda_1 \partial_{\lambda_1}) \cdots R_N(\lambda_N \partial_{\lambda_N}) |_{\lambda_1=1} \cdot \frac{1}{1 - \lambda_1 \cdots \lambda_N} \cdot \Psi(\Lambda' \vec{z}), \quad (2.17) \]

\[Q_2(u) \Psi(\vec{z}) = P \cdot R_2(\lambda_1 \partial_{\lambda_1}) \cdots R_N(\lambda_N \partial_{\lambda_N}) |_{\lambda_1=1} \cdot \Psi(\Lambda \vec{z}). \quad (2.18) \]

Отличие лишь в префакторе и обращении матрицы для первой формулы, что делает её несколько сложнее. Присутствующей выше оператор циклического сдвига P действует на функции по формуле: \(P \Psi(z_1, z_2, \ldots, z_N) = \Psi(z_N, z_1, \ldots, z_{N-1})\).

Операторы Бакстера \(Q_1\) и \(Q_2\) также можно переписать в виде кратных интегралов по вспомогательному параметру. Для этого нужно воспользоваться интегральным представлением бета-функций из определения функций \(R_1\) и \(R_2\) (2.9). В результате \(Q_1\) (2.17) принимает вид

\[[Q_1(u) \Psi](\vec{z}) = \frac{1}{\Gamma^N(1 + \ell - u)} \cdot \frac{1}{0} d\lambda_1(1 - \lambda_1)^{\ell-u} \lambda_1^{-2\ell-1} \cdots \quad (2.19) \]

\[\cdots \cdot \frac{1}{0} d\lambda_N(1 - \lambda_N)^{\ell-u} \lambda_N^{-2\ell-1} \frac{1}{1 - \lambda_1 \cdots \lambda_N} \cdot \Psi(\Lambda' \vec{z}), \]

а интегральное представление для оператора \(Q_2\) (2.18)

\[[Q_2(u) \Psi](z_1, \ldots, z_N) = \frac{1}{\Gamma^N(-\ell - u)} \cdot \frac{1}{0} d\lambda_1(1 - \lambda_1)^{-\ell-u-1} \lambda_1^{\ell+u+1} \cdots \quad (2.20) \]

\[\cdots \cdot \frac{1}{0} d\lambda_N(1 - \lambda_N)^{-\ell-u-1} \lambda_N^{\ell+u+1} \Psi(\lambda_1 z_N + \bar{\lambda}_1 z_1, \lambda_2 z_1 + \bar{\lambda}_2 z_2, \ldots, \lambda_N z_{N-1} + \lambda_N z_N). \]
Подчеркнём, что предыдущие представления для операторов Бакстера вообще говоря справедливы лишь при спиновом параметре в общем положении, когда пространство состояний цепочки бесконечномерно, и нуждаются в модификации для конечномерных представлений. В параграфе 2.3.4 в случае (полу)целого спина \(\ell \) предъявим гораздо более явные выражения для оператора \(Q_1 \).

2.3. Конечномерные представления I

Всюду выше предполагалось, что параметр спина \(\ell \) комплексное число в общем положении, и следовательно квантовое пространство модели бесконечномерно. При таких предположениях изучили алгебраические свойства \(s \ell \)-инвариантных трансфер матриц, построенных их операторов \(\mathbb{R}^1 \) и \(\mathbb{R}^2 \) ((1.22) и (1.23)), что позволило назвать их \(Q \)-операторами, поскольку они удовлетворяют уравнению Бакстера и коммутируют друг с другом. Теперь изучим специальный случай представлений (полу)целого спина \(\ell \), который принципиально отличается от предыдущего, поскольку бесконечномерное представление становится приводимым, и выделяется инвариантное конечномерное подпространство неприводимого представления (полу)целого спина \(\ell \).

Естественным образом возникает вопрос: что произойдет, если в полученных ранее формулах \(\ell \) выбрать (полу)целым и попытаться ограничить все операторы на конечномерное подпространство состояний квантовой системы? Чтобы ответить на него обратимся к формуле (1.69), которая говорит нам как второй оператор Бакстера действует на пространство полиномов. А именно, чтобы проиллюстрировать общую ситуацию, рассмотрим простейший пример цепочки из двух узлов \((N = 2) \) и представлений спина \(\ell = \frac{1}{2} \).

\[
Q(u) \cdot (1 - x_1 z_1) \cdot (1 - x_2 z_2) = (1 - x_1 z_1)^{\frac{1}{2} - u}(1 - x_1 z_1)^{\frac{1}{2} + u} \cdot (1 - x_2 z_1)^{\frac{1}{2} - u}(1 - x_2 z_2)^{\frac{1}{2} + u}. \quad (2.21)
\]

Тензорное произведение базисов в локальных квантовых пространствах первого \(\{1, z_1\} \) и второго узла \(\{1, z_2\} \) порождает базис в пространстве состояний всей цепочки \(\{1, z_1, z_2, z_1 z_2\} \). Из формулы (2.21) находим результат применения оператора \(Q(u) \) к базисным векторам

\[
\begin{align*}
 z_1 & \mapsto \left(\frac{1}{2} + u\right) z_1 + \left(\frac{1}{2} - u\right) z_2; \quad z_2 \mapsto \left(\frac{1}{2} + u\right) z_2 + \left(\frac{1}{2} - u\right) z_1, \\
 1 & \mapsto 1; \quad z_1 z_2 \mapsto \left(\frac{1}{2} + 2u^2\right) z_1 z_2 + \left(\frac{1}{4} - u^2\right) \left(z_1^2 + z_2^2\right).
\end{align*}
\]
Ввиду присутствия слагаемых $\sim (z_1^2 + z_2^2)$ в предыдущем выражении оператор $Q(u)$ выводит из 4-мерного пространства состояний. Ясно, что то же самое происходит для любого представления компактного спина $\ell = n/2$; $n = 0, 1, 2 \ldots$.

Раз оператор Q_2 выводит из пространства состояний квантовой модели, то необходимо модифицировать предыдущее построение для случая конечномерных представлений. К этой проблеме можно подойти с разных точек зрения. В параграфах 2.3 и 2.5 будем следовать следующей схеме:

- С самого начала будем работать с ограничением общего \mathbb{R}-оператора на инвариантное подпространство, которое появляется при (полу)целых значениях параметра спина.

- Используем ограниченный \mathbb{R}-оператор в качестве локального строительного блока для общих трансфер матриц. На этом этапе необходимо ввести регуляризацию, поскольку слеы по бесконечномерным вспомогательным пространствам оказываются расходящимися. В качестве такого регуляризатора используем генератор Картана,

$$
\text{tr}_0 B \rightarrow \text{tr}_0 q^{z_0 \Delta B} , \quad |q| < 1.
$$

При этом расходимости проявляют себя в форме кратных полюсов по $(1-q)$ при $q \to 1$. Для спинового параметра в квантовом пространстве в общем положении $\ell \in \mathbb{C}$ сам спиновый параметр ℓ в определённом смысле играет роль регуляризатора, так что слеы по бесконечномерным вспомогательным пространствам конечны. Проблемы возникают только для (полу)целых значений ℓ. В параграфе 2.6 будут предъявлены явные формулы и примеры, поясняющие это утверждение.

- Воспользуемся локальными соотношениями для доказательства факторизации общей трансфер-матрицы в произведение Q-операторов.

Основное отличие от случая $\ell \in \mathbb{C}$ в общем положении в том, что с самого начала все операторы ограничены на инвариантное конечномерное подпространство. В отличие от \mathbb{R}^1 и \mathbb{R}^2, они отображают конечномерные локальные пространства в себя.

Как построения параграфа 2.3, так и параграфа 2.5, приводят нас в каждом случае к паре Q-операторов Бакстера для конечномерных представлений, разрешая указанное выше затруднение. Оба построения идеологически схожи, а кроме того имеют место явные
формулы связи между ними. Тем не менее на этом нельзя считать все сложности полностью устранены, поскольку такие операторы Бакстера не являются sl_2-инвариантными и существуют лишь при $q \neq 1$, т.е. в выражениях для них нельзя снять регуляризацию.

В параграфе 2.6 обсудим как построить из них набор операторов Бакстера, которые не содержат параметра q и sl_2-инвариантны. Кроме того, покажем, что существует альтернативное решение проблемы конечномерных представлений, которое не следует указанной выше схеме и приводит к sl_2-инвариантным операторам Бакстера.

2.3.1. Ограничение общего R-оператора на конечномерные представления

Ранее в параграфе 1.2.2 явным вычислением продемонстрировали, что при $\ell = 1/2$ ограничение общего R-оператора на подпространство C^2 во вспомогательном пространстве совпадает с точностью до постоянной со стандартным L-оператором (1.60). Аналогичное вычисление можно провести для любого заданного (полу)целого спина. Таким образом общий R-оператор, заданный на пространстве $V_\ell \otimes U_n$, можно ограничить на инвариантное подпространство $V_\ell \otimes \mathbb{C}$. Если же $2\ell_1 = n$ неотрицательное целое, то пространство в первом тензорном факторе становится приводимым, так что можно выполнить ограничение на $(n+1)$-мерное неприводимое представление. Воспользуемся операторами проектирования

$$\Pi^n_1 z_i^k = z_i^k , \quad k \leq n ; \quad \Pi^n_2 z_i^k = 0 , \quad k > n .$$

(2.22)

Будем обозначать жирным шрифтом операторы для (полу)целых значений параметра спина, ограниченные на конечномерное неприводимое подпространство в одном из тензорных сомножителей

$$R_{12} (u|\frac{n}{2}, \ell_2) = R_{12} (u|\frac{n}{2}, \ell_2) \Pi^n_1 ; \quad R_{12} (u|\ell_1, \frac{n}{2}) = R_{12} (u|\ell_1, \frac{n}{2}) \Pi^n_2 .$$

(2.23)

Ограничение во втором тензорном сомножителе необходимо при построении трансфер матриц, в которых след берётся по конечномерному вспомогательному пространству; квантовое пространство состояний может быть бесконечномерным. В дальнейшем нас будет интересовать ограничение в первом тензорном сомножителе, что соответствует конечномерным представлениям в квантовом пространстве.
Оператор R

Остановимся подробно на ограничении в первом тензорном множителе, т.е. в квантовом пространстве. Для этого изучим предел $2\ell_1 \to n$, $n = 0, 1, 2, \cdots$, общего R-оператора,

$$ R(u|\ell_1, \ell_2) = e^{-z_1\partial_2} \frac{\Gamma(z_2\partial_2 - 2\ell_1)}{\Gamma(z_2\partial_2 - \ell_1 - \ell_2 - u)} e^{z_1\partial_2} \cdot e^{-z_2\partial_1} \frac{\Gamma(z_1\partial_1 - \ell_1 - \ell_2 + u)}{\Gamma(z_1\partial_1 - 2\ell_1)} e^{z_2\partial_1}. \quad (2.24) $$

Положим $2\ell_1 = n - \varepsilon$ и рассмотрим предел $\varepsilon \to 0$. Ясно, что при этом главную роль в предыдущем выражении играют оператор $\Gamma(z\partial - n + \varepsilon)$ и обратный к нему при $\varepsilon \to 0$.

Структура этих операторов при малых ε становится более прозрачной после расщепления мономов z^k при $k \leq n$ и $k > n$ при помощи проекторов (2.22): Π^n для мономов с $k \leq n$ и проектор $1 - \Pi^n$ для мономов с $k > n$, а также учёт формулы отражения $\Gamma(z)\Gamma(1 - z) = \frac{\pi}{\sin(\pi z)}$,

$$ \Gamma(z_2\partial_2 - n + \varepsilon) = \Gamma(z_2\partial_2 - n + \varepsilon) (1 - \Pi^n) + \frac{\pi}{\sin \pi \varepsilon} \frac{(-1)^nz_2\partial_2 + n}{\Gamma(1 + n - \varepsilon - z_2\partial_2)} \Pi^n, $$

$$ \frac{1}{\Gamma(z_1\partial_1 - n + \varepsilon)} = \frac{1}{\Gamma(z_1\partial_1 - n + \varepsilon)} (1 - \Pi^n) + \frac{\sin \pi \varepsilon}{\pi} (-1)^n z_1\partial_1 + n \Gamma(1 + n - \varepsilon - z_1\partial_1) \Pi^n. $$

Первые вклады, содержащие проектор $1 - \Pi^n$, очевидно несингулярны при $\varepsilon \to 0$. Из вида второго вклада следует, что оператор $\Gamma(z_2\partial_2 - n + \varepsilon)$ расходится на мономах z_2^k при $k \leq n$, а оператор $\Gamma^{-1}(z_1\partial_1 - n + \varepsilon)$ занимает мономы z_2^k при $k \leq n$ в пределе $\varepsilon \to 0$. Следующие в предыдущем выражении, пропорциональные проектору $1 - \Pi^n$, не дают вклада при рассматриваемом ограничении на подпространство. Ограничение на подпространство мономов z_1^k при $k \leq n$ даёт оператор $R_{12}(u|\ell_1, \ell_2)$ (2.23). Поскольку $e^{z_2\partial_2} \Pi^n = \Pi^n e^{z_2\partial_1} \Pi^n$, то проектор Π^n выделяет подходящий вклад из первого множителя в (2.24),

$$ e^{-z_2\partial_1} \frac{\Gamma(z_1\partial_1 - \ell_1 - \ell_2 + u)}{\Gamma(z_1\partial_1 - 2\ell_1)} e^{z_2\partial_1} \Pi^n = $$

$$ = (-1)^n \frac{\sin \pi \varepsilon}{\pi} \cdot e^{-z_2\partial_1} (-1)^n \Gamma(z_1\partial_1 - \ell_1 - \ell_2 + u) \Gamma(1 + n - \varepsilon - z_1\partial_1) e^{z_2\partial_1} \Pi^n. $$

При $\varepsilon \to 0$ предыдущее выражение зануляется, поэтому во втором множителе нужно удержать лишь сингулярный вклад $\sim \frac{1}{\varepsilon}$,

$$ e^{-z_1\partial_2} \frac{\Gamma(z_2\partial_2 - 2\ell_1)}{\Gamma(z_2\partial_2 - \ell_1 - \ell_2 - u)} e^{z_1\partial_2} \to (-1)^n \frac{\pi}{\sin \pi \varepsilon} e^{-z_1\partial_2} \frac{(-1)^nz_2\partial_2}{\Gamma(z_2\partial_2 - \ell_2 - u)\Gamma(1 + n - \varepsilon - z_2\partial_2)} e^{z_1\partial_2}. $$

В итоге получаем следующее выражение для ограничения общего R-оператора в первом тензорном факторе,

$$ R_{12}(u|\ell_1, \ell_2) = P_{12} \cdot e^{-z_1\partial_2} \frac{(-1)^nz_2\partial_2}{\Gamma(z_2\partial_2 - \frac{n}{2} - \ell_2 - u)\Gamma(1 + n - z_2\partial_2)} e^{z_1\partial_2}. $$

92
Предположим, что оператор $R_{12} \left(u, v \right)$ не выводит из конечномерной подпространства, поскольку проектор P^n присутствует как справа, так и слева

$$P_{12} e^{-z_i \partial_2} P^n_2 = P_{12} P^n_2 e^{-z_i \partial_2} P^n_2 = P^n_1 P_{12} e^{-z_i \partial_2} P^n_2.$$
(2.26)

Операторы R^1, R^2 и S

Изучим теперь редукции (2.25), которые возникают при специальных значениях параметров v_1, v_2. Для этого перепишем $R_{12} \left(u, v | u \right)$, используя набор спектральных параметров

$$u_1 = u, u_2 = u + \frac{n}{2} ; v_1 = v - \ell_2 - 1, v_2 = v + \ell_2,$$
(2.27)

и рассмотрим пределы $v_1 \to u_1$ и (или) $v_2 \to u_2$. Имеем $R_{12}(u_1, u_2 | v_1, v_2) = R_{12}(u - v | u_1, u_2),

$$R_{12}(u_1, u_2 | v_1, v_2) = P_{12} \cdot e^{-z_i \partial_2} \frac{(-1)^{z_i \partial_2}}{\Gamma(z_2 \partial_2 + v_1 - u_2 + 1) \Gamma(u_2 - u_1 - z_2 \partial_2)} e^{z_i \partial_2}. \quad (2.28)$$

- $v_2 \to u_2$

Положим $v_2 = u_2 - \delta$ и воспользуемся формулой отражения, чтобы выделить главный вклад при $\delta \to 0$,

$$(-1)^{z_i \partial_1} \Gamma(z_1 \partial_1 + u_1 - u_2 + \delta + 1) \Gamma(u_2 - u_1 - z_1 \partial_1) \to \frac{(-1)^{u_2 - u_1 - 1}}{\delta}.$$

В результате

$$R_{12}(u_1, u_2 | v_1, u_2 - \delta) \to \delta^{-1} \cdot R^1_{12}(u_1 | v_1, u_2),$$

где взяли оператор, служащий аналогом $R_{12}^1 (1.58)$ для конечномерных представлений

$$R^1_{12}(u_1 | v_1, u_2) \equiv P_{12} \cdot e^{-z_i \partial_2} \frac{(-1)^{z_i \partial_2 + u_2 - u_1 - 1}}{\Gamma(z_2 \partial_2 + v_1 - u_2 + 1) \Gamma(u_2 - u_1 - z_2 \partial_2)} e^{z_i \partial_2} \cdot P^n_1. \quad (2.29)$$

- $v_1 \to u_1$

Положим $v_1 = u_1 + \delta$ и снова воспользуемся формулой отражения, выделяя главный вклад, при $\delta \to 0$

$$\frac{(-1)^{z_i \partial_2}}{\Gamma(z_2 \partial_2 + u_1 - \delta - u_2 + 1) \Gamma(u_2 - u_1 - z_2 \partial_2)} \to (-1)^{u_2 - u_1 - 1} \delta.$$
В результате

\[R_{12}(u_1, u_2|u_1 + \delta, v_2) \to \delta \cdot R_{12}^2(u_1, u_2|v_2), \]

где введён аналог \(R_{12}^2 \) (1.58) для конечномерных представлений

\[R_{12}^2(u_1, u_2|v_2) \equiv \mathcal{P}_{12} \cdot e^{-z_1 \partial_2} \Pi^n e^{z_1 \partial_2}. \]

(2.30)

При сравнении с (2.29) предыдущий оператор устроен несколько сложнее.

* \(v_1 \to u_1 \) и \(v_2 \to u_2 \)

В завершении вычислим предел \(R_{12}(u_1, u_2|v_1, v_2) \), когда одновременно \(v_1 \to u_1 \) и \(v_2 \to u_2 \). Выберем \(v_1 = u_1 + \delta \) и \(v_2 = u_2 - \delta \) при \(\delta \to 0 \). Вновь воспользуемся формулой отражения,

\[R_{12}(u_1, u_2|u_1 + \delta, u_2 - \delta) \to S_{12} \equiv \mathcal{P}_{12} \cdot e^{-z_1 \partial_2} \Pi^n e^{z_1 \partial_2} \cdot \Pi^n. \]

(2.31)

Подчеркнём, что в отличие от случая бесконечномерных представлений, \(R_{12}(u_1, u_2|v_1, v_2) \) в пределе переходит в оператор \(S_{12} \), который отличен от перестановки тензорных факторов. Этот результат лишний раз показывает, что, для того чтобы получить операторы для конечномерных представлений в квантовом пространстве, необходимо аккуратно выполнить предельный переход в формулах для бесконечномерных представлений.

Связь между двумя наборами операторов

Установим теперь связь между локальными операторами для конечномерных и бесконечномерных представлений. Именно, свяжем операторы \(R_{12}^1(u_1|v_1, u_2) \) и \(R_{12}^2(u_1, u_2|v_2) \), введённые в (2.29), (2.30), спектральные параметры которых имеют вид (2.27), и пределами операторов \(R_{12}^1(u_1|v_1, u_2), R_{12}^2(u_1u_2|v_2) \) (1.58). Для этого свяжем спин представлений в квантовом пространстве на \(\varepsilon/2 \) от (полу)целого значения: \(\ell = \frac{n}{2} \to \frac{n}{2} - \frac{\varepsilon}{2} \), соответствующим образом подправим спектральные параметры \(u_1 = u - \frac{n}{2} - 1 \to u_1 + \frac{\varepsilon}{2} \) и \(u_2 = u + \frac{n}{2} \to u_2 - \frac{\varepsilon}{2} \) и вычислим предел \(\varepsilon \to 0 \).

Начнём с \(R_{12}^1(u_1 + \frac{\varepsilon}{2}|v_1, u_2 - \frac{\varepsilon}{2}) \). Ведущий вклад при \(\varepsilon \to 0 \) имеет вид

\[R_{12}^1(u_1 + \frac{\varepsilon}{2}|v_1, u_2 - \frac{\varepsilon}{2}) \to \frac{1}{\varepsilon} \cdot \mathcal{P}_{12} \cdot e^{-z_1 \partial_2} \frac{(1)z_2 \partial_2 + u_2 - u_1 - \varepsilon}{\Gamma(z_2 \partial_2 + v_1 - u_2 + 1) \Gamma(u_2 - u_1 - z_2 \partial_2)} \Pi^n e^{z_1 \partial_2}. \]

94
Эта формула выводится также, как полученное выше выражение для $R_{12}(u|\nu_2, \ell_2)$: сначала расщепляем $R_{12}^1(u_1 + \varepsilon \nu_1, u_2 - \varepsilon \nu_2)$ при помощи проекторов Π^n_2 и $1 - \Pi^n_2$, умножаем на ε и получаем, что в пределе $\varepsilon \to 0$ выживает только сингулярный вклад с проектором Π^n_2.

Сравнивая предыдущее выражение с (2.29), находим альтернативный способ получить $R_{12}^1(u_1|v_1, u_2)$ непосредственно из $R_{12}^1(u_1|v_1, u_2)$, а не из ограничения общего R-оператора на конечномерное подпространство,

$$R_{12}^1(u_1|v_1, u_2) = \lim_{\varepsilon \to 0} \varepsilon \cdot R_{12}^1(u_1 + \varepsilon \nu_1, u_2 - \varepsilon \nu_2) \Pi^n_2. \quad (2.32)$$

Предыдущая формула означает, что после соответствующей перенормировки в пределе $\ell_1 \to \frac{n}{2}$ оператор $R_{12}^1(u_1|v_1, u_2)$ не выводит из подпространства $U_n \otimes V_{\ell_2}$. Более того, из (2.26) следует, что он отображает $V_\frac{n}{2} \otimes V_{\ell_2}$ на $U_n \otimes V_{\ell_2}$.

Обратимся теперь ко второй паре операторов. На этот раз формула связь на несколько сложнее: $R_{12}^2(u_1, u_2|v_2)$ можно получить из $R_{12}^2(u_1, u_2|v_2)$, домножив его на неразрывный оператор

$$S_{12} \equiv P_{12} e^{-z_1 \partial_2} \Pi^n_2 e^{z_1 \partial_2}, \quad (2.33)$$

так что подходящая формула имеет вид

$$R_{12}^2(u_1, u_2|v_2) = S_{12} \cdot P_{12} \cdot \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \cdot R_{12}^2(u_1 + \varepsilon \nu, u_2 - \varepsilon \nu_2) \Pi^n_2. \quad (2.34)$$

Вывод предыдущей формулы аналогичен (2.32). Она означает, что в пределе $\ell_1 \to \frac{n}{2}$ пере­нормированный оператор $R_{12}^2(u_1, u_2|v_2)$ выводит из подпространства $U_n \otimes V_{\ell_2}$, и следова­тельно требуется корректирующий оператор S_{12}. В самом деле S_{12} отображает $V_\frac{n}{2} \otimes V_{\ell_2}$ в $U_n \otimes V_{\ell_2}$ согласно (2.26).

В заключение укажем связь двойной редукции $R_{12}(u_1, u_2|v_1, v_2)$ из (2.31) и оператора S_{12} (2.33),

$$S_{12} = S_{12} \cdot \Pi^n_1.$$

2.3.2. Общие трансфер матрицы и Q-операторы

После необходимых приготовлений в предыдущих параграфах перейдём к общим трансфер матрицам (1.32), которые теперь строятся из строятся из локальных блоков R_{40}. На этом этапе возникает дополнительная сложность: следы по бесконечномерным вспомо­гательным пространствам $C[z_0]$ расходятся. Следовательно необходимо ввести некоторую регуляризацию. Будем использовать регуляризацию

$$\text{tr}_0 B \longrightarrow \text{tr}_0 q^{z_0 \partial_0} B, \quad |q| < 1,$$

95
которая соответствует квазипериодическим граничным условиям для спиновой цепочки. Можно также сказать, что регуляризация достигается введением внешнего магнитного поля. Для нас важно то, что модификация модели при помощи такой регуляризации сохраняет интегрируемость. Этот факт выражается соотношением: \[q^{z_0\partial_{\phi_0} + z_0\partial_{\phi_0}} \cdot R_{00'} = 0 \]. Явный недостаток использованной регуляризации в том, что она нарушает \(s\ell_2\)-симметрию исходной модели, т.е. соответствующую симметрию трансфер матриц. Итак, определим общую трансфер матрицу для (полу)целого спина \(\ell \) представления в квантовом пространстве и \(|q| < 1\),

\[T_s(u) = \text{tr}_0 \ q^{z_0\partial_0} \ R\!\! 10 \! \left(u\left| \frac{n}{2}, s \right. \right) R\!\! 20 \left(u\left| \frac{n}{2}, s \right. \right) \cdots R\!\! N0 \left(u\left| \frac{n}{2}, s \right. \right). \] (2.36)

Это оператор задан на конечном пространстве состояний квантовой цепочки, и не выводится из него.

Устанавливаем теперь факторизацию общей трансфер матрицы (2.36). Для этого как и для бесконечномерных представлений воспользуемся тройным соотношением (1.38), но теперь выберем \(\ell = \frac{n}{2} \) и ограничиваем операторное соотношение в \(k \)-ом узле на конечном подпространстве, т.е. всё соотношение ограничено на подпространство \(U_n \otimes C[z_0] \otimes C[z_0'] \),

\[R_{00'}^2(v_1, v_2|v_2)R_{k0'}(u_1, u_2|v_1, v_2) = \]

\[R_{k0}(u_1, u_2|v_1, v_2)R_{k0'}(u_1, u_2|v_1, v_2)R_{00'}^2(v_1, v_2|v_2). \] (2.37)

Далее наложим связь на спектральные параметры \(w_1 = u_1 + \delta, \ w_2 = u_2 - \delta \) и вычислим предел \(\delta \to 0 \) при помощи формулу из параграфа 2.3.1,

\[R_{00'}^2(v_1, v_2|v_2)S_{k0'}R_{k0}(u_1, u_2|v_1, v_2) = R_{k0}(u_1, u_2|v_2)R_{k0'}(u_1, u_2|v_1, v_2)R_{00'}^2(v_1, v_2|u_2). \]

Это локальное соотношение приводит, как и в бесконечномерном случае, к факторизации регуляризованный общей трансфер матрицы, если учесть \[q^{z_0\partial_{\phi_0} + z_0\partial_{\phi_0}} \cdot R_{00'} = 0 \],

\[\text{tr}_0 \left[q^{z_0\partial_{\phi_0}} S_{10} \cdot S_{20} \cdots S_{N0'} \right] \cdot \text{tr}_0 \left[q^{z_0\partial_{\phi_0}} R\!\! 10 \left(u_1, u_2|v_1, v_2 \right) \cdots R\!\! N0 \left(u_1, u_2|v_1, v_2 \right) \right] = \]

\[= \text{tr}_0 \left[q^{z_0\partial_{\phi_0}} R\!\! 10^2 \left(u_1, u_2|v_2 \right) \right] \cdot \text{tr}_0 \left[q^{z_0\partial_{\phi_0}} R\!\! 10^2 \left(u_1, u_2|v_2 \right) \right]. \]

Аналогичным образом можно получить и вторую формулу факторизации. Введём теперь обозначения для трансфер матрицы из предыдущей формулы,

\[Q_1(u, v_1) = \text{tr}_0 \ q^{z_0\partial_0} R\!\! 10^1 \left(u_1, u_2|v_1, v_2 \right) \cdots R\!\! N0 \left(u_1, u_2|v_1, v_2 \right), \] (2.38)

\[Q_2(u, v_2) = \text{tr}_0 \ q^{z_0\partial_0} R\!\! 10^2 \left(u_1, u_2|v_2, v_2 \right) \cdots R\!\! N0 \left(u_1, u_2|v_2, v_2 \right), \] (2.39)
Теперь оба соотношения факторизации перепишем в кратком виде,

$$S = \text{tr}_0 q^{\sum_0^N S_{10} S_{20} \cdots S_{N0}}. \quad (2.40)$$

Видим, что формулы для конечномерных представлений по виду практически совпадают с аналогичными формулами для бесконечномерных представлений. Соответствующие доказательства основаны на тех же локальных соотношениях и повторяют соответствующие рассуждения для ℓ в общем положении. Также самое относится и к доказательству коммутативности

$$[T_s(u), Q_k(v)] = 0 ; \quad [Q_l(u), Q_k(v)] = 0 ; \quad [S, Q_k(u)] = 0 ; \quad [S, T_s(u)] = 0. \quad (2.41)$$

которое использует ограничение на конечномерное подпространство уравнения Янга—Бакстера в локальном квантовом пространстве.

2.3.3. Связь Q-операторов для компактного и некомпактного спина и уравнение Бакстера

В параграфе 2.3.1 установили связь между R-операторами для представлений компактного и некомпактного спина. Теперь перейдём с уровня локальных операторов на уровень глобальных операторов и сформулируем аналогичные соотношения для трансфер матриц. Именно, установим связь между операторами $Q_1(u)$, $Q_2(u)$ (2.38), (2.39) и пределами $\ell \to \frac{N}{2}$ естественным образом q-регуляризованных операторов Бакстера Q_1, Q_2 (1.34), (1.35), которые обозначаем в дальнейшем $Q_1(u|q)$ и $Q_2(u|q)$.

Связь между $Q_1(u)$ и $Q_1(u|q)$ мгновенно следует из формул связи для соответствующих им локальным блокам (2.32): сдвигом спина в квантовом пространстве от (полу)целого значения $\ell = \frac{n}{2} - \frac{q}{2}$ и вычислим предел $\varepsilon \to 0$,

$$Q_1(u - v_1) = \lim_{\varepsilon \to 0} e^{N} \cdot Q_1(u - v_1|q)\bigg|_{\ell = \frac{n}{2} - \frac{q}{2}} \cdot \Pi^n, \quad (2.43)$$

где $\Pi^n \equiv \Pi^n_1 \Pi^n_2 \cdots \Pi^n_N$ произведение по узлам цепочки проекторов проекторов на локальные конечномерные подпространства.

Обозначая операторы жирным шрифтом $Q_1(u - v_1)$, подразумеваем, что спин представления в квантовом пространстве выбран (полу)целым $\ell = \frac{n}{2}$, и, кроме того, такой оператор задан на конечномерном подпространстве состояний квантовой модели, т.е. ограни-
чен на конечномерное подпространство при помощи проектора \(\Pi^n \). Однако легко убедиться в том, что существует расширение оператора \(Q_1(u - v_1) \) на всё пространство полиномов, т.е. другими словами существует предел

\[
Q_1(u - v_1) = \lim_{\varepsilon \to 0} \varepsilon^N Q_1(u - v_1|q)|_{\varepsilon = \frac{a+b}{2}}.
\]

(2.44)

Обозначим это расширение так же, как и оператор первый Бакстера для спина в общем положении. Это не должно вызвать недоразумений, поскольку каждый раз из контекста ясно какой из операторов используется. Оператор \(Q_1(u - v_1) \) на этот раз слегка модифицирован \(q \)-регуляризацией общей трансфер матрицы для спина в квантовом пространстве в общем положении, локальных блоков. В частности из (2.26) следует, что этот оператор не выводит из конечномерного квантового пространства состояний. Более того, он отображает всё пространство полиномов на конечномерное пространство состояний.

Чтобы получить формулу связи для второго оператора Бакстера, вспоминаем факторизацией общей трансфер матрицы для спина в квантовом пространстве в общем положении, которая на этот раз слегка модифицирована \(q \)-регуляризацией,

\[
\text{tr}_0\left[q^{\varepsilon_0 \partial_0} P_{10'} \cdots P_{N0'}\right] \cdot \text{tr}_0\left[q^{\varepsilon_0 \partial_0} \mathbb{R}_{10}(u_1, u_2|v_1, v_2) \cdots \mathbb{R}_{N0}(u_1, u_2|v_1, v_2)\right] = \text{tr}_0\left[q^{\varepsilon_0 \partial_0} \mathbb{R}_{10}^1(u_1|v_1, v_2) \cdots \mathbb{R}_{N0}^1(u_1|v_1, v_2)\right] \cdot \text{tr}_{0'}\left[q^{\varepsilon_0 \partial_0} \mathbb{R}_{10'}^2(u_1, u_2|v_2) \cdots \mathbb{R}_{N0'}^2(u_1, u_2|v_2)\right].
\]

(2.45)

Далее домножим предыдущее равенство справа на проектор \(\Pi^n \) = \(\Pi^1 \Pi^2 \cdots \Pi^n \), что означает ограничение оператора на конечномерное подпространство состояний, положим \(2\ell = n - \varepsilon \) или эквивалентно \(u_1 - u_2 + 1 = -n + \varepsilon \) и выполним предельный переход \(\varepsilon \to 0 \). В левой части возникает оператор

\[
P q^{\varepsilon_1 \partial_1} \cdot \text{tr}_0\left[q^{\varepsilon_0 \partial_0} \mathbb{R}_{10}(u_1, u_2|v_1, v_2) \cdots \mathbb{R}_{N0}(u_1, u_2|v_1, v_2)\right],
\]

где учит \(\text{tr}_{0'}\left[q^{\varepsilon_0 \partial_0} P_{10'} \cdots P_{N0'}\right] = P q^{\varepsilon_1 \partial_1} \). В правой части необходимо ввести подходящие множители с \(\varepsilon \) так, чтобы для каждого операторного множителя по отдельности существовал предел,

\[
Q_1(u - v_1|q) \cdot Q_2(u - v_2|q) \Pi^n = \varepsilon^N Q_1(u - v_1|q) \cdot \frac{1}{\varepsilon^N} Q_2(u - v_2|q) \Pi^n.
\]

(2.46)

В пределах \(\varepsilon \to 0 \) левый множитель \(\varepsilon^N Q_1(u - v_1|q) \) прав \(Q_1(u - v_1) \) (2.44), т.е. расширению оператора \(Q_1(u - v_1) \). Легко убедиться, что для правого множителя \(\varepsilon^{-N} Q_2(u - v_2|q) \cdot \Pi^n \) также существует предел при \(\varepsilon \to 0 \), который обсуждаем подробнее в следующем параграфе. Отметим, что в отличие от \(Q_1(u) \), не существует расширения оператора \(\lim_{\varepsilon \to 0} \varepsilon^{-N} \).
Q_2(u - v_2|q) \Pi^n на пространство всех полиномов. Причина в следующем. Применяя Q_2 при конечном \varepsilon к векторам подпространства, которое вырезается проектором \Pi^n, получаем вклады \sim \varepsilon^N. Если же действовать на вектор из дополнительного подпространства, т.е. соответствующего проектору 1 - \Pi^n, то получаем вклады, пропорциональные более низким степеням \varepsilon. Таким образом, умножая на \varepsilon^{-N} и выполняя предельный переход, в первом случае имеем конечный результат и расходимость во втором.

Таким образом ограничение соотношения факторизации принимает вид

\[P q^{z_1 \partial_1} \cdot \text{tr}_0 \left[q^{z_0 \partial_0} R_{10}(u_1, u_2|v_1, v_2) \cdots R_{N0}(u_1, u_2|v_1, v_2) \right] = Q_1(u - v_1) \cdot \lim_{\varepsilon \to 0} \varepsilon^{-N} Q_2(u - v_2|q) \Pi^n. \]

Теперь наложим ограничения на спектральные параметры, т.е. выберем \(v_1 = u_1 + \delta \) и вычислим предел \(\delta \to 0 \),

\[P q^{z_1 \partial_1} \cdot Q_2(u - v_2) = S \cdot \lim_{\varepsilon \to 0} \varepsilon^{-N} Q_2(u - v_2|q) \cdot \Pi^n, \quad (2.47) \]

где ввели обозначение S для предела оператора Q_1 (2.44). Его также можно представить в виде трансфер матрицы из локальных операторов S_{k0} (2.33),

\[S = \lim_{\delta \to 0} \delta^{-N} Q_1(\frac{n}{2} + 1 - \delta) = \text{tr}_0 q^{z_0 \partial_0} S_{10} S_{20} \cdots S_{N0}, \quad (2.48) \]

т.е. он является расширением S (2.40) на пространство всех полиномов. Как и Q_1 оператор S отображает пространство всех полиномов на конечномерное подпространство. Итак, видим, что для второго оператора Бакстера формула связи устроена сложнее: оператор для конечномерных представлений Q_2(u) совпадает с точностью до множителя с производством весьма нетривиального оператора \(q^{-z_1 \partial_1} P^{-1} S \) и ограничения Q_2(u|q) на конечномерное инвариантное подпространство при (полу)целом спине \(\ell = \frac{n}{2} \). Формула связи (2.47) служит глобальным проявлением локальной формулы связи (2.34). Выше на примере (2.21) убедились, что перенормированный оператор Q_2(u) выводит из конечномерного инвариантного подпространства состояний. То же самое явлется имеет место и для \(\lim_{\varepsilon \to 0} \varepsilon^{-N} Q_2(u|q) \cdot \Pi^n. \) Таким образом проблема с конечномерными представлениями для операторов Бакстера разрешается при помощи оператора \(q^{-z_1 \partial_1} P^{-1} S \). Он отображает в инвариантное подпространство те векторы, которые выпали из этого подпространства после применения Q_2(u|q). Другими словами, он подправляет второй оператор Бакстера для бесконечномерных представлений так, чтобы устранить выход из инвариантного подпространства, как это должно быть для корректно построенного Q_2(u) для конечномерных представлений.
Предыдущее вычисление основано на формуле факторизации (2.45). Казалось бы, что если взять вторую формулу факторизации (q-регуляризованная версия формулы (1.39)) и провести предыдущие рассуждения, то оператор S появился бы в (2.47) не слева от предела оператора Q_2, а справа. При этом S уже не исполняет корректирующую функцию, так что произведение операторов явно выводит из инвариантного подпространства и возникает противоречие. Причина состоит в том, что для операторов, в отличие от функций, слабый предел произведения вообще говоря не равен произведению слабых пределов. Это служит препятствием при вычислении предела $\varepsilon \to 0$. Однако несложно убедиться, что в использованной формуле факторизации (2.45) в самом деле можно переходить к пределу $\varepsilon \to 0$ в каждом из множителей по отдельности.

Помимо прояснения общей картины, польза соотношений (2.43) и (2.47) в том, что они позволяют получить улобные явные формулы для обоих операторов Бакстера, представленные в параграфе 2.3.4.

Остановимся теперь на уравнении Бакстера для $Q_1(u)$ и $Q_2(u)$. Представленный ранее вывод уравнения Бакстера для некомпактного спина легко переносится на случай (полу)целого ℓ, однако его намного проще получить при помощи формул связи (2.43) и (2.47) операторов Бакстера для конечномерных и бесконечномерных представлений в квантовом пространстве. После введения q-регуляризации уравнения Бакстера для $Q_1(u|q)$ и $Q_2(u|q)$ в случае некомпактных представлений принимают вид

$$
t(u|q)Q_1(u|q) = Q_1(u + 1|q) + q \cdot (u_1 u_2)^N \cdot Q_1(u - 1|q),
$$

(2.49)

$$
t(u|q)Q_2(u|q) = q \cdot Q_2(u + 1|q) + (u_1 u_2)^N \cdot Q_2(u - 1|q),
$$

(2.50)

где фундаментальная трансфер-матрица для квазипериодической цепочки

$$
t(u|q) = \text{tr} \begin{pmatrix} q & 0 \\ 0 & 1 \end{pmatrix} L_1(u)L_2(u) \cdots L_N(u).
$$

(2.51)

Чтобы получить уравнение Бакстера для Q_1, умножим справа уравнение (2.49) на проектор Π^ℓ и выберем спин (полу)целым $\ell = \frac{n}{2}$,

$$
t(u|q)Q_1(u) = Q_1(u + 1) + q \cdot (u_1 u_2)^N \cdot Q_1(u - 1).
$$

(2.52)

Уравнение Бакстера для Q_2:

$$
t(u|q) Q_2(u) = q \cdot Q_2(u + 1) + (u_1 u_2)^N \cdot Q_2(u - 1)
$$

(2.53)
аналогично выводится из (2.50), но теперь нужно в добавок домножить слева на \(q^{-z_1 \partial_1} P^{-1} S \). Поскольку этот корректирующий оператор не зависит от спектрального параметра \(u \), то этот дополнительный шаг не изменяет уравнение.

В итоге \(Q_1 \) и \(Q_2 \) обладают всеми свойствами операторов Бакстера. Кроме того, поскольку они получены из общей трансфер матрицы (2.36) специальным подбором спектральных параметров, то они не выводят из конечномерного инвариантного подпространства. Однако, они не \(s\ell_2 \)-инварианты из-за \(q \)-регуляризации. Далее получим для них более явные представления.

2.3.4. Явные формулы для действия \(Q \)-операторов на полиномы

Получим теперь явные формулы для построенных выше операторов \(Q_k(u) \) на про странстве полиномов. Для этого воспользуемся формулами связи с операторами \(Q_k(u|q) \) для бесконечномерных представлений. Несложно повторить для \(Q_k(u|q) \) вычисления из параграфа 2.2 с учётом \(q \)-регуляризации. В результате \(Q_2(u|q) \) действует на полиномы по формуле (см. (2.18))

\[
Q_2(u|q) \Psi(\vec{z}) = P \cdot R_2(\lambda_1 \partial_1) \cdots R_2(\lambda_N \partial_{\lambda_N})|_{\lambda=1} \cdot \Psi(\Lambda q \vec{z}) ,
\]

где

\[
\Lambda_q = \begin{pmatrix}
q \lambda_1 & 1 - \lambda_1 & 0 & 0 & \ldots & 0 \\
0 & \lambda_2 & 1 - \lambda_2 & 0 & \ldots & 0 \\
0 & 0 & \lambda_3 & 1 - \lambda_3 & \ldots & 0 \\
& \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & \ldots & \lambda_{N-1} & 1 - \lambda_{N-1} & 0 \\
1 - \lambda_N & 0 & 0 & 0 & \cdots & \lambda_N
\end{pmatrix} ; \quad \vec{z} = \begin{pmatrix}
z_1 \\
z_2 \\
z_3 \\
\ddots \\
z_{N-1} \\
z_N
\end{pmatrix}
\]

Схожая формула для \(Q_1(u|q) \) (см. (2.17)),

\[
Q_1(u|q) \Psi(\vec{z}) = R_1(\lambda_1 \partial_1) \cdots R_1(\lambda_N \partial_{\lambda_N})|_{\lambda=1} \cdot \frac{1}{1 - \frac{q}{\lambda_1} \cdots \frac{1}{\lambda_N}} \cdot \Psi(\Lambda_{q-1} \vec{z}) ,
\]
где \(\bar{\lambda} \equiv 1 - \lambda \),

\[
\Lambda'_q = \begin{pmatrix}
1 - \frac{1}{\lambda_1} & \frac{1}{\lambda_1} & 0 & 0 & \cdots & 0 \\
0 & 1 - \frac{1}{\lambda_2} & \frac{1}{\lambda_2} & 0 & \cdots & 0 \\
0 & 0 & 1 - \frac{1}{\lambda_3} & \frac{1}{\lambda_3} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 1 - \frac{1}{\lambda_{N-1}} & \frac{1}{\lambda_{N-1}} & 0 \\
\frac{1}{q\lambda_N} & 0 & 0 & 0 & \cdots & 0
\end{pmatrix}.
\]

Напомним, что функции \(R_1, R_2 \) из предыдущих выражений определены в (2.9). Воспользуемся предыдущей формулой, чтобы получить удобное представление для \(Q_1 \) при полном спине в квантовом пространстве. Для этого перепишем \(R_1(\lambda_k \partial_{\lambda_k}) \) как интеграл по вспомогательному параметру, как это сделано в (2.19),

\[
R_1(\lambda \partial_{\lambda}) \Phi(\lambda) |_{\lambda=1} = \frac{1}{\Gamma(1 + \ell - u)} \cdot \int_0^{1} d\lambda (1 - \lambda)^{\ell-u} \lambda^{-2\ell-1} \Phi(\lambda).
\]

При \(2\ell = n - \varepsilon \) в предыдущем выражении возникает полюс \(\sim \frac{1}{\varepsilon} \) из-за расходимости интеграла, вызванной сингулярностью интегрanda \(\lambda^{-n-1} \) в точке \(\varepsilon = 0 \). Поскольку в определении \(Q_1(u) \) (2.44) присутствует множитель \(\varepsilon^N \), то необходимо выделить лишь сингулярный вклад \(\sim \frac{1}{\varepsilon} \) из каждого однократного интеграла, что существенно упрощает вычисление,

\[
\int_0^{1} d\lambda (1 - \lambda)^{\ell-u} \lambda^{-2\ell-1} \Phi(\lambda) \to \frac{1}{\varepsilon} \frac{\partial^n}{n!} (1 - \lambda)^{\frac{n}{2}-u} \Phi(\lambda) |_{\lambda=0}.
\]

В итоге формула для оператора \(Q_1(u) \) имеет вид

\[
Q_1(u)\Psi(\vec{z}) = \frac{1}{\Gamma^n (1 + \frac{n}{2} - u)} \frac{n!}{n!} \cdot \partial_{\lambda_1}^n \cdots \partial_{\lambda_N}^n \frac{(\lambda_1 \cdots \lambda_N)^{\frac{n}{2}-u}}{1 - q\lambda_1 \cdots \lambda_N} \cdot \Psi(\Lambda'^{-1}_q \vec{z}) |_{\lambda=0}.
\]

Этот оператор задан на всём бесконечномерном пространстве полиномов. Чтобы применить оператор \(Q_1(u) \) к произвольному полиному \(\Psi(\vec{z}) \), нужно, согласно формуле связи (2.43), отобрать в каждом мономе степени \(z_1, \cdots, z_N \) не выше \(n \), а затем применить (2.56).

При специальном значении спектрального параметра \(u = \frac{n}{2} + 1 - \delta \) в пределе \(\delta \to 0 \) (2.48) оператор \(Q_1(u) \) превращается в корректирующий оператор \(S \),

\[
S\Psi(\vec{z}) = \left(\frac{1}{n!} \right)^N \partial_{\lambda_1}^n \cdots \partial_{\lambda_N}^n \frac{1}{\lambda_1 \cdots \lambda_N} \frac{1}{1 - q\lambda_1 \cdots \lambda_N} \cdot \Psi(\Lambda'^{-1}_q \vec{z}) |_{\lambda=0}.
\]

Такой оператор так же как и \(Q_1(u) \) задан на бесконечномерном пространстве всех полиномов. С учётом формулы \(S = S \cdot \Pi^n \), очевидно как вычислить \(S \) (2.40) на произвольном полиноме \(\Psi(\vec{z}) \).
В завершении сменим нормировку операторов Бакстера \(Q_1(u) \) и \(Q_2(u) \), чтобы они стали полиномиальными по спектральному параметру \(u \). Перенормированный \(Q_1(u) \) (2.56) обозначим \(P(u) \),

\[
P(u)\Psi(\vec{z}) = \frac{\partial^n_{\lambda_1} \cdots \partial^n_{\lambda_N}}{1 - q\lambda_1 \cdots \lambda_N} \left. \frac{(\bar{\lambda}_1 \cdots \bar{\lambda}_N)^{2-u}}{\lambda^{-1} \bar{z}} \Psi(\bar{\Lambda}' \bar{z}) \right|_{\lambda = 0}
\]

где \(\Psi(\vec{z}) \) полином из конечномерного инвариантного пространства состояний.

Явная формула для перенормированного \(Q_2(u) \), который теперь обозначим \(Q(u) \), на производящую функцию конечномерного представления имеет вид,

\[
Q(u) \cdot (1 - x_1 z_1)^n \cdots (1 - x_N z_N)^n = S \cdot (1 - x_1 z_1)^{2-u} (1 - x_1 z_1)^{2+u} \cdots (1 - x_N z_N)^{2-u} (1 - x_N q^{-1} z_1)^{2+u}.
\]

Она следует из формулы связи (2.47) и явной формулы для \(Q_2(u|q) \), которая является модификацией формулы (1.69) из-за \(q \)-регуляризации.

2.4. Вырожденные локальные операторы и общие трансфер матрицы

В начале этой главы указали решения \(L^{\pm} \) (2.1) Янгяновского соотношения (1.5), которые получаются вырождением стандартного \(L \)-оператора при помощи предельного перехода. Из них можно построить общие трансфер матрицы \(Q^{\pm} \) для фундаментального представления \((\ell = 1/2) \) в квантовом пространстве. Теперь мы хотим выполнить обобщение и построить их аналоги \(Q^{\pm} \) для представлений некомпактного спина \(\ell \) в квантовом пространстве спиновой цепочки. Для этого нам понадобятся локальные строительные блоки \(R^{\pm} \), которые служат аналогами \(L^{\pm} \) на уровне \(R \)-операторов. Для этого выполним предельный переход в RLL-соотношении (1.11), так что вырожденные \(R \)-операторы окажутся ведущей асимптотикой \(R(u_1, u_2|v_1, v_2) \), когда один или несколько спектральных параметров \(u_1, u_2, v_1, v_2 \) стремятся к бесконечности. Подчеркнём, что в этом параграфе спиновый параметр для квантового пространства комплексное число в общем положении. Случай произвольных конечномерных представлений рассмотрен в параграфе 2.5.1.

Итак выполним редукции \(v_1 \to \infty \) в определяющем соотношении для \(R^1 \) (1.20),

\[
r^+(u_1|v_2) \cdot L_1(u_1, u_2) L_2^-(v_2) = L_1^{-}(u_2) L_2(u_1, v_2) \cdot r^+(u_1|v_2) \quad (2.60)
\]

\[
u_1 z_2 \partial_2 R^1(u_1|v_1, v_2) \to r^+(u_1|v_2) = \Gamma(z_2 \partial_2 + u_1 - v_2 + 1) e^{z_1 \partial_2}, \quad (2.61)
\]

103
и редукцию $v_2 \to \infty$ в определяющем соотношении для R^2 (1.21),

$$r^-(u_1|u_2) \cdot L_1(u_1, u_2) L_2^+(v_1) = L_1^+(u_1) L_2(v_1, u_2) \cdot r^-(u_1|u_2), \quad (2.62)$$

$$R^2(u_1, u_2|v_2) v_2^{-z_i \partial_i} \to r^-(u_1|u_2) = e^{-z_2 \partial_2} \frac{(-)^{z_i \partial_i}}{\Gamma(z_1 \partial_1 + u_1 - u_2 + 1)}. \quad (2.63)$$

Аналогично (2.1), выполняя редукцию, пришлось сократить расходящийся оператор дилатации из R^1. Отметим, что здесь и далее при вычислении предела мы опускаем несущественный постоянный множитель, т.е. молчаю изменяем нормировку операторов.

Важно то, что вид операторов R_+^\pm и R_-^\pm, из которых построим общие трансфер матрицы, однозначно диктуется RLL-соотношением (1.11) и вырожденными представлениями Янгиана L^\pm.

Учитывая факторизацию общего R-оператора в произведение $R^1,2$ (1.26), находим его редукции при $v_1 \to \infty$ и $v_2 \to \infty$ соответственно,

$$R^+(u_1, u_2|v_2) = r^+(u_1|u_2) \cdot R^2(u_1, u_2|v_2), \quad R^-(u_1, u_2|v_1) = R^1(u_1|v_1, u_2) \cdot r^-(u_1|u_2). \quad (2.64)$$

Имея в распоряжении необходимые локальные блоки и помня, что локальные соотношения факторизации имеют аналоги на уровне глобальных операторов, перейдём к общим трансфер матрицам. Напомним, по определению операторы R^\pm_1, R^\pm_2, R^1 и R^2 отличаются от операторов r^\pm_1, r^\pm_2, R^1 и R^2 на перестановку тензорных факторов как в определении (1.10).

Для общей трансфер матрицы (1.33) имеет место соотношение факторизации

$$\frac{1}{1-q} \cdot T_s(u - v|q) = Q_+(u - v) Q_-(u - v_1) = Q_-(u - v_1) Q_+(u - v_2) \quad (2.65)$$

в произведение двух трансфер матриц Q_+ и Q_-, построенных из локальных блоков R^+_1 и R^-_1

$$Q_-(u - v_1) = tr_0 \left[q^{z_0 \partial_0} R^-_0(u_1, u_2|v_1) \cdots R^-_N(u_1, u_2|v_1) \right], \quad (2.66)$$

$$Q_+(u - v_2) = tr_0 \left[q^{z_0 \partial_0} R^+_0(u_1, u_2|v_2) \cdots R^+_N(u_1, u_2|v_2) \right]. \quad (2.67)$$

Предыдущее соотношение факторизации (2.65) служит альтернативной формуле факторизации в произведение Q_1 и Q_2 (1.37). Чтобы доказать эти соотношения, как и ранее воспользуемся локальными соотношениями для строительных блоков соответствующих общих трансфер матриц. К примеру возьмём тройное соотношение (1.30) для операторов Янга–Бакстера, вставим операторы перестановки тензорных факторов (1.10), выберем в
Первом пространстве локальное квантовое пространство \(V_\ell \) в \(k \)-ом узле, во втором пространстве – вспомогательное пространство \(V_s \sim \mathbb{C}[z_0] \) и в третьем пространстве – вспомогательное пространство \(V_s \sim \mathbb{C}[z_0] \),

\[
\mathbb{R}_{00}^1(v_1|w_1, w_2) \mathbb{R}_{k0}^1(u_1, u_2|w_1, w_2) \mathbb{R}_{k0}^1(u_1, u_2|v_1, v_2) = \\
= \mathbb{R}_{k0}(u_1, u_2|v_1, v_2) \mathbb{R}_{k0}(u_1, u_2|w_1, w_2) \mathbb{R}_{00}^1(v_1|w_1, w_2),
\]

и далее выполним последовательно предельные переходы \(w_1 \to \infty \) и затем \(w_2 \to \infty \),

\[
P_{00'}(-)\bar{z}^0_{\partial_0'} e^{z_0_{\partial_0'} \cdot e \bar{z}_0_{\partial_k}} \cdot \mathbb{R}_{k0}(u_1, u_2|v_1, v_2) = \\
= \mathbb{R}_{k0}^+(u_1, u_2|v_1, v_2) \mathbb{R}_{k0}^+(u_1, u_2|w_1, w_2) \mathbb{R}_{00'}(-)\bar{z}^0_{\partial_0'} e^{z_0_{\partial_0'} \cdot e \bar{z}_0_{\partial_0'}}.
\]

Из предыдущего сплетающего соотношения моментально следует одна из факторизаций в (2.65), если явно вычислить трансфер матрицу

\[
\text{tr}_{0'} \left[q \bar{z}_{\partial_0'} e^{z_0_{\partial_0'} \cdot e \bar{z}_0_{\partial_0'}} \right] = \frac{1}{1 - q}.
\]

Видим, что предыдущий след не существует без регуляризации, а значит \(q \)-регуляризация неизбежна при факторизации \(T_s(u) \) на \(Q_{z_{\ell}} \) для любых значений нижней \(\ell \), т.е. как для конечномерных представлений в квантовом пространстве, так и для бесконечномерных.

Схожим образом при помощи предельных переходов в (1.38) доказывается вторая формула факторизации, а также глобальные аналоги локальных факторизаций (2.64):

\[
P q^{z_0_{\partial_0'}} \cdot Q_-(u) = Q_1(u|q) \cdot q_-, \quad P q^{z_0_{\partial_0'}} \cdot Q_+(u) = q_+ \cdot Q_2(u|q),
\]

где трансфер матрицы \(q_+ \) и \(q_- \) построены из \(r_0^+ \) и \(r_0^- \) ((2.61) и (2.63)),

\[
q_+ = \text{tr}_0 \left[q^{z_0_{\partial_0}} r_0^+(u_1|u_2) \cdots r_0^+(u_1|u_2) \right], \quad q_- = \text{tr}_0 \left[q^{z_0_{\partial_0}} r_0^-(u_1|u_2) \cdots r_0^-(u_1|u_2) \right].
\]

Подберём параметры в (2.65) специальным образом (1.27),

\[
\frac{1}{1 - q} \cdot P q^{z_0_{\partial_0'}} = q_+ \cdot q_- = q_+ \cdot q_-,
\]

так что \(q_+ \) и \(q_- \) практически обратны друг другу.

Итого, все соотношения факторизации следуют из локальных соотношений, которые получаются при помощи выражений (1.29) и (1.30). Кроме того, все \(q \)-регуляризованные трансфер матрицы \(T_s(u|q), q_\pm, Q_{z_{\ell}}, Q_{1,2}(u|q) \) и \(P q^{z_0_{\partial_0'}} \) коммутируют друг с другом при
любых значениях спектральных параметров, что следует из локальных соотношений, полученных редукцией RRR уравнения Янга–Бакстера (1.28).

Трансфер матрицы Q_+ и Q_- обладают всеми необходимыми свойствами операторов Бакстера. Семейство операторов коммутирует

$$[T_s(u|q), Q_+(v)] = [T_s(u|q), Q_-(v)] = [Q_+(u), Q_-(v)] = 0, \quad (2.73)$$

$$[Q_+(u), Q_+(v)] = [Q_-(u), Q_-(v)] = 0,$$

а уравнения Бакстера с фундаментальной трансфер матрицей (2.51)

$$t(u|q) Q_-(u) = Q_-(u + 1) + q \cdot (u_1 u_2)^N \cdot Q_-(u - 1), \quad (2.74)$$

немедленно получаются из уравнений Бакстера (2.49) и (2.50) для Q_1 и Q_2 ввиду формул связи (2.70) двух наборов Q-операторов. В самом деле, домножение уравнения Бакстера на вспомогательные трансфер матрицы ведёт к желаемому результату, поскольку они не зависят от спектрального параметра и коммутируют со всеми трансфер матрицами.

Подчеркнём, что опять доказательство коммутиativity и факторизации для трансфер матриц основано исключительно на трёх локальных соотношениях Янга–Бакстера.

2.4.1. Явные формулы для Q_{\pm}

Выше выполнили алгебраическое построение пары операторов Бакстера Q_{\pm} (2.66), (2.67). Укажем теперь более явные формулы, вычислив как они действуют на пространство полиномов. Для начала вычислим след в определении трансфер матриц q_+ и q_- (2.71). В самом деле, учётом явные выражения для r_{\pm} (см. (2.63) и (2.61)),

$$q_- = \text{tr}_0 \left[q^{\alpha_0} P_{10} e^{-z_0 \partial_1} \cdots P_{N0} e^{-z_0 \partial_N} \right] \cdot \Pi_-, \quad q_+ = \Pi_+ \cdot \text{tr}_0 \left[q^{\alpha_0} P_{10} e^{z_1 \partial_0} \cdots P_{N0} e^{z_N \partial_0} \right], \quad (2.75)$$

где $\Pi_- \equiv \prod_{k=1}^N \frac{(-)^k \zeta_k}{\Gamma(z_k \partial_k - 2\ell)}$, $\Pi_+ \equiv \prod_{k=1}^N \Gamma(z_k \partial_k - 2\ell)$. Оба следа в (2.75) легко вычисляются явным образом. Для первого из них матрица монодромии имеет вид (1.51), значит он вычисляется при помощи q-регуляризованной формулы (1.52),

$$\text{tr}_0 \left[q^{\alpha_0} P_{10} e^{-z_0 \partial_1} \cdots P_{N0} e^{-z_0 \partial_N} \right] \Psi(z_1, \cdots, z_N) = \Psi(qz_N - z_1, z_1 - z_2, \cdots, z_{N-1} - z_N), \quad (2.76)$$

а второй след в (2.75) вычисляется непосредственно по определению при помощи вспомогательной формулы (2.14),

$$\text{tr}_0 \left[q^{\alpha_0} P_{10} e^{z_1 \partial_0} \cdots P_{N0} e^{z_N \partial_0} \right] \Psi(z_1, \cdots, z_N) =$$
Ранее установили явную формулу (2.55) для Q_1, учитывая факторизацию $Q_\sim \sim Q_1 \cdot q_\sim$ из (2.70), легко выписать явную формулу для Q_\sim. Вторая формула факторизации в (2.70): $Q_+ \sim q_+ \cdot Q_2$, в свою очередь позволяет получить явную формулу для Q_+. Нам будут удобно изменить нормировку этого оператора,

$$Q^+(u) = \frac{1 - q}{\Gamma N(-\ell + u)} \cdot Q_+(u),$$ \hspace{1cm} (2.78)

поскольку перенормированный Q_2 (1.68) имеет особенно простой вид (1.69).

$$Q^+(u) \cdot \prod_{k=1}^{N} (1 - x_k z_k)^{2\ell} = \prod_{k=1}^{N} \frac{\Gamma(z_k\partial_k - 2\ell)}{\Gamma(-2\ell)} \times$$

$$\times \prod_{k=1}^{N} \left(1 - \frac{x_k}{1 - q} \cdot (z_{1,k-1} + q z_{k,N})\right)^{\ell-u} \left(1 - \frac{x_k}{1 - q} \cdot (z_{1,k} + q z_{k+1,N})\right)^{\ell+u},$$

где

$$z_{1,k} = z_1 + z_2 + \cdots + z_k; \hspace{1cm} z_{k,N} = z_k + z_{k+1} + \cdots + z_N.$$

Этот оператор отображает полиномы по $z_1 \cdots z_N$ в полиномы по $u, z_1 \cdots z_N$,

$$Q^+(u) : \mathbb{C}[z_1 \cdots z_N] \to \mathbb{C}[u, z_1 \cdots z_N],$$

и нормирован условием $Q^+(u) \cdot 1 = 1$.

2.5. Конечномерные представления II

В параграфе (2.3) обсудили проблемы, которые возникают при переходе от формул, выведенных для бесконечномерных представлений, к формулам для конечномерных представлений, и сформулировали возможное решение, построив пару операторов Бакстера для конечномерных представлений. В этом параграфе предложим альтернативное решение и сопоставим его с первой конструкцией.

Предполагая, что спин ℓ комплексное число в общем положении, и квантовое пространство бесконечномерно, в предыдущем параграфе нашли выражения \mathbb{R}^+ и \mathbb{R}^- общего \mathbb{R}-оператора и построили из них пару операторов Бакстера Q_\pm. Выясним теперь, как эта конструкция переносится на случай конечномерных представлений. Оказывается, что это можно выполнить весьма прямолинейно, так что не возникают проблемы с выводом из инвариантного подпространства, обсуждавшегося в (2.3). Достаточно выбрать ℓ
(полу)целым в предыдущих формулах и ограничить операторы на инвариантное подпространство. Подчеркнём, что построенные в предыдущем параграфе операторы Бакстера Q_\pm и общая трансфер матрица T при (полу)целом ℓ не выводят из инвариантного конечномерного подпространства.

В дальнейшем в этом параграфе следуем схеме:

- Выполняем ограничение общего R-оператора и его вырождений R^+, R^- на инвариантное подпространство, возникающее при (полу)целом спине ℓ.
- Из ограниченных операторов R, R^+, R^-, как из локальных блоков, строим общие трансфер матрицы.
- Из локальных соотношений выводим факторизацию общей трансфер матрицы на произведение Q-операторов Бакстера.

2.5.1. Конечномерные операторы R, R^+, R^-

В начале этой главы обсуждали, что ограничение общего R-оператора на инвариантное подпространство $C^2 \otimes V_s$ приводит к L-оператору. Аналогичным вычислением можно проверить, что R^+ и R^- заданные на $V_\ell \otimes V_s$ при $\ell = 1/2$ допускают ограничение на $C^2 \otimes V_s$ и с точностью до нормировки, свяга спектрального параметра и умножения на числовую матрицу совпадают с L^+ и L^- соответственно. Проверим, что и в общем случае (полу)целого $\ell = n/2$, $n = 0, 1, 2, \cdots$ возможно выполнить ограничение и вычислим его. Для этого проанализируем предел $\varepsilon \to 0$, $2\ell = n - \varepsilon$ операторных произведений $R^+ = r^+ R^2$, $R^- = R^1 r^-$ (2.64). Все вычисления во многом аналогичны проделанным в параграфе 2.3. Таким образом ограничения R^+ и R^- выполняются по правилу

$$
R^+_{12}(u_1, u_2|v_2) = \lim_{\varepsilon \to 0} R^+_{12}(u_1 + \varepsilon/2, u_2 - \varepsilon/2|v_2) \Pi^n,
$$

$$
R^-_{12}(u_1, u_2|v_1) = \lim_{\varepsilon \to 0} R^-_{12}(u_1 + \varepsilon/2, u_2 - \varepsilon/2|v_1) \Pi^n,
$$

где спектральные параметры $u_1 = u - n/2 - 1$, $u_2 = u + n/2$, $v_1 = v - s - 1$, $v_2 = v + s$. Подчеркнём, что в отличие от R^2, операторы R^\pm наследуют важное свойство R-оператора: они не выводят из инвариантного подпространства. Это ведёт к важным следствиям для глобальных операторов, построенных из этих локальных: операторы Q_\pm как и общая трансфер матрица T допускают ограничение на инвариантное конечномерное подпространство. Как
и ранее жирным шрифтом \mathbf{R}^+, \mathbf{R}^- обозначены операторы для (полу)целых спиновых параметров, заданные на конечномерном квантовом пространстве. Представим результат в виде конечномерных дифференциальных операторов. Выбрав конкретное значение n, легко построить соответствующие матрицы с операторными элементами.

- Оператор \mathbf{R}^+

\[
\mathbf{R}_{12}^+(u_1, u_2|v_2) = P_{12} \cdot \frac{(-1)^{z_2 \partial_2}}{\Gamma(u_2 - u_1 - z_2 \partial_2)} \Pi_2^n e^{zi \partial_2} \cdot e^{-z_2 \partial_2} (-1)^{z_1 \partial_1} \Gamma(z_1 \partial_1 + u_1 - v_2 + 1) \Gamma(u_2 - u_1 - z_1 \partial_1) e^{z_2 \partial_1} \Pi_1^n.
\]

- Оператор \mathbf{R}^-

\[
\mathbf{R}_{12}^-(u_1, u_2|v_1) = P_{12} \cdot e^{-z_1 \partial_1} \frac{(-1)^{z_1 \partial_1}}{\Gamma(z_2 \partial_2 + v_1 - u_2 + 1) \Gamma(u_2 - u_1 - z_2 \partial_2)} \Pi_2^n e^{zi \partial_2} \cdot e^{-z_2 \partial_2} (-1)^{z_1 \partial_1} \Gamma(u_2 - u_1 - z_1 \partial_1) \Pi_1^n.
\]

Легко убедиться (2.26), что \mathbf{R}^-, \mathbf{R}^+ не выводят из инвариантного подпространства $\mathbb{U}_n \otimes \mathbb{V}_s$ так же как и \mathbf{R}, \mathbf{R}^1, \mathbf{R}^2. Потом определим \mathbf{r}^+ и \mathbf{r}^-, так чтобы и они не выводили из инвариантного подпространства. Чтобы получить локальные соотношения факторизации, приходится выполнять не только однократные, но и двойные редукции \mathbf{R}-оператора. Таким образом в конечномерном случае требуется формула $v_2^{-z_1 \partial_1} \mathbf{R}^+(u_1, u_2|v_2) \rightarrow P_{12} e^{-z_1 \partial_1} \Pi_1^n$.

В параграфе 2.4 получили операторы \mathbf{R}^+ и \mathbf{R}^- в результате предельных переходов в RLL-соотношении. Выполняя аналогичные редукции оператора \mathbf{R}, т.е. сокращая ведущую расходимость при больших v_1 или v_2, вновь получаем \mathbf{R}^+ и \mathbf{R}^-,

\[
v_1^{z_1 \partial_1} \mathbf{R}(u_1, u_2|v_1, v_2) \rightarrow \mathbf{R}^+(u_1, u_2|v_2) \quad \text{при} \quad v_1 \rightarrow \infty,
\]

\[
\mathbf{R}(u_1, u_2|v_1, v_2) v_2^{-z_1 \partial_1} \rightarrow \mathbf{R}^-(u_1, u_2|v_1) \quad \text{при} \quad v_2 \rightarrow \infty.
\]

Значит \mathbf{R}^+ и \mathbf{R}^- можно получить двумя способами: сначала выполнить редукцию общего \mathbb{R}-оператора, устрояя один из параметров к бесконечности, а затем ограничить результат на конечномерное подпространство, либо наоборот сначала осуществить ограничение на конечномерное подпространство, а затем выполнить редукцию при помощи предельного перехода.

В параграфе 2.4 ввели операторы \mathbf{r}^+ и \mathbf{r}^- (см. (2.61) и (2.63)), которые являются редукциями \mathbf{R}^1 и \mathbf{R}^2. Укажем теперь их аналоги в конечномерном случае. Для этого выполним редукции операторов \mathbf{R}^1 и \mathbf{R}^2 (см. (2.29) и (2.30)), т.е. конечномерных аналогов.
2.5.2. Общие трансфер матрицы и операторы Бакстера Q_{\pm}

Общая трансфер матрица для конечномерных представлений в квантовом пространстве определена в (2.36), для которой имеет место факторизация (2.41). Теперь установим другую формулу факторизации, которая является конечномерным аналогом факторизации (2.65). Для фундаментального представления в квантовом пространстве формула выведена в начале этой главы. Обобщим теперь результат на произвольные конечномерные представления. Для этого как и раньше начнём с тройного соотношения (2.68) и ограничим его в k-ом узле на $(n + 1)$-мерное подпространство, т.е. тройное соотношение основано на тензорном произведении $U_n \otimes \mathbb{C}[z_0] \otimes \mathbb{C}[z_0']$ при $\ell = n/2$,

$$
\mathbb{R}_0^1(v_1|v_1,w_1) R_{k0^p}(u_1, u_2|w_1, w_2) R_{k0}(u_1, u_2|v_1, v_2) = \\
R_{k0}(u_1, u_2|v_1, v_2) R_{k0^p}(u_1, u_2|w_1, w_2) \mathbb{R}_0^1(v_1|v_1,w_1).
$$

(2.90)

Затем в этом выражении последовательно выполним два предельных перехода $w_1 \to \infty$ и $w_2 \to \infty$,

$$
P_{00^p} (-)^{z_0 \partial_{0^p'}} e^{z_0 \partial_{0^p}} \cdot e^{z_0 \partial_{0^p}} \Pi_k^p \cdot R_{k0}(u_1, u_2|v_1, v_2) = \\
= R_{k0}^-(u_1, u_2|v_1) \cdot R_{k0^p}^+(u_1, u_2|v_2) \cdot P_{00^p} (-)^{z_0 \partial_{0^p'}} e^{z_0 \partial_{0^p'}}.
$$

(2.91)

Отсюда как и ранее немедленно получаем соотношение факторизации для q-рассредоточенных трансфер матриц,

$$
\frac{1}{1 - q} \cdot T_s(u) = Q_+(u - s) Q_-(u + s + 1) = Q_-(u + s + 1) Q_+(u - s),
$$

(2.92)
где Q_-, Q_+ трансфер матрицы построены из локальных блоков $R^{-}_{\pm 0}$, $R^{+}_{\pm 0}$

$$Q_-(u - v_1) = \text{tr}_0 q^{\omega_0} R^-_{10}(u_1, u_2|v_1) \cdots R^-_{N0}(u_1, u_2|v_1), \quad (2.93)$$

$$Q_+(u - v_2) = \text{tr}_0 q^{\omega_0} R^+_{10}(u_1, u_2|v_2) \cdots R^+_{N0}(u_1, u_2|v_2). \quad (2.94)$$

Это вычисление полностью аналогично проделанному в параграфе 2.4 для спина ℓ в общем положении. Переход от некомпактных представлений к компактным не вызвал никаких дополнительных усложнений, в отличие от параграфа 2.3.2. Доказательство коммутативности глобальных операторов как и ранее основано на общем учравлении Янга–Бакстера (1.28),

$$[T_s(u), Q_{\pm}(v)] = 0 ; \quad [Q_{\pm}(u), Q_{\pm}(v)] = 0 ; \quad [Q_-(u), Q_+(u)] = 0. \quad (2.95)$$

Положим ещё раз, что при выводе соотношений между глобальными операторами для конечномерных представлений, нужно сначала ограничить тройные соотношения типа Янга–Бакстера на конечномерное инвариантное подпространство в квантовом пространстве и лишь затем выполнять предельные переходы, устраняя зависимость от части спектральных параметров.

Поскольку \mathbb{R}^+ и \mathbb{R}^- допускают ограничение (см. (2.80) и (2.81)) на инвариантное подпространство при (полу)целом ℓ, то тоже самое верно для операторов Бакстера, построенных из них. В пределе $\varepsilon \to 0$, $2\ell = n - \varepsilon$,

$$Q_{\pm}(u) = \lim_{\varepsilon \to 0} Q_{\pm}(u)|_{\ell = \frac{n}{2}} \cdot \Pi^n, \quad \text{где} \quad \Pi^n = \Pi^n_1 \Pi^n_2 \cdots \Pi^n_N. \quad (2.96)$$

Таким образом связь между операторами Бакстера для конечномерных Q_{\pm} и бесконечномерных представлений Q_{\pm} устроена очень просто в противоположность выведенным ранее формулам связи (2.43), (2.47) для альтернативной конструкции операторов Бакстера.

Далее установим связь между двумя конструкциями и найдём соотношения между двумя наборами операторов Бакстера для конечномерных представлений, т.е. связь Q_{\pm} и $Q_{1,2}$. Для этого нам понадобится трансфер матрицы, включающие операторы r^{\pm} (2.86), (2.87),

$$q_+ = \text{tr}_0 \left[q^{\omega_0} r^+_0(u_1|u_2) \cdots r^-_N(u_1|u_2)\right], \quad q_- = \text{tr}_0 \left[q^{\omega_0} r^-_0(u_1|u_2) \cdots r^-_N(u_1|u_2)\right]. \quad (2.97)$$

При специальном выборе параметров, соотношение факторизации (2.92) переходит в

$$\frac{1}{1 - q} \cdot S = q_- \cdot q_+ = q_+ \cdot q_- . \quad (2.98)$$
Чтобы установить связь между операторами Бакстера Q_1 и Q_- нужно воспользоваться формулой локальной факторизации

$$R_{00}^1(u_1|w_1, u_2) \cdot R_{k0}^1(u_1|w_1, u_2) \cdot R_{00}^{-1}(u_1|w_1, u_2) = S_{k0} \cdot R_{k0}^{-1}(u_1, u_2|w_1) \cdot R_{00}^1(u_1|w_1, u_2),$$

которая получается из (2.90) после выбора спектральных параметров $u_1 = v_1$, $u_2 = w_2$ и предельного перехода $v_2 \to \infty$. Из этого и аналогичного соотношения следует формула связи соответствующих трансфер матриц

$$Q_-(u) = S^{-1} \cdot Q_1(u) \cdot q_-, \quad Q_+(u) = S^{-1} \cdot q_+ \cdot Q_2(u).$$

(2.99)

Соотношения коммутативности между q_\pm, Q_\pm, Q_1, Q_2 и S также следуют из локальных соотношений. Отсюда следует, что уравнения Бакстера (2.53) для $Q_{1,2}$ порождают уравнения Бакстера для Q_\pm

$$t(u|q) Q_- (u) = Q_- (u + 1) + q \cdot (u_1 u_2)^N \cdot Q_- (u - 1),$$

(2.100)

$$t(u|q) Q_+ (u) = q \cdot Q_+ (u + 1) + (u_1 u_2)^N \cdot Q_+ (u - 1).$$

(2.101)

2.5.3. Явные формулы для действия операторов Q_\pm на полиномы

Вычисли теперь как операторы Бакстера Q_+, Q_+ действуют на полиномы. В параграфе 2.4.1 установили такие формулы для Q_+, Q_-, заданных на бесконечномерном пространстве полиномов. Воспользуемся этим результатом и учтём (2.96), т.e. выделим конечномерное подпространство и выполним предельный переход $\ell \to n/2, n = 0, 1, 2, \ldots$

Явное выражение для перенормированного Q_+ (2.78) следует из (2.79)

$$Q^+(u) \cdot (1 - x_1 z_1)^n \cdots (1 - x_N z_N)^n =$$

(2.102)

$$=\Pi^n \cdot \prod_{k=1}^{N} \left(1 - \frac{x_k}{1 - q} \cdot (z_{1,k-1} + q z_{k,N}) \right)^{\frac{q - u}{q - u}} \left(1 - \frac{x_k}{1 - q} \cdot (z_{1,k} + q z_{k+1,N}) \right)^{\frac{q + u}{q + u}},$$

где $z_{1,k} \equiv z_1 + z_2 + \cdots + z_k; z_{k,N} \equiv z_k + z_{k+1} + \cdots + z_N; \Pi^n \equiv \Pi_1^n \Pi_2^n \cdots \Pi_N^n$ построен из модификации проектора

$$\Pi_k^n \equiv \lim_{\varepsilon \to 0} \frac{\Gamma(z_k \partial_k - n + \varepsilon)}{\Gamma(-n + \varepsilon)} = \frac{n! (-1)^n \partial_k}{\Gamma(1 + n - z_k \partial_k)} \cdot \Pi_k^n.$$

(2.103)
Обратимся ко второму оператору. Воспользуемся формулой $Q_- \sim Q_1 \cdot q_-$ (2.70) и введём нормировочные множители ε, так чтобы существовал предел $\varepsilon \to 0$, $2\ell = n - \varepsilon$ для каждого операторного множителя по отдельности,

$$Q_- (u) = \varepsilon^N Q_1 (u | q) \cdot \frac{1}{\varepsilon^N} q^{-z_1 \partial_1 P^{-1}} q_-^2 .$$

(2.104)

Далее ограничим формулы (2.75), (2.76) на конечномерное подпространство полиномов:

$$\Pi^N \Psi (\vec{z}) = \Psi (\vec{z}) ,$$

и выполним предельный переход $\varepsilon \to 0$,

$$\frac{1}{\varepsilon^N} q^{-z_1 \partial_1 P^{-1}} q_- \to M \circ \prod_{k=1}^N (-1)^n \Gamma (1 + n - z_k \partial_k) .$$

(2.105)

Здесь использовано обозначение для действия матрицы на полином от многих переменных $A \circ \Psi (\vec{z}) = \Psi (A \vec{z})$ и

$$M = \begin{pmatrix}
-1 & 1 & 0 & \ldots & 0 \\
0 & -1 & 1 & \ldots & 0 \\
& & & & \\
0 & 0 & \ldots & -1 & 1 \\
\frac{1}{q} & 0 & 0 & \ldots & 0 & -1
\end{pmatrix} .
$$

В пределе $\varepsilon \to 0$ явная формула для оператора $Q_1 (u | q)$ заметно упрощается (2.56). Итак, комбинируем этот результат с предыдущей формулой и меняем нормировку,

$$Q_- (u) \Psi (\vec{z}) = \partial_{\lambda_1} \cdots \partial_{\lambda_N} \left(\frac{\lambda_1 \cdots \lambda_N}{1 - q \lambda_1 \cdots \lambda_N} \right)^{\frac{q^{-u}}{2}} \cdot \Lambda_q^{-1} M \circ \prod_{k=1}^N \Gamma (1 + n - z_k \partial_k) \cdot \Psi (\vec{z}) \bigg|_{\lambda = 0} ^{\lambda = 0} .$$

(2.106)

2.6. Конечномерные представления III

Выше в параграфах 2.3 и 2.5 обратились к вопросу об Q-опператорах для конечномерных представлений в квантовом пространстве. Построение были выполнено двумя способами, которые привели к параметрам операторов Бакстера Q_\pm и $Q_{1,2}$. Пары отличаются друг от друга на операторные множители, не зависящие от спектрального параметра и коммутирующие со всеми остальными глобальными операторами. Оба построения схожи по идеологии, поскольку потребовали одинаковой модификации в конструкции операторов Бакстера для бесконечномерных представлений. В принципе предложенная конструкция позволяет описать конечномерные представления, однако такое решение нельзя признать абсолютно удовлетворительным, поскольку оно потребовало введения q-регуляризаций, явно нарушающей $s\ell_2$-симметрию. Снять q-регуляризацию, положив $q = 1$, невозможно,
поскольку выражения для операторов содержат полоса по степеням $(1 - q)$. Таким образом, чтобы описать конечномерные представления, пришлось изменить модель, введя квазiperиодические граничные условия. Идеальным представляется такое решение, которое позволяло бы сохранить исходную симметрию спиновой цепочки. Кроме того, случай конечномерных представлений соответствует ситуации, в которой применим метод алгебраического анизатца Бете. Хотелось бы получить такие операторы Бакстера для конечномерных представлений, которые бы в точности соответствовали формулам анизатца Бете.

Чтобы подойти к решению этой проблемы, попытаемся снять q-регуляризацию в построенных ранее операторах Бакстера для конечномерных представлений, выполнив своего рода их перенормировку, которая дала бы $s\ell_2$-инвариантные операторы Бакстера. Для этого воспользуемся первой конструкцией (см. параграф 2.3), которая принесла нас к $Q_{1,2}$. Причина, по которой выбирается именно первая конструкция, состоит в том, что вторая конструкция с неизбежностью требует q-регуляризацию даже для бесконечномерных представлений (см. параграф 2.4), хотя и в такой конструкции можно пытаться устранить расходимости при снятии регуляризации $q \rightarrow 1$ [47]. Отметим, что рассмотренные ранее следы монодромий (операторы Бакстера, общие трансфер-матрицы и т.п.) зависят от нескольких параметров: спин ℓ в квантовом пространстве и параметр q-регуляризации.

При этом нас интересует предел (полу)целого спина и отсутствие q-регуляризации, т.е. $\ell \rightarrow \frac{n}{2}$ и $q \rightarrow 1$, $n = 0, 1, 2, \ldots$. Не вызывает сомнений, что порядок выполнения предельных переходов влияет на результат. С подобной ситуацией встретились ранее в параграфе 2.3 при выполнении предельных переходов $\varepsilon \rightarrow 0$ и $\delta \rightarrow 0$.

В предыдущих параграфах при (полу)целых значениях спина для операторов Бакстера использовали те же обозначения, что и в случае бесконечномерных представлений, опуская зависимость от спина ℓ в квантовом пространстве, а ограничение на конечномерное подпространство отмечалось жирным шрифтом. В этом параграфе придётся ввести более громоздкие обозначения, чтобы не возникло путаницы при обсуждении всей совокупности следов монодромий. То обстоятельство, что спин в квантовом пространстве (полу)целый, $\ell = \frac{n}{2}$, $n = 0, 1, 2, \ldots$, будем отмечать шляпкой над оператором: к примеру \hat{Q}_1, \hat{Q}_2, а жирным шрифтом – ограничение на конечномерное подпространство: $Q = Q \cdot \Pi^n$, $\Pi^n \equiv \Pi_1^n \Pi_2^n \cdots \Pi_N^n$ (2.22). Таким образом операторы $Q_1(u)$ и $Q_2(u)$ из (2.38) и (2.39) в новых обозначениях примут вид $\hat{Q}_1(u|q)$ и $\hat{Q}_2(u|q)$ соответственно.
Помимо предельных переходов \(\ell \to \frac{n}{2} \) и \(q \to 1 \) в нашем построении содержится ещё один предельный переход: вычисление следа по бесконечномерному пространству в определении Q-операторов. Ранее при построении операторов Бакстера для конечномерных представлений как в параграфе 2.3, так и 2.5, всегда первым делом выполняли переход к (полу)целому спину \(\ell \to \frac{n}{2} \), т.е. ограничивали общий \(\mathbb{R} \)-оператор на конечномерное подпространство в одном из тензорных сомножителей, а уж затем вычисляли след по вспомогательному пространству. Оказывается, что если сначала вычислить след, а уж затем переходить к (полу)целому спину \(\ell \to \frac{n}{2} \), то на этом пути можно вывести явную \(s\ell \)-инвариантную формулу для оператора Бакстера. Такая конструкция обсуждается далее в параграфе 2.6.3.

2.6.1. Конечномерные трансфер-матрицы, уравнение Бакстера и детерминантные формулы

Во всём предыдущем изложении считали, что спиновый параметр \(s \) во вспомогательном пространстве \(V_s \) общей трансфер-матрицы (1.32) выбран в общем положении. Теперь затронем случай, когда он становится (полу)целым \(s = \frac{n}{2}, n = 0, 1, 2, \ldots \). Спиновый параметр \(\ell \) в локальных квантовых пространствах для начала будем предполагать в общем положении. Как обсуждалось в параграфе 1.2.1, для (полу)целых значений спинового параметра модуль Верма \(V_{\frac{n}{2}} \) приводим. Полезно ввести сплетающий оператор \(D \equiv \partial^{n+1} \) (см. (1.57)) генераторов алгебры в представлениях с параметрами \(\frac{n}{2} \) и \(-\frac{n}{2} - 1 \) (1.53),

\[
D \cdot S_\pm \left(\frac{n}{2} \right) = S_\pm \left(-1 - \frac{n}{2} \right) \cdot D ; \quad D \cdot S \left(\frac{n}{2} \right) = S \left(-1 - \frac{n}{2} \right) \cdot D . \tag{2.107}
\]

Образ и ядро оператора \(D \) – инвариантные подпространства. Ядром служит \((n+1)\)-мерное пространство \(U_n \) с базисом \(\{1, z, \ldots z^n\} \), а образом является бесконечномерное неприводимое пространство с базисом \(\{z^{n+1}, z^{n+2}, \ldots\} \). Оператор \(D \) отображает приводимый модуль с младшим весом \(-\frac{n}{2} \) на неприводимый модуль с младшим весом \(\frac{n}{2} + 1 \): \(\text{Im} D = V_{-\frac{n}{2} - 1}, \quad \text{Ker} D = U_n \)

\[
V_{\frac{n}{2}} \xrightarrow{D} V_{-\frac{n}{2} - 1} ; \quad U_n \xrightarrow{D} 0 ,
\]

где неприводимый модуль \(V_{-\frac{n}{2} - 1} \) изоморфен фактор-пространству \(V_{-\frac{n}{2} - 1} \approx V_{\frac{n}{2}} / U_n \), так что изоморфизм индуцирован сплетающим оператором \(D \). В результате след по \(V_{\frac{n}{2}} \) расщепляется в сумму следов по конечномерному \(U_n \) и бесконечномерному \(V_{-\frac{n}{2} - 1} \).

Применяя это утверждение к общей трансфер-матрице (1.32), регуляризованной при
помощи параметра \(q \) (2.35), получаем, что она распадается в сумму трансфер-матрицы с конечномерным вспомогательным пространством и общей трансфер-матрицы с другим спиновым параметром во вспомогательном пространстве:

\[
T_{\frac{1}{2}}(u|q) = t_n(u|q) + q^{n+1} \cdot T_{-\frac{1}{2}-1}(u|q).
\]

(2.108)

Поскольку спин \(\ell \) в квантовом пространстве в общем положении, то следы по бесконечномерным пространствам существуют и без \(q \)-регуляризации. Она понадобится для последующих приложений этих формул, в частности для корректного осуществления в них предельных переходов к (полу)целому спину \(\ell \). Здесь в \(t_n(u|q) \) след вычислен по конечномерному пространству \(U_n \). Этот оператор представляет собой обобщение обычной трансфер-матрицы \(t(u) \) (1.31), в которой след вычисляется по двумерному вспомогательному пространству \(C^2 \),

\[
t_n(u|q) = tr_0 q^{\sigma_0} R_{10}(u|\ell, \frac{n}{2}) R_{20}(u|\ell, \frac{n}{2}) \ldots R_{N0}(u|\ell, \frac{n}{2}).
\]

(2.109)

\(R_{k0}(u|\ell, \frac{n}{2}) \) – это ограничение общего \(R \)-оператора на пространство \(\mathbb{V}_\ell \otimes U_n \) (см. (2.23)).

При помощи общей формулы (1.72) для ограничения \(R \)-оператора, полученной в параграфе 1.2.5, легко убедиться, что

\[
t_0(u|q) = \frac{\Gamma^N(-\ell + u)}{\Gamma^N(-\ell - u)} \cdot 1,
\]

(2.110)

а также связать \(t_1(u|q) \) со стандартной трансфер-матрицей \(t(u|q) \) (2.51) (это же следует из формулы (1.60)),

\[
t_1(u - \frac{1}{2}|q) = \frac{\Gamma^N(-\ell + u)}{\Gamma^N(-\ell - u)} \cdot \frac{t(u|q)}{(u_1 u_2)^N}.
\]

(2.111)

След в \(T_{-\frac{1}{2}-1}(u|q) \) взят по \(\mathbb{V}_{-\frac{1}{2}-1} \). Учтём обратимость оператора \(D \) на этом пространстве и воспользуемся цикличностью слева

\[
q^{n+1} \cdot T_{-\frac{1}{2}-1}(u) = tr_0 D q^{\sigma_0} R_{10}(u|\ell, \frac{n}{2}) R_{20}(u|\ell, \frac{n}{2}) \ldots R_{N0}(u|\ell, \frac{n}{2}) D^{-1}.
\]

Выполним преобразование подобия в RLL-соотношении (1.11), и применим свойства сплетения (2.107) оператора \(D \),

\[
T_{-\frac{1}{2}-1}(u|q) = tr_0 q^{\sigma_0} R_{10}(u|\ell, -\frac{n}{2} - 1) R_{20}(u|\ell, -\frac{n}{2} - 1) \ldots R_{N0}(u|\ell, -\frac{n}{2} - 1),
\]

так что имеем полное согласие с определением (1.32).
Формула факторизации общей трансфер-матрицы в произведение операторов Бакстера (1.37) позволяет переписать (2.108) в виде определителя

\[P \cdot q^{z_{iikh}} \cdot t_n(u|q) = Q_1(u + \frac{n}{2} + 1|q) \cdot Q_2(u - \frac{n}{2}|q) - q^{n+1} \cdot Q_1(u - \frac{n}{2}|q) \cdot Q_2(u + \frac{n}{2} + 1|q) = \]

\[= \begin{vmatrix} Q_1(u + \frac{n}{2} + 1|q) & q^n \cdot Q_2(u + \frac{n}{2} + 1|q) & q^n \\ q^n \cdot Q_1(u - \frac{n}{2}|q) & Q_2(u - \frac{n}{2}|q) & 1 \end{vmatrix}, \quad \text{где} \quad n + 1 = \alpha + \beta. \quad (2.112) \]

Таким образом, трансфер-матрица с конечномерным вспомогательным пространством (2.109) выражается в терминах Q-операторов Бакстера. В качестве примера использования детерминантной формулы выведем набор соотношений линейных по трансфер-матрицам и Q-операторам [32]. Рассмотрим определитель, который обращается в нуль, из-за совпадения двух его столбцов,

\[\begin{vmatrix} Q_1(a|q) & q^{n+1}Q_2(a|q) & Q_1(a|q) \\ Q_1(b|q) & Q_2(b|q) & Q_1(b|q) \\ q^{m+1}Q_1(c|q) & Q_2(c|q) & q^{m+1}Q_1(c|q) \end{vmatrix} = 0. \]

Выберем параметры

\[a = u + \frac{n}{2} + 1; \quad b = u - \frac{n}{2}; \quad c = u - m - \frac{n}{2} - 1 \]

и разложим определитель по третьему столбцу, так что миноры равны трансфер-матрицам. В результате получаем набор соотношений \((n, m = 0, 1, 2, \cdots)\)

\[t_m (u - 1 - \frac{n+m}{2}|q) \cdot Q_1 (u + 1 + \frac{n}{2}|q) - t_{n+m+1} (u - \frac{m+1}{2}|q) \cdot Q_1 (u - \frac{n}{2}|q) + q^{m+1} \cdot t_m (u|q) \cdot Q_1 (u - 1 - m - \frac{n}{2}|q) = 0. \quad (2.113) \]

Выбирая в предыдущем соотношении \(n = m = 0\), с учётом (2.110), (2.111) получаем уравнение Бакстера для \(Q_1(u|q),\)

\[t(u|q)Q_1(u|q) = Q_1(u + 1|q) + q \cdot (u_1u_2)^N \cdot Q_1(u - 1|q). \]

Аналогичным образом выводятся соотношения для второго оператора Бакстера. Для этого нужно вычислить нулевой определитель

\[\begin{vmatrix} Q_1(a|q) & q^{n+1}Q_2(a|q) & q^{n+1}Q_2(a|q) \\ Q_1(b|q) & Q_2(b|q) & Q_2(b|q) \\ q^{m+1}Q_1(c|q) & Q_2(c|q) & Q_2(c|q) \end{vmatrix} = 0, \]
разложив его по последнему столбцу и подставив те же значения параметров, что и выше,

\[q^{n+1} \cdot t_m \left(u - 1 - \frac{n+m}{2} |q \right) \cdot Q_2 \left(u + 1 + \frac{n}{2} |q \right) - t_{n+m+1} \left(u - \frac{m+1}{2} |q \right) \cdot Q_2 \left(u - \frac{n}{2} |q \right) + \]

\[+ t_n \left(u |q \right) \cdot Q_2 \left(u - 1 - m - \frac{n}{2} |q \right) = 0. \quad (2.114) \]

Соотношение \(n = m = 0 \) соответствует уравнению Бакстера для \(Q_2(u|q) \). Представленный вывод можно считать альтернативой проделанному абсолютно иным методом в параграфе 1.2.3. Настоящий вывод основан на соотношении (2.108), так что пригоден исключительно для представлений на модулях Верма и не может быть перенесён на случай эллиптической деформации, рассмотренной в параграфе 1.4.

2.6.2. Аналитическое продолжение конечномерных трансфер-матриц

В начале параграфа 2.6 было сделано утверждение, что анализ конечномерных представлений на основе конструкции операторов Бакстера для бесконечномерных представлений сводится к выполнению предельных переходов в этих формулах, причём ситуация усложняется зависимостью от нескольких параметров, по которым нужно перейти к пределу. В параграфах 2.3 и 2.5 для анализа конечномерных представлений использовали общую трансфер-матрицу, построенную из \(\mathbb{R} \)-операторов, и выполняли в этом объекте предельные переходы; причём важно то, что след по бесконечномерному вспомогательному пространству вычислялся на самом последнем шаге. Определяющая причина выбора общей трансфер-матрицы в качестве базового объекта заключена в том, что \(\mathbb{R} \)-оператор допускает ограничение на конечномерное подпространство в одном из тензорных сомножителей, так что при нашем способе вычисления и общая трансфер-матрица наследует это свойство.

Как увидим далее, общая трансфер-матрица в качестве базового объекта не позволяет разрешить сложности, отмеченные в начале параграфа 2.6 (это следует хотя бы из того, что до этого столкнулись с неизбежностью \(q \)-регулирования при вычислении следов).

Теперь нам понадобится сменить нормировку общей трансфер-матрицы (1.32),

\[T_s(u|q) \rightarrow \frac{\Gamma^N(+\ell - u - s)}{\Gamma^N(-\ell + u - s)} \cdot T_s(u|q). \quad (2.115) \]

Учитывая формулу факторизации общей трансфер-матрицы в произведение операторов Бакстера (1.37):

\[P q^{\ell_1} \cdot T_s(u|q) = Q_1(u + s + 1|q) Q_2(u - s|q), \]

118
ясно, что предыдущая смена нормировки равносильна смене нормировки Q-операторов, а именно откидыванию постоянных Г-множителей в формулах (1.68), (2.19), т.е. переходу к естественной нормировке с точки зрения этих формул.

В качестве базового объекта возьмём трансфер-матрицу \(t_s(u|q) \), аналитически продольженную по \(n: n \to 2s \) в (2.108),

\[
T_s(u|q) = t_{2s}(u|q) + q^{2s+1} \cdot T_{-s-1}(u|q).
\]

Здесь и далее общая трансфер-матрица в новой нормировке (2.115). Казалось бы смена нормировки должна вызывать несогласованность формулы (2.116) и (2.108). Однако, как легко убедиться, в случае \(s = \frac{n}{2} \) множители, возникающие при \(T_s \) и \(T_{-s-1} \) в (2.116), одинаковы, что ведёт лишь к смене нормировки \(t_{n} \). Так, к примеру, в новой нормировке формулы связи с единичным оператором (2.110) и со стандартной трансфер-матрицей (2.111),

\[
t_0(u|q) = \frac{\Gamma^N (+\ell - u)}{\Gamma^N (-\ell - u)} \cdot \mathbb{1}; \quad t_1 \left(u - \frac{1}{2}|q \right) = \frac{(-)^N \Gamma(\ell - u)}{\Gamma^N (-\ell - u + 1)} \cdot t(u|q).
\]

Отметим, что из определения (2.116) следует формула отражения спинового параметра во вспомогательном пространстве,

\[
t_{2s}(u|q) = -q^{2s+1} \cdot t_{-2-2s}(u|q).
\]

Главная причина, почему ввели в рассмотрение \(t_{2s}(u|q) \), заключена в том, что из-за вычитания в этом объекте отсутствуют расходимости от двух следов по бесконечномерным пространствам в (2.116). Подобная регуляризация под названием функционал следа введена в [96]. В параграфе 2.6.1 показали, что сокращение расходимостей имеет место при \(s = \frac{n}{2} \). Важно то, что это свойство сохраняется при аналитическом продолжении. Таким образом в операторах \(t_{2s}(u|q) \) и \(\hat{t}_{2s}(u|q) \) можно свободно снять регуляризацию \(q \to 1 \), так что не возникнет расходимостей при любом значении спина \(\ell \) в квантовом пространстве. В общей трансфер-матрице возможно снять \(q \)-регуляризацию только для \(\ell \) в общем положении, т.е. когда \(\ell \neq \frac{n}{2} \), \(n = 0, 1, 2, \ldots \). В дальнейшем в операторах со снятой \(q \)-регуляризацией просто опускаем из обозначений параметр \(q \). Более того, не важно в какой последовательности выполняются две операции: снятие \(q \)-регуляризации и переход к (полу)целым спиинам в квантовом пространстве, т.е.

\[
\hat{t}_{2s}(u) \equiv \lim_{q \to 1} \hat{t}_{2s}(u|q) = \lim_{\ell \to \frac{n}{2}} t_{2s}(u).
\]

119
Таким образом обозначение $\hat{t}_{2s}(u)$ не вызывает недоразумений. Перестановочность двух пределов играет определяющую роль. Подчеркнём ещё раз, что оно имеет место только для аналитически продолженной конечномерной трансфер-матрицы и неверно для общей трансфер-матрицы по причине расходимостей.

Раз в $t_{2s}(u|q)$ можно выбрать $q = 1$, то тогда формула отражения спина во вспомогательном пространстве (2.118) примет вид [97]

$$t_{2s}(u) = -t_{-2-2s}(u) , \quad t_{-1}(u) = 0 . \quad (2.120)$$

Воспользуемся формулами факторизации (1.37) общей трансфер-матрицы, чтобы выразить $t_{2s}(u|q)$ через операторы Бакстера,

$$P q^{z_{123}} \cdot t_{2s}(u|q) = Q_1 (u + s + 1|q) \cdot Q_2 (u - s|q) - q^{2s+1} \cdot Q_1 (u - s|q) \cdot Q_2 (u + s + 1|q) . \quad (2.121)$$

Частным случаем этого соотношения служит формула (2.112). Выше вывели соотношения (2.113), (2.114) кубичные по операторам Бакстера. Теперь нам понадобятся соотношения четвёртой степени. Легко убедиться, что имеются соотношения Плюкера,

$$q^{u-v}\begin{vmatrix} Q_1(u + s + 1|q) & q^v-u+2s+1Q_1(u - s|q) \\ q^{u-v}Q_2(u + s + 1|q) & Q_2(u - s|q) \end{vmatrix} + q^{u-v}\begin{vmatrix} Q_1(u + s + 1|q) & Q_1(v + p + 1|q) + q^{v+p+1}Q_1(v - p|q) \\ Q_1(u - s|q) & Q_2(u - s|q) \end{vmatrix} =$$

$$= q^{u-v}Q_2(u + s + 1|q) \cdot Q_2(u - s|q) + q^{u-v}\begin{vmatrix} Q_1(u + s + 1|q) & Q_1(v + p + 1|q) + q^{v+p+1}Q_1(v - p|q) \\ Q_2(u - s|q) & Q_2(u - s|q) \end{vmatrix} =$$

$$= q^{u-v}Q_2(u + s + 1|q) \cdot Q_2(u - s|q) + q^{u-v}\begin{vmatrix} Q_1(u + s + 1|q) & Q_1(v + p + 1|q) + q^{v+p+1}Q_1(v - p|q) \\ Q_2(u - s|q) & Q_2(u - s|q) \end{vmatrix} =$$

Выражая определители через трансфер-матрицы (2.21), получаем набор квадратичных соотношений,

$$t_{2s}(u|q) t_{2p}(v|q) = q^{u-v+s+p+1} \cdot t_{u-v+s-p-1} (u+v+s+p+1|q) \cdot t_{u-v-s+p-1} (u+v-s-p+1|q) +$$

$$+ t_{u-v+s+p-1} (u+v-s+p+1|q) \cdot t_{v-u+s+p-1} (u+v-s+p+1|q) . \quad (2.122)$$

Отметим, что из (2.122) следуют все другие операторные соотношения между глобальными sl_2-инвариантными операторами. Для примера положим в (2.122) $q \rightarrow 1$ и выберем $u, v \mapsto u, s \mapsto s - 1$ и $p \mapsto s + 1$,

$$t_{2s}(u - 1/2) t_{2s}(u + 1/2) - t_{2s-2}(u) t_{2s+2}(u) = \varphi(u - s - 1/2). \varphi(u + s + 1/2) , \quad (2.123)$$
где числовая функция $\varphi(u) = t_0(u)$ задана в (2.117). Предыдущее соотношение – это уравнение Хироты для A_1-модели [97].

Используя предыдущие формулы, устраняем расходимости при $q \to 1$ из конструкции операторов Бакстера параграфа 2.3. Для этого ограцичим (2.121) на конечномерное подпространство при помощи проектора Π^n и выберем спин (полу)целым $\ell = \frac{n-\varepsilon}{2}$, $\varepsilon \to 0$,

$$P q^{z_1^{1/2}} \cdot \hat{t}_{2s}(u|q) = \hat{Q}_1 (u + s + 1|q) \hat{Q}_2 (u - s|q) - q^{2s+1} \cdot \hat{Q}_1 (u - s|q) \hat{Q}_2 (u + s + 1|q).$$

(2.124)

Здесь, согласно договорённости из начала параграфа 2.6, используем обозначения $\hat{Q}_1 (u|q) = \lim_{\varepsilon \to 0} \varepsilon^N \cdot Q_1 (u|q)$ (см. (2.44)) и $\hat{Q}_2 (u|q) = \lim_{\varepsilon \to 0} \varepsilon^{-N} \cdot Q_2 (u|q) \cdot \Pi^n$. Ограничение на конечномерное подпространство понадобилось, поскольку при $\varepsilon \to 0$ оператор Q_2 не продолжается на всё бесконечномерное пространство. Напомним ещё раз, что нормировка операторов Бакстера изменена согласно (2.115).

Заметим, что $\hat{t}_{2s}(u|q)$ не содержит полюсов по $(1 - q)$, т.е. в этом операторе можно снять регуляризацию. Каждае из слагаемых из правой части (2.124) очевидным образом содержит полюс. Нетривиальный момент заключается в том, что в сумме они сокращаются. Таким образом $\hat{t}_{2s}(u)$ – это тот хороший оператор, зависящий от пары параметров u и s, из которого извлечён пару операторов Бакстера. Для этого как и ранее будемкладывать различные ограничения на параметры.

Выберем сначала $v_2 = u_2$ в (2.124), т.e. сделаем подстановку $u \mapsto \frac{1}{2}(u - \frac{n}{2} - 1)$ и $s \mapsto \frac{1}{2}(u + \frac{n}{2} - 1)$ и учтём $\hat{Q}_2(-\frac{n}{2}|q) = P q^{z_1^{1/2}} \Pi^n$ в силу явного выражения (1.69),

$$\hat{Q}_1 (u) = \hat{t}_{u+\frac{n}{2}-1}(u-\frac{n}{2}-1) = \lim_{q \to 1} \left[\hat{Q}_1 (u|q) - q^{u+\frac{n}{2}-z_1^{1/2}} P^{-1} \hat{Q}_1 (-\frac{n}{2}|q) \hat{Q}_2 (u|q) \right].$$

(2.125)

Чтобы получить второй оператор Бакстера нужно выбрать $v_1 = u_1$ в (2.124), т.e. сделать подстановку $u \mapsto \frac{1}{2}(u + \frac{n}{2})$ и $s \mapsto \frac{1}{2}(-u + \frac{n}{2})$ и учтём $\hat{Q}_1 (\frac{n}{2} + 1|q) = S$ (2.48),

$$\hat{Q}_u (u) = \hat{t}_{-u+\frac{n}{2}}(u+\frac{n}{2}) = \lim_{q \to 1} q^{-z_1^{1/2}} P^{-1} \left[S \hat{Q}_2 (u|q) - q^{-u+\frac{n}{2}+1} \hat{Q}_1 (u|q) \hat{Q}_2 (\frac{n}{2} + 1|q) \right].$$

(2.126)

Этот оператор не нужно путать с $\hat{Q}_u (u) = \lim_{\varepsilon \to 0} \varepsilon^{-N} \cdot Q_2 (u) \cdot \Pi^n$, который выводит из конечномерного подпространства, как успели убедиться в начале параграфа 2.3.

Операторы $\hat{Q}_1 (u)$ (2.125) и $\hat{Q}_u (u)$ (2.126) очевидно не выводят из конечномерного пространства состояний, наследуя его свойства у $\hat{t}_{2s}(u)$ (более того оба слагаемых в их определениях (2.125) и (2.126) не выводят из конечномерного подпространства). Они в самом деле являются операторами Бакстера. Очевидным образом в рамках нашей конструкции 121
все требуемые для них соотношения коммутации выполнены, поэтому единственное, что нужно проверить, – это уравнение Бакстера. Раз \(\hat{Q}_1, \hat{Q} \) являются частными случаями \(\hat{t}_{2a}(u) \), то воспользуемся квадратичными соотношениями (2.122).

Подставим сначала в (2.122) \(u \mapsto \frac{1}{2}(u - \frac{n}{2} - 1), s \mapsto \frac{1}{2}(u + \frac{n}{2} - 1), v \mapsto u - \frac{1}{2} \) и \(p \mapsto \frac{1}{2} \), выберем \(g \rightarrow 1 \), тогда с учётом определения (2.125)

\[
t_1(u - \frac{1}{2}) \hat{Q}_1(u) = t_{-2}(u) \hat{Q}_1(u - 1) + t_0(u - 1) \hat{Q}_1(u + 1).
\]

Если теперь учесть, что \(t_{-2}(u) = -t_0(u) (2.120) \), и связь со стандартной трансфер-матрицей (2.117), то приходим к уравнению Бакстера в привычной нормировке (см. (1.70))

\[
t(u) \hat{Q}_1(u) = (u + \frac{n}{2})^N \hat{Q}_1(u - 1) + (u - \frac{n}{2})^N \hat{Q}_1(u + 1).
\] (2.127)

Аналогично выводится уравнение Бакстера для \(\hat{Q} \). Для этого подставим в (2.122) \(u \mapsto \frac{1}{2}(u + \frac{n}{2}), s \mapsto \frac{1}{2}(-u + \frac{n}{2}), v \mapsto u - \frac{1}{2} \) и \(p \mapsto \frac{1}{2} \), выберем \(q \rightarrow 1 \), тогда с учётом определения (2.126)

\[
t_1(u - \frac{1}{2}) \hat{Q}(u) = t_0(u) \hat{Q}(u - 1) + t_0(u - 1) \hat{Q}(u + 1).
\]

Учтём теперь связь со стандартной трансфер-матрицей (2.117) и то приходим к уравнению Бакстера того же вида, что и для \(\hat{Q}_1(u) (2.127) \),

\[
t(u) \hat{Q}(u) = (u + \frac{n}{2})^N \hat{Q}(u - 1) + (u - \frac{n}{2})^N \hat{Q}(u + 1).
\] (2.128)

Конечномерная трансфер-матрица выражается детерминантной формулой через операторы Бакстера \(Q_1, Q_2 (2.112) \). Аналогичное соотношение имеет место для её аналитического продолжения, которое выражается через \(\hat{Q}_1 \) и \(\hat{Q} \),

\[
P \hat{t}_{2a}(u) = \hat{Q}_1 (u + s + 1) \hat{Q} (u - s) - \hat{Q}_1 (u - s) \hat{Q} (u + s + 1).
\] (2.129)

Чтобы получить предыдущую формулу нужно выбрать в (2.122) \(u \mapsto u, s \mapsto s, v \mapsto 0 \) и \(p \mapsto \frac{1}{2} \) и учсть \(\hat{t}_{n}(0) = P \) (см. (1.73)).

Единственное в чём осталось убедиться – это \(sl_{2}\)-инвариантность предложенной схемы устранения полюсов по степеням \((1 - q) \). Для этого воспользуемся следующим общим рассуждением. В этом параграфе всюду рассматривали разности следов, вычисленных по вспомогательному пространству с индексом 0,

\[
\text{tr}_0 A(s|q) - \text{tr}_0 A(-s - 1|q),
\]
где монодромия $A(s|q)$ зависит от параметра представления s во вспомогательном пространстве и от параметра регуляризации q. Поскольку при $q = 1$ монодромия $A(s) \in \mathfrak{sl}_2$-инвариантна: $[\tilde{S} + \tilde{S}_0, A(s)] = 0$, то при нарушении симметрии параметром q

$$[\tilde{S}, A(s|q)] = (1 - q) \cdot \tilde{B}(s|q) - [\tilde{S}_0, A(s)].$$

Из предыдущего соотношения мгновенно следует желаемый результат

$$[\tilde{S}, \text{tr}_0 A(s|q) - \text{tr}_0 A(-s - 1|q)] = (1 - q) \cdot \left(\text{tr}_0 \tilde{B}(s|q) - \text{tr}_0 \tilde{B}(-s - 1|q)\right) \rightarrow 0$$

при $q \rightarrow 1$, поскольку разность следов в правой части не содержит полюсов.

Из формулы

$$\hat{t}_n(0) = \hat{P} \text{ и } \hat{t}_n(\frac{n}{2}) = 1$$

мгновенно находятся операторы Бакстера \hat{Q}_1 и \hat{Q} при специальных значениях спектрального параметра u,

$$\hat{Q}_1(-\frac{n}{2} - 1) = -1, \quad \hat{Q}_1(-\frac{n}{2}) = 0, \quad \hat{Q}_1(\frac{n}{2} + 1) = P, \quad (2.130)$$

$$\hat{Q}(-\frac{n}{2}) = P, \quad \hat{Q}(\frac{n}{2}) = 1, \quad \hat{Q}(\frac{n}{2} + 1) = 0.$$}

При помощи уравнения Бакстера для \hat{Q}_1 (2.127) также легко убедиться, что

$$\hat{Q}_1(-\frac{n}{2} + 1) = \hat{Q}_1(-\frac{n}{2} + 2) = \cdots = \hat{Q}_1(\frac{n}{2} - 1) = \hat{Q}_1(\frac{n}{2}) = 0. \quad (2.131)$$

Подводя итог, скажем, что из операторов Бакстера (2.38) и (2.39) параграфа 2.3 устранили расходимость при $q \rightarrow 1$, построив пару \mathfrak{sl}_2-инвариантных операторов Бакстера $\hat{Q}_1(u)$ и $\hat{Q}(u)$, удовлетворяющих уравнениям Бакстера (2.127), (2.128). Эти операторы заданы формулами (2.125), (2.126), которые позволяют их явно вычислить аналогично (2.58) и (2.59) (ранее предъявленные явные формулы для операторов S, $\hat{Q}_1(u|q)$ и $\hat{Q}_2(u|q)$). Тем не менее сокращение полюсов по $(1 - q)$ остаётся неявным. Чтобы найти более удовлетворительное решение проблемы, воспользуемся упомянутым выше фактом, что в аналитическом продолжении конечномерной трансфер-матрицы можно свободно снять q-регуляризацию (2.119). Эта идея использована в параграфе 2.6.4.

2.6.3. Аналитическая регуляризация следа и \mathfrak{sl}_2-инвариантный оператор Бакстера

Получим явную формулу для $\hat{Q}_1(u)$ без введения вспомогательной q-регуляризации на одном промежуточном шаге. Казалось бы это вступает в противоречие с конструкцией параграфа 2.3, где q-регуляризация возникала неизбежным образом. Однако в том
построении сначала выполнялся переход к (полу)целому спину $\ell \to \frac{\ell}{2}$ в локальных строи-
tельных блоках $-R$-операторах, а затем вычислялся след по вспомогательному пространству. Попробуем выполнить эту последовательность операций в обратном порядке, т.е. сначала вычислим след, а уж затем выберем спин (полу)целым. Для этого возвьём формулу (2.19) для Q_1, полученную при произвольном спине ℓ. Отметим, что в согласии с предыдущим замечанием, при выводе этого представления для оператора Бакстера явно вычислили след по бесконечномерному вспомогательному пространству (см. (2.12)).

В дальнейшем отбрасываем нормировочный множитель в (2.19). Интеграл в (2.19) конечен, когда ℓ в общем положении, т.е. спин ℓ служит регуляризатором, не нарушающим sl_2-инвариантность. Выполняем теперь переход к (полу)целому спину $2\ell = n - \varepsilon$, $\varepsilon \to 0$, в результате чего возникнет полюс $\frac{1}{\varepsilon^N}$. Определим перенормированный оператор Бакстера как вычет в этом полюсе,

$$\hat{Q}_1(u) = \lim_{\varepsilon \to 0} \varepsilon^N \cdot Q_1(u).$$

(2.132)

В дальнейшем вычислении $\hat{Q}_1(u)$ согласно предыдущей формуле принимаем, что он задан на всём бесконечномерном пространстве, т.е. не предполагаем ограничение в каждом узле на конечномерное инвариантное подпространство U_n, так что нет ограничений на степень полинома $\Psi(\vec{z})$ в формуле (2.19). Отметим, что выбранные обозначения не приводят к противоречиям, поскольку ограничение $\hat{Q}_1(u)$ на конечномерное подпространство в точности совпадает с $\hat{Q}_1(u)$, заданным формулой (2.125).

Для начала разобьём область интегрирования по $\lambda_1, \cdots, \lambda_N$ (N-мерный куб) из формул (2.19) в объединение $N!$ симплексов, отечающих всем возможным упорядочениям переменных интегрирования:

$$\int_0^1 d\lambda_1 \cdots \int_0^1 d\lambda_N = \int_0^1 d\lambda_1 \int_0^1 d\lambda_2 \cdots \int_0^1 d\lambda_N + \text{перестановки}.$$

Это поможет нам изолировать отдельные вклады старших полюсов, т.е. каждому симплексу отвечает один вклад. Следующее наблюдение: обратим матрицу Λ' (2.13), в результате часть интегранда (2.19) примет вид

$$\frac{1}{1 - \lambda_1 \cdots \lambda_N} \cdot \Psi(\lambda'^{-1} \vec{z}) = \frac{\Psi(\vec{z}; \vec{\lambda})}{(1 - \lambda_1 \cdots \lambda_N)^{\deg \Psi + 1}},$$

где $\Psi(\vec{z}; \vec{\lambda})$ полином по $z_1, \cdots, z_N, \lambda_1, \cdots, \lambda_N$ получается из $\Psi(\vec{z})$ в результате линейного
преобразования переменных \(z_1, \cdots, z_N \), так что \(z_1 \) преобразуется по правилу:

\[
z_1 \mapsto \sum_{i=1}^{N} \tilde{\lambda}_N \cdots \tilde{\lambda}_{i+1} \lambda_i \cdot z_i,
\]

(2.133)

а закон преобразования остальных переменных \(z_2, \cdots, z_N \) получается в результате циклического сдвига в (2.133). При этом для простоты обозначений предполагаем \(\Psi(\vec{z}) \) однородным полиномом степени \(\deg \Psi \), что очевидно не сужает общности.

Также для краткости записи нам потребуется обозначение для операции, которая отбирает коэффициент при \(\lambda^n \) в разложении функции \(A(\lambda) \),

\[
[A(\lambda)]_{\lambda^n} \equiv \frac{n!}{2\pi i} \oint \frac{A(\lambda) \, d\lambda}{\lambda^{n+1}}.
\]

Вычислим теперь кратный интеграл в (2.19) по симплексу \(1 \geq \lambda_1 \geq \cdots \lambda_N \geq 0 \). В дальнейшем во всех формулах удерживаем лишь старшую сингулярность, опуская младшие члены. Выполняем сначала интегрирование по \(\lambda_N \), которое учитывает одну сингулярность при \(\lambda_N = 0 \),

\[
\int_{0}^{\lambda_{N-1}} d\lambda_N \lambda_N^{-n-1+\varepsilon} \tilde{\lambda}_{N-1}^{-u} \frac{\Psi(\lambda^{N-1} \vec{z})}{1 - \lambda_1 \cdots \lambda_N} = \frac{\lambda_{N-1}^u}{\varepsilon} \left[\frac{\tilde{\lambda}_{N-1}^{n-u}}{1 - \lambda_1 \cdots \lambda_N} \cdot \Psi(\lambda^{N-1} \vec{z}) \right]_{\lambda_N;n} \equiv B_N.
\]

Разложение из предыдущей формулы — это разложение в ряд Тейлора, т.е. участвуют только положительные степени \(\lambda_N \). На следующем шаге вычисляем интеграл, который тоже содержит одну сингулярность при \(\lambda_{N-1} = 0 \),

\[
\int_{0}^{\lambda_{N-2}} d\lambda_{N-1} \lambda_{N-1}^{-n-1+2\varepsilon} \tilde{\lambda}_{N-1}^{-u} B_N = \frac{\lambda_{N-2}^{2\varepsilon}}{2\varepsilon} \left[\frac{\tilde{\lambda}_{N-1}^{n-u}}{1 - \lambda_1 \cdots \lambda_N} \cdot \Psi(\lambda^{N-1} \vec{z}) \right]_{\lambda_{N-1};n} \equiv B_{N-1}.
\]

Опять же при разложении в ряд, возникают лишь положительные степени \(\lambda_{N-1} \). Продолжая таким же образом, в итоге придём к интегралу по \(\lambda_1 \). На этот раз разложение в ряд — это разложение Лорана, т.е. оно приводит к появлению отрицательных степеней по \(\lambda_1 \),

\[
\int_{0}^{1} d\lambda_1 \lambda_1^{-n+1+N\varepsilon} \tilde{\lambda}_1^{-u} B_2 = \frac{1}{N\varepsilon} \left[\frac{\tilde{\lambda}_1^{n-u} B_2}{1 - \lambda_1 \cdots \lambda_N} \right]_{\lambda_1;n} =
\]

\[
= \frac{1}{\varepsilon^N N!} \frac{1}{(2\pi i)^N} \oint \frac{d\lambda_1}{\lambda_1^{n+1}} \cdots \oint \frac{d\lambda_N}{\lambda_N^{n+1}} \tilde{\lambda}_1^{-u} \cdots \tilde{\lambda}_N^{-u} \frac{1}{1 - \lambda_1 \cdots \lambda_N} \cdot \Psi(\lambda^{N-1} \vec{z})
\]

(2.134)

Поскольку в предыдущем вычислении интеграла разложения интегранда содержало отрицательные степени только по \(\lambda_1 \) и исключительно положительные степени \(\lambda_2, \cdots, \lambda_N \),
то очевидно не имеет значения в каком порядке проводить разложение по \(\lambda_2, \ldots, \lambda_N \). А значит интегралы по \((N - 1)!\) симплексам, отличающимся перестановкой \(\lambda_2, \ldots, \lambda_N \) дают одинаковые результаты. Таким образом, ответ для (2.132) содержит \(N \) различных вкладов, отвечающих циклическим перестановкам переменных \(\lambda_1, \ldots, \lambda_N \).

\[
[\hat{Q}_1(u)\Psi](z) = \frac{1}{N} \frac{1}{(2\pi i)^N} \sum_{\text{cyclic}} \frac{d\lambda_1}{\lambda_1^{n+1}} \cdots \frac{d\lambda_N}{\lambda_N^{n+1}} \frac{\lambda_2 - u}{\Gamma(\Lambda' - \lambda - u)} . \tag{2.135}
\]

В итоге формулу (2.135) можно сформулировать как следующий рецепт для вычисления \(\hat{Q}_1(u) \):

- Разложить \((1 - \lambda_1 \cdots \lambda_N)^{-\deg \Psi - 1} \) всеми возможными способами в ряд и сложить различные разложения (т.е. разложение по отрицательным степеням \(\lambda_1 \), по отрицательным степеням \(\lambda_2, \ldots, \), по отрицательным степеням \(\lambda_N \));

- Разложить \(\lambda_2 - u \cdots \lambda_N - u \Psi(z; \bar{\lambda}) \) по неотрицательным степеням \(\lambda_1, \ldots, \lambda_N \);

- Отобрать коэффициент при \(\lambda_1^n \cdots \lambda_N^n \) и домножить на \(\frac{1}{N} \).

Интегральная формула (2.19) для \(Q_1 \) была получена в параграфе 2.2 из операторного представления (2.8) (см. (2.12)). Её можно перенести и на случай (полу)целого \(\ell \) в полной аналогии с предыдущим вычислением. Для этого сменим нормировку функции \(R_1 \) из (2.9),

\[
R_1(x) = \frac{\Gamma(1 + \ell - u)}{\Gamma(-2\ell)} \frac{\Gamma(x - 2\ell)}{\Gamma(x + 1 - \ell - u)} .
\]

Учитывая предыдущее вычисление асимптотики интеграла, ясно, что переход к пределу \(\ell \rightarrow \frac{n_2}{2} \) в (2.8), может быть пересформулирован в виде результата:

- Разложить \((1 - \lambda_1 \cdots \lambda_N)^{-\deg \Psi - 1} \) всеми возможными различными способами и сложить все получившиеся разложения;

- Разложить \(\Psi(z; \bar{\lambda}) \) по неотрицательным степеням \(\lambda_1, \ldots, \lambda_N \);

- Применить дифференциальные операторы по набору переменных \(\lambda_i \), перейти к пределу \(\varepsilon \rightarrow 0 \) и выбрать \(\lambda_i = 1 \) \((i = 1, 2, \ldots, N)\). Отметим, что (см. (2.103))

\[
\lim_{\varepsilon \to 0} \frac{\Gamma(\lambda \partial_{\lambda} - n + \varepsilon)}{\Gamma(-n + \varepsilon)} = \frac{n!(\lambda \partial_{\lambda})^{n}}{\Gamma(1 + n - \lambda \partial_{\lambda})} \cdot \Pi^n ,
\]

где \(\Pi^n \) - проектор на пространство, порождаемое мономами \(\lambda^k \) при \(k \leq n \), (в том числе с целыми отрицательными \(k \)). В ответ входит только конечное число членов.
из разложения. Это заключение складывается из двух причин: из-за проектора Π^n, а также из-за того, что разложение по отрицательным степеням λ контролирует разложение по положительным степеням (т.е. члены разложения с высокими отрицательными степенями содержат высокие положительные степени, которые обнуляются проектором, так что автоматически откидываются и высокие отрицательные степени).

Предложенный подход гораздо теснее связан с конструкцией операторов Бакстера для бесконечномерных представлений в сравнении с параграфом 2.3. В самом деле, чтобы построить $\hat{Q}_1(u)$, используется только след моноидромии, построенной исключительно из локальных блоков R^1, и не используются блоки R^2 или их редукции. Более того, достаточно просто выполнить предельный переход $\ell \to n^2$ в формуле (2.19) для $Q_1(u)$, полученной при анализе бесконечномерных представлений.

Этот результат лишний раз подчёркивает, что конструкция операторов Бакстера для конечномерных и бесконечномерных представлений очень схожа. Анализ конечномерных представлений на основе результатов для бесконечномерных представляется чрезвычайно естественным и ведёт к явным формулам.

При помощи формулы (2.135) проверим, что при значениях спектрального параметра $u = -\frac{n}{2} + k$, где $k = 0, 1, \ldots, n$, оператор Бакстера \hat{Q}_1 обращается в нуль,

$$\hat{Q}_1(-\frac{n}{2}) = \hat{Q}_1(-\frac{n}{2} + 1) = \cdots = \hat{Q}_1(n/2 - 1) = \hat{Q}_1(n/2) = 0. \quad (2.136)$$

Для этого подставим $u = -\frac{n}{2} + k$ в формулу (2.134), в результате чего интеграл примет вид

$$\frac{\tilde{\lambda}_1^{-k} \cdots \tilde{\lambda}_n^{-k} \Psi(\tilde{z}; \tilde{\lambda})}{(1 - \tilde{\lambda}_1 \cdots \tilde{\lambda}_n)^{\deg \Psi + 1}}.$$

Разложение в ряд Лорана по $\tilde{\lambda}_1$ множителя $(1 - \tilde{\lambda}_1 \cdots \tilde{\lambda}_n)^{-\deg \Psi - 1}$ содержит лишь степени $\tilde{\lambda}_1^m$, $m \leq -\deg \Psi - 1$. Разложение в ряд Тейлора чисителя по той же переменной содержит лишь степени $\tilde{\lambda}_1^m$, $m \leq \deg \Psi + n - k$, что следует из вида матрицы A^{-1} (2.133). Следовательно коэффициент при $\tilde{\lambda}_1^n \cdots \tilde{\lambda}_n^n$ нулевой.

Согласно представленному вычислению, формула (2.135) для оператора Бакстера \hat{Q}_1 имеет смысл на всём бесконечномерном квантовом пространстве состояний спиновой цепочки, а не только на его конечномерном подпространстве. Это соответствует тому, что не предполагалось ограничений на степень полинома $\Psi(\tilde{z})$. Оператор \hat{Q}_1 не выводит из
коначномерного пространства состояний, т. е. оператор

$$\hat{Q}_1(u) = \hat{Q}_1(u) \cdot \Pi^n,$$ \hspace{1cm} (2.137)

gде проектор $\Pi^n \equiv \Pi_1^n \Pi_2^n \cdots \Pi_N^n$, корректно задан на коначномерном пространстве, выражаемом проектором Π^n. Оператор $\hat{Q}_1(u)$ не выводит из инвариантного коначномерного пространства, т. е. \hat{Q}_1 допускает ограничение на это коначномерное подпространство. Этот факт связан с $s\ell_2$-инвариантностью выражения (2.135), в чём можно убедиться при помощи явного вычисления, коммутируя его с генераторами алгебры $s\ell_2$ (1.53). В параграфе 2.3 построили оператор Бакстера для коначномерных представлений (2.43), который, как и $\hat{Q}_1(u)$, не выводит из коначномерного пространства состояний. Его расширение (2.44) на всё бесконечномерное пространство полиномов отображает это пространство на коначномерное пространство состояний (см. параграф 2.3.3). Расширение же оператора $\hat{Q}_1(u)$ на бесконечномерное пространство (см. (2.137)), т. е. оператор $\hat{Q}_1(u)$, подобным свойством не обладает: $\hat{Q}_1(u)$ отображает бесконечномерно пространство полиномов на бесконечномерное пространство полиномов.

Отметим также, что формула (2.135), полученная для $\hat{Q}_1(u)$, несколько упрощается для $\hat{Q}_1(u)$: достаточно учесть лишь одно слагаемое в сумме по циклическим перестановкам (2.135), поскольку все они совпадают. Другими словами, вклады в асимптотику интеграла от всех симплексов одинаковы, так что достаточно вычислить вклад лишь одного из них. Подчеркнём, что это упрощение имеет место лишь для полиномов $\Psi(\vec{z})$, соответствующих коначномерному подпространству. Для полиномов $\Psi(\vec{z})$ произвольной степени нужно учитывать в сумме (2.135) все N вкладов.

Отметим также, что при специальных значениях спектрального параметра предлагенный оператор Бакстера $\hat{Q}_1(u)$ сильно упрощается, становясь тождественным оператором или оператором перестановки

$$\hat{Q}_1(-n/2 - 1) = -\mathbb{I}, \quad \hat{Q}_1(n/2 + 1) = \mathbb{P}.$$ \hspace{1cm} (2.138)

Подчеркнём, что предыдущее свойство не распространяется на его расширение $\hat{Q}_1(u)$.

Отметим, что \hat{Q}_1, ограниченный на инвариантное подпространство, при особых значениях спектрального параметра (2.136), (2.138), в точности соответствует значениям (2.130), (2.131) оператора \hat{Q}_1 из параграфа 2.6.2. В следующем параграфе покажем, что эти операторы в точности совпадают.
2.6.4. Полностью s^{ℓ}_2-инвариантная конструкция пары операторов Бакстера

В параграфе 2.6.2 указали важное свойство аналитически продолженных конечномерных трансфер-матриц: для них не важен порядок, в котором снимается q-регуляризация и выбирается (полу)целым спин ℓ в квантовом пространстве, что выражает соотношение (2.119). Результат предыдущего параграфа говорит нам, как вычислить общую трансфер-матрицу при (полу)целом спине ℓ без q-регуляризации, что придаёт смысл соотношению (2.119) и снабжает нас явными формулами.

Возьмём детерминантную формулу без q-регуляризации (или что то же самое положим $q = 1$ в (2.121)), ограничим обе части равенства на конечномерное подпространство при помощи проектора Π^n и выберем $\ell = n^2$,

$$P \hat{t}_s(u) = \hat{Q}_1(u + s + 1) \hat{Q}_2(u - s) - \hat{Q}_1(u - s) \hat{Q}_2(u + s + 1) .$$

(2.139)

Для оператора Q_1 выбор $\ell = n^2$ означает вычисление асимптотики, как это проделано в предыдущем параграфе, что даёт формулу (2.135). Для Q_2 это означает использование формулы (1.69), в которую подставлено $\ell = n^2$, что будем обозначать согласно нашей договорённости $\hat{Q}_2(u) = \lim_{\epsilon \to 0} e^{-N \cdot Q_2(u)} \cdot \Pi^n$. Отметим, что ограничение на конечномерное пространство необходимо, поскольку $\hat{Q}_2(u)$ не продолжается на пространство всех полиномов, что уже отмечалось в параграфе 2.3.3.

Установим связь с конструкцией s^{ℓ}_2-инвариантных операторов Бакстера из параграфа 2.6.2, полученных в результате сокращения полюсов по степеням $(1 - q)$. Для этого выберем сначала $v_2 = u_2$ в (2.139), т.е. сделаем подстановку $u \mapsto \frac{1}{2}(u - \frac{n^2}{2} - 1)$ и $s \mapsto \frac{1}{2}(u + \frac{n^2}{2} - 1)$ (см. (2.125)),

$$\hat{t}_{u + \frac{n}{2} - 1}(u - \frac{n^2}{2} - 1/2) = P^{-1} \cdot [\hat{Q}_1(u) \hat{Q}_2(-\frac{n}{2}) - \hat{Q}_1(-\frac{n}{2} | q) \hat{Q}_2(u | q)] = \hat{Q}_1(u),$$

где учли, что $\hat{Q}_2(-\frac{n}{2}) = P \Pi^n$ в силу явного выражения (1.69) и $\hat{Q}_1(-\frac{n}{2}) = 0$ (2.136). В результате правая часть предыдущей формулы обращается в $\hat{Q}_1(u)$. Таким образом формулы (2.125) и (2.135) согласованы. Это представляется весьма нетривиальным фактом, поскольку два представленных способа вычисления оператора Бакстера $\hat{Q}_1(u)$ кардинально различаются. При этом формула (2.135), использующая разложение в ряд Лорана по вспомогательным параметрам, гораздо прозрачнее в сравнении с (2.125), в которой неявным образом происходит сокращение полюсов по степеням $(1 - q)$.

Чтобы получить второй оператор Бакстера нужно выбрать $v_1 = u_1$ в (2.139), т.е.
сделать подстановку $u \mapsto \frac{1}{2}(u + \frac{n}{2})$ и $s \mapsto \frac{1}{2}(-u + \frac{n}{2})$ (см. (2.126)),

$$
\hat{Q}(u) = \mathfrak{t}_{u+\frac{n}{2}}(u+\frac{n}{2}) = P^{-1} \left[\hat{Q}_1(u) \hat{Q}_2(u) - \hat{Q}_1(u) \hat{Q}_2(\frac{n}{2}+1) \right]. \tag{2.140}
$$

Предыдущая формула является альтернативой представлению $\hat{Q}(u)$ в виде (2.126), где неявным образом происходит сокращение полюсов по степеням $(1 - q)$. Подчеркнём, что в предыдущей формуле нельзя заменить $\hat{Q}_1(\frac{n}{2}+1)$ на оператор циклического сдвига P по формуле (2.138), поскольку $\hat{Q}_2(u)$ выводит из инвариантного подпространства.

Глядя на формулу (2.140) можно задаться вопросом: в чём смысл вычитания двух операторов? и нельзя ли ограничиться только одним вкладом? Оказывается, что два слагаемых по отдельности выводят из конечномерного инвариантного подпространства и как следствие не являются $\mathfrak{s}\ell_2$-инвариантными. В разности сокращаются неинвариантные вклады и устраняется выход из конечномерного инвариантного подпространства. Это можно переформулировать иначе. При выбранном способе вычисления последовательности предельных переходов (вычисление следа по бесконечномерному вспомогательному пространству на первом шаге) общая трансфер-матрица (1.32) выводит из конечномерного подпространства, а значит нарушается её $\mathfrak{s}\ell_2$-инвариантность, однако подобные проблемы отсутствуют для аналитического продолжения конечномерного трансфер-матрицы (2.116).

Чтобы не возникло недоразумений, отметим, что при вышеперечисленном способе вычисления, принятом в текущем параграфе, сначала вычисляется след моноидий по вспомогательному пространству, а уж затем спин ℓ выбирается (полу)целым. В этом принципиальное отличие от рассуждений параграфов 2.3 и 2.6.2. После выбора $\ell = \frac{n}{2}$ общая трансфер-матрица (1.32) понимается как произведение пары операторов Бакстера, и ей нельзя придать вид наподобие (2.36).

Пример цепочки из одного узла

Продемонстрируем утверждения и формулы параграфов 2.6.2, 2.6.3, 2.6.4 на игрушечной модели спиновой цепочки из одного узла, т.е. принимаем, что моноидии построены из одного блока ($N = 1$). В этом случае очень просто отследить на явных формулах всё сделанные ранее утверждения. Кроме того, для простоты ограничимся простейшим нетривиальным конечномерным представлением $\ell = \frac{1}{2}$.

Воспользуемся формулой (2.17) для $Q_1(u)$, в которой явно вычислен след по вспомогательному пространству при спине ℓ квантового пространства в общем положении (для
цепочки из одного узла локальное квантовое пространство и есть всё пространство состояний системы,

\[
\left[Q_1(u) \Psi \right](z) = \frac{\Gamma(\ell-u+1)\Gamma(\frac{\lambda}{2}-2\ell)\frac{1}{\lambda}}{\Gamma(2\ell)\Gamma(\frac{\lambda}{2}+1-\ell-u)} \Psi(z) \bigg|_{\lambda=1} = \frac{\Gamma(\ell-u+1)\Gamma(2\ell-1)}{\Gamma(2\ell)\Gamma(\ell-u)} \Psi(z).
\] (2.141)

Чтобы получить оператор \(\hat{Q}_1(u) \) нужно в предыдущем выражении выбрать \(2\ell = 1 - \varepsilon \) и перейти к пределу \(\varepsilon \to 0 \),

\[
\left[\hat{Q}_1(u) \Psi \right](z) = \lim_{\varepsilon \to 0} \frac{\Gamma(\ell-u+1/2)\Gamma(-2\ell\varepsilon)}{\Gamma(-\ell-u-1/2)\Gamma(1+\varepsilon)} \cdot \Psi(z) = -\frac{1}{2} \left(u^2 - \frac{1}{4} \right) \cdot \Psi(z).
\]

Отметим, что имеют место указанные ранее значения оператора Бакстера при специальных значениях спинового параметра (2.130), (2.131).

Обратимся теперь к конструкции оператора Бакстера с \(q \)-регуляризацией. Вычислим по формуле (2.55) \(q \)-регуляризованный оператор Бакстера \(Q_1(u|q) \) при спине \(\ell \) в общем положении,

\[
\left[Q_1(u|q) \Psi \right](z) = \frac{1}{\Gamma(-2\ell)} \int_0^1 dt \ t^{-2\ell-1}(1-t)^{\ell-u} \frac{\Psi(z)}{\Gamma(q+\ell)} = \frac{\Gamma(1+\ell-u)}{\Gamma(1-\ell-u)} 2F_1(1,1+\ell-u;1-\ell-u;q) \Psi(z).
\] (2.142)

Теперь перейдём к пределу \(q \to 1 \) в предыдущем выражении, воспользовавшись справочной формулой для предела гипергеометрической функции:

\[
2F_1(1,1+\ell-u;1-\ell-u;q) \xrightarrow{q \to 1} \frac{\ell+u}{2\ell+1},
\]

tак что в результате получаем вновь (2.141). Этот результат находится в согласии с высканным ранее утверждением, что при спине \(\ell \) в общем положении нет необходимости во введении \(q \)-регуляризации следов. Следы регуляризованы самим спиновым параметром. Если в формуле (2.142) разложить знаменатель в ряд \(\frac{1}{1-q+ql} = \sum_{k \geq 0} \frac{(-q)^k}{(1-q)^k} \), то хотя отдельные слагаемые и будут содержать полосы при \(q \to 1 \), но сумма ряда несингулярна.

Теперь выберем \(\ell \to \frac{1}{2} \) в \(q \)-регуляризованным операторе \(Q_1(u|q) \),

\[
\left[\hat{Q}_1(u|q) \Psi \right](z) = \lim_{\ell \to 0} \frac{\Gamma(\ell-u+1/2)\Gamma(\lambda/2-1+\ell)}{\Gamma(\lambda/2-u+1+\ell)} \frac{1}{1-q+ql} \cdot \Psi(z) \bigg|_{\lambda=1}.
\]

Чтобы вычислить предыдущий предел, разложим знаменатель \(\frac{1}{1-q+ql} = \frac{1}{1-q} - \frac{q\lambda}{(1-q)^2} + O(\lambda^2) \) и применим дифференциальные операторы по \(\lambda \),

\[
\left[\hat{Q}_1(u|q) \Psi \right](z) = \left[\frac{1}{(1-q)^2} - \frac{u+1/2}{1-q} \right] \Psi(z).
\]

131
Тот же самый результат получается из выражения с гипергеометрической функцией (2.142) при \(\ell \to \frac{1}{2} \). Как видим оператор \(\hat{Q}_1(u|q) \), ограничение которого на конечномерное подпространство было названо \(Q_1(u) \) в (2.38), содержит полюса при \(q \to 1 \). Это вычисление демонстрирует тот факт, что в общей трансфер-матрице пределы (снятие \(q \)-регуляризации и выбор спина \(\ell \) квантового пространства (полу)целым) не переставляются.

Однако эти пределы переставляются в аналитическом продолжении конечномерной трансфер-матрицы (2.116). Для цепочки из одного узла \(Q_2(u|q) = 1 \), поэтому чтобы получить \(\hat{Q}_1 \) нужно вычислить пределы в (см. (2.125))

\[
\left[Q_1(u|q) - q^{u+\frac{1}{2}} Q_1(-1/2|q) \right] \Psi(z) = \frac{\Gamma(-u+\frac{1}{2}+\frac{\lambda}{2})}{\Gamma(-1+\frac{\lambda}{2})} \frac{\Gamma(\lambda a_{1-1+z})}{\Gamma(\lambda a_{-u+\frac{1}{2}+\frac{\lambda}{2}})} - q^{u+\frac{1}{2}} \frac{\Gamma(2-\frac{\lambda}{2})}{\Gamma(-1+\frac{\lambda}{2})} \frac{\Gamma(\lambda a_{1-1+z})}{\Gamma(\lambda a_{-u+\frac{1}{2}+\frac{\lambda}{2}})} \bigg|_{\lambda=1}.
\]

В этом выражении пределы \(q \to 1 \) и \(\varepsilon \to 0 \) переставляются. После снятия \(q \)-регуляризации в пределе \(\varepsilon \to 0 \) выпадает второе слагаемое из-за полюса \(\Gamma \)-функции. Если же выбрать \(\varepsilon \to 0 \) при \(q \) в общем положении, то оба слагаемых содержат полюса по степеням \((1 - q)\), которые сокращаются в разности. В этом также можно убедиться, работая с гипергеометрической функцией (2.142).

2.6.5. Физический оператор Бакстера и связь с решениями уравнений Бете

После того как построили \(s\ell_2 \)-инвариантные операторы Бакстера \(\hat{Q}_1(u) \), \(\hat{Q}(u) \), осталось выяснить, как они связаны с решениями уравнений анзатца Бете, который как раз применим для спиновых цепочек с конечномерным квантовым пространством.

Обсуждение связи метода \(Q \)-оператора с уравнениями Бете начали во Введении на примере XXX\(_2 \)-спиновой цепочки. Решения \(v_j \) уравнений Бете (4) являются нулями \(Q \)-функций, которые подчинены уравнению Бакстера (5). Таким образом \(Q \)-функции можно интерпретировать как собственные значения \(Q \)-оператора Бакстера. Для XXX\(_2 \)-модели физической ситуации соответствуют полиномиальные \(Q \)-функции: \(Q_k(u) = (u - v_1) \cdots (u - v_k) \), причём степень полинома \(k \leq \frac{N}{2} \). Поскольку уравнение Бакстера (5) – разностное уравнение второго порядка, то оно имеет пару линейно независимых решений. В работе [98] построены полиномиальные решения уравнения Бакстера степени \(k > \frac{N}{2} \). А именно для каждого \(Q_k(u) \) существует семейство полиномов

\[
P_{N+1-k}(u, \alpha) = P_{N+1-k}(u) + \alpha \cdot Q_k(u) \tag{2.143}
\]
степени \(N + 1 - k \), которые удовлетворяют уравнению Бакстера (5) при произвольном значении параметра \(\alpha \), а значит их корни \(v_1^*, v_2^*, \ldots, v_{N+1-k}^* \) удовлетворяют системе уравнений Бете (4). Дискретный вронскиан этих решений ненулевой,

\[
P(u + \frac{1}{2}) Q(u - \frac{1}{2}) - P(u - \frac{1}{2}) Q(u + \frac{1}{2}) = u^N,
\]
что отражает их линейную независимость. Через них можно выразить собственные значения трансфер-матрицы билинейным соотношением

\[
\tau(u) = P(u + 1) Q(u - 1) - P(u - 1) Q(u + 1).
\]

Нефизичность решений уравнений Бете, задаваемых полиномом \(P(u) \), состоит в том, что соответствующие векторы состояний выпадают из конечномерного представления в пространстве \((\mathbb{C}^2)^\otimes N \). Если построить по стандартной формуле соответствующие этим решениям векторы Бете, то получим тривиальный результат \(|v_1^*, \ldots, v_{N+1-k}^*\rangle = 0 \). Решение \(P \) уравнений Бете названо в [98] решением за экватором. Помимо спиновой цепочки с \(\ell = \frac{1}{2} \) в [98] представлено обобщение результатов на случай произвольных конечномерных представлений.

Чтобы ответить на вопрос, как связаны операторы \(\hat{Q}_1(u) \) и \(\hat{Q}(u) \) с полиномами \(Q(u) \) и \(P(u) \), проверим, что максимальная степень по спектральному параметру \(u \), появляющуюся в выражении для \(\hat{Q}_1(u) \) (2.135), равна \(N n + 1 \).

Убедимся в этом, следуя рецепту параграфа 2.6.3 для вычисления (2.135), и разложим интеграл по положительным степеням \(\lambda_2, \ldots, \lambda_N \) и произвольным степеням \(\lambda_1 \). Максимальная степень спектрального параметра \(u \) в коэффициенте при \(\lambda_2^n \) равна \(n \). Следовательно коэффициент при \(\lambda_1^n \cdots \lambda_N^n \) имеет максимальную степень \(n (N - 1) \) по \(u \). Чтобы получить максимальную степень \(u \) от разложения по \(\lambda_1 \), нужно разложить числитель до степени \(\lambda_1^{n+1} \). В итоге максимальная степень по спектральному параметру \(n (N - 1) + n + 1 = N n + 1 \).

Поскольку из формулы (1.69) следует, что максимальная степень по спектральному параметру в \(\hat{Q}(u) \) равна \(n N \), то значит оба оператора \(\hat{Q}_1(u) \) и \(\hat{Q}(u) \) имеют максимальную степень \(n N + 1 \) по \(u \) (см. (2.140)). Так как максимальная степень для физического оператора Бакстера на может превышать \(\frac{n}{2} N \), что следует из предыдущего обсуждения его собственных значений, то значит оба оператора \(\hat{Q}_1(u) \) и \(\hat{Q}(u) \) нефизические, т.е. их собственные значения принадлежат семейству полиномов \(P(u; \alpha) \) (2.143). Тем не менее поскольку \(\hat{Q}_1(u) \) и \(\hat{Q}(u) \) два независимых решения уравнения Бакстера, что следует из
детерминантной формулы (2.129), то они содержат всю необходимую информацию о физических решениях уравнений Бете. Чтобы её извлечь, нужно диагонализовать операторы \(\hat{Q}_1(u) \) и \(\hat{Q}(u) \), перейдя к собственному базису, и вычислить их собственные значения. Тогда из пары соотношений вида (2.143) для \(\hat{Q}_1(u) \) и \(\hat{Q}(u) \) извлекается \(\mathcal{Q} \)-функция.

2.6.6. Исключительные решения уравнений Бете и аномальные подпространства

В предыдущем параграфе, основываясь на оценке сверху степени полиномиальности по спектральному параметру \(u \), заключили, что операторы \(\hat{Q}_1(u) \) и \(\hat{Q}(u) \) нефизические, т.е. корни их собственных значений не соответствуют физическим решениям уравнений Бете. Покажем здесь, что из этого правила имеются исключения. А именно существуют собственные значения оператора \(\hat{Q}_1(u) \), соответствующие физическим решениям. Степень полиномиальности по \(u \) этих собственных значений оказывается ниже оценки сверху. Соответствующие подпространства будем называть аномальными. Заметим, что собственные значения второго оператора Бакстера \(\hat{Q}(u) \) всегда нефизические, т.е. высокой степени по спектральному параметру.

Итак, рассматриваем \(\mathfrak{sl}_2 \) инвариантную компактную спиновую цепочку из \(N \) узлов с конечномерными представлениями спина \(\ell = \frac{n}{2} \). Поскольку операторы Бакстера коммутируют с глобальными генераторами \(\mathfrak{sl}_2 \) (1.53), то достаточно изучить их действие на собственные вектора, которые являются младшими векторами \(\mathfrak{sl}_2 \) представлений. Очевидно, что каждый младший вектор представления спина \(\frac{n}{2}N - m \), \(0 \leq m \leq \frac{n}{2}N \) имеет вид

\[
\Psi = \sum c_{i_1 \ldots i_{m+1}} z_{i_1 i_2} z_{i_2 i_3} \ldots z_{i_{m+1}} \tag{2.144}
\]

c некоторым набором постоянных \(c_{i_1 \ldots i_{m+1}} \). Прочие вектора представления получаются из него действием повышающего оператора \(S_+ \), так что вектора

\[
\Psi , \ S_+ \Psi , \ S_+^2 \Psi , \ldots
\]

образуют собственное подпространство оператора Бакстера размерности \(nN - 2m + 1 \). Отметим, что физическое решение \(Q(u) \) на этом подпространстве должно быть полиномом степени \(m \) по \(u \). Посмотрим, как обстоит дело с оператором Бакстера \(\hat{Q}_1(u) \). Применив явную формулу (2.135) для оператора \(\hat{Q}_1(u) \), вычисленного на младшем векторе \(\Psi \) (2.144) представления, несложно убедиться, что соответствующее собственное значение является
полиномом по u степени не выше $Nn + 1 - m$. Эта оценка основана на разложении интегранда (2.135) в ряд Лорана и выделении коэффициента при $\lambda_i^n \cdots \lambda_N^n$. Подобные оценки уже выполняли выше в этой главе. В случае общего положения эта оценка оказывается точной. Однако существуют исключительные младшие вектора, на которых степень по u собственного значения $\hat{Q}_1(u)$ оказывается ниже.

Приведём пример, когда это происходит. Рассмотрим спиновую цепочку $\ell = 1/2$ из $N = 4$ узлов. Одномерное собственное подпространство $\Psi = z_{13}z_{24}$, т.е. представление спина 0, аномально.

$$\hat{Q}_1(u)\Psi = -\frac{1}{2} \left(u^2 - \frac{1}{4} \right) \Psi ; \quad \hat{Q}(u)\Psi = -2 \left(u^3 - \frac{3}{4} u^2 - \frac{5}{4} u + \frac{3}{16} \right) \Psi .$$

Таким образом собственное значение оператора $\hat{Q}_1(u)$ оказывается полиномом степени $m = 2$ по спектральному параметру вместо ожидаемой степени $Nn + 1 - m = 3$ и соответствует физическому решению уравнений Бете: $\{u_1, u_2\} = \{1/2, -1/2\}$. Подобное явление имеет место также для $\ell = 1$ спиновой цепочки из $N = 3$ узлов, $\ell = 1/2$ спиновой цепочки из $N = 6$ узлов. На основе этих наблюдений выдвинем гипотезу, что подобные затруднения возникают лишь когда Nn чётное.

Отметим, что нормировки (2.130), (2.131) оператора $\hat{Q}_1(u)$ наследуются физическими решениями уравнений Бете для аномальных подпространств. В частности $\overline{Q}(-n/2) = Q(n/2) = 0$. Согласно хорошо известной формуле, собственные значения Гамильтона спиновой цепочки выражаются в терминах логарифмической производной Q-функции по спектральному параметру,

$$E = \sum_{j=1}^{m} \frac{n^2}{4} - \frac{n}{4} u_j^2 .$$

Итак, на аномальных подпространствах эта формула заведомо неверна и даёт бесмысленную расходимость. Исключительные решения уравнений анзатца Бете обсуждались в работе [99].

2.7. Заключение

В этой главе подробно проанализировали набор коммутирующих операторов одноядерной замкнутой цепочки, локальные квантовые пространства которой являются бесконечномерными или конечномерными пространствами представления $s\ell_2$. Эти операторы и их спектр содержит всю информацию о квантовой системе. Цель изучения соотношений
между ними в том, чтобы извлечь эту информацию наиболее эффективным и ясным образом. Обычная трансфер матрица \(t(u) \), её обобщения \(t_n(u) \), \(T_s(u) \) и операторы Бакстера \(Q(u) \) имеют вид следов монодромий (регулированы при необходимости параметром \(q \)), построенных из локальных операторов, которые действуют в одном узле цепочки и в общем вспомогательном пространстве. Для бесконечномерных представлений в квантовом пространстве при \(\ell \) в общем положении наиболее общим локальным оператором в \(k \)-ом узле является оператор Янга–Бакстера \(R_{k0} \). Остальные операторы получаются из него посредством наложения ограничений на параметры представления \(v_1, v_2 \) во вспомогательном пространстве или извлечения асимптотики при больших \(v_1, v_2 \):

<table>
<thead>
<tr>
<th>цепочка</th>
<th>узел</th>
<th>ограничение</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_s)</td>
<td>(R_{k0})</td>
<td>—</td>
</tr>
<tr>
<td>(t)</td>
<td>(L_k \sim R_{k0}(\ell, \frac{1}{2}))</td>
<td>(v_2 - v_1 = 2) и (\Pi_0^1)</td>
</tr>
<tr>
<td>(t_n)</td>
<td>(R_{k0}(\ell, \frac{n}{2}))</td>
<td>(v_2 - v_1 = n + 1) и (\Pi_0^n)</td>
</tr>
<tr>
<td>(Q_1)</td>
<td>(R_{k0}^1)</td>
<td>(v_2 = u_2)</td>
</tr>
<tr>
<td>(Q_2)</td>
<td>(R_{k0}^2)</td>
<td>(v_1 = u_1)</td>
</tr>
<tr>
<td>(Q^+)</td>
<td>(R_{k0}^+)</td>
<td>(v_1 \to \infty)</td>
</tr>
<tr>
<td>(Q^-)</td>
<td>(R_{k0}^-)</td>
<td>(v_2 \to \infty)</td>
</tr>
</tbody>
</table>

Также приходится рассматривать двойные редукции, когда ограничения накладываются на оба параметра \(v_1 \) и \(v_2 \):

<table>
<thead>
<tr>
<th>цепочка</th>
<th>узел</th>
<th>ограничение</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q^+)</td>
<td>(R_{k0}^+)</td>
<td>(v_2 = u_2, v_1 \to \infty)</td>
</tr>
<tr>
<td>(q^-)</td>
<td>(R_{k0}^-)</td>
<td>(v_1 = u_1, v_2 \to \infty)</td>
</tr>
<tr>
<td>(P q^{\pm 1 \partial_1})</td>
<td>(P_{k0})</td>
<td>(v_1 = u_1, v_2 = u_2)</td>
</tr>
</tbody>
</table>

Обе конструкции переносятся на случай (полу)целого спина \(\ell = n/2 \) и конечномерного представления в каждом узле. Локальный оператор \(R_{k0}(u|\frac{n}{2}, s) \) для общей трансфер матрицы \(T_s \) получается из общего оператора Янга–Бакстера в результате ограничения на неприводимое подпространство при помощи проектора \(\Pi_k^n \) при \(u_2 - u_1 = n + 1 \). Дополнительные ограничения на параметры представления во вспомогательном пространстве \(v_1, v_2 \) порождают редуцированные операторы:
цепочка узел ограничение

\[T_s \quad R_{40} \left(\frac{n}{2} \right) \quad - \]

Q₁ или P \quad R₁ \quad v₂ = u₂

Q₂ или Q \quad R₂ \quad v₁ = u₁

S \quad S_k \Pi^n \quad v₁ = u₁ и v₂ = u₂

Q⁺ или Q⁺ \quad R⁺ \quad v₁ \to \infty

Q⁻ или Q⁻ \quad R⁻ \quad v₂ \to \infty

Для первой конструкции (которая основана на наложении связей на параметры представления) связь между бесконечномерными и конечномерными представлениями не прямолинейна. Было показано, что наивная попытка подставить (полу)целое значение спина \(\ell = \frac{n}{2} \) в обшие регуляризованные трансфер матрицы для бесконечномерных представлений приводит к затруднениям в случае Q₂, поскольку этот оператор выводит из инвариантного подпространства. Однако общая трансфер матрица \(T_s \) и Q₁ не выводят из инвариантного подпространства. Аккуратно вычислив предел \(\ell = \frac{n}{2} \), получили трансфер матрицу S, построенную из локальных операторов \(S_k \), которые оказываются негрифными аналогами оператора перестановки тензорных факторов \(P_k \). Оператор S естественным образом появляется в предложенной конструкции и может быть получен редукцией из оператора Бакстера Q₁. Он выравняет Q₂, превращая его в хорошо определённый оператор на квантовом пространстве системы. Таким образом в основном благодаря S удаётся построить операторы Бакстера для конечномерных представлений.

Для второй конструкции (в которой часть параметров стремится к бесконечности) переход от бесконечномерных представлений к конечномерным более прямолинейный. Операторы Бакстера Q± в этом плане аналогичны общей трансфер матрице \(T_s \). Вычисляя предел \(\ell \to \frac{n}{2} \) в выражении для операторов Бакстера, т.е. предел каждого локального блока монодромии, получаем хорошо определённые операторы Бакстера на конечномерном пространстве модели, которые не выводят из него.

Помимо общей алгебраической конструкции Q-операторов в виде следов монодромий вычислили эти следы и предъявили явные формулы для операторов Бакстера.

Далее сопоставили обе предыдущие конструкции на уровне бесконечномерных и конечномерных представлений. Начнём с бесконечномерных. Показали, что Q⁻ и Q⁺ отличаются от Q₁ и Q₂ лишь операторными множителями \(q_- \) и \(q_+ \), которые практически обратны друг другу. Они не зависят от спектрального параметра и играют пассивную роль, одна-
ко становятся весьма полезными при переходе к конечномерным представлениям. $Q_{1,2}$ и Q_{\pm} содержат одинаковую информацию о системе, при этом первый набор операторов выглядит несколько проще. Существенный недостаток Q_{\pm}-операторов в том, что работа с ними приходится явно нарушить $s\ell_2$ симметрию φ-регуляризацией. Регуляризацию необходимо ввести в соотношение факторизации $T \sim Q_+ \cdot Q_-$, несмотря на то, что след в Q_- по бесконечномерному вспомогательному пространству сходит без φ-регуляризации при ℓ в общем положении. Операторы Бакстера Q_1 и Q_2 для бесконечномерных представлений не нуждаются в φ-регуляризации. Это позволяет нам заключить, что Q_1 и Q_2 более адаптированы для описания бесконечномерных представлений.

В случае конечномерных представлений ситуация обратная. Во-первых, в этом случае проявляется операторный множитель q_+, на который отличаются Q_+ и Q_2: благодаря нему Q_+ не выводит из конечномерного инвариантного подпространства в отличие от Q_2. Этот операторный множитель обеспечивает простую связь операторов Бакстера Q_{\pm} для спина в общем положении и операторов Бакстера Q_{\pm} для (полу)целых значений спина: достаточно выбрать $\ell = \frac{n}{2}$ и сузить оператор на инвариантное конечномерное подпространство. В первой конструкции связь между вторыми операторами Бакстера для двух типов представлений устроена сложнее. В этом случае предельные переход $2\ell \to n$ и ограничение $v_1 = u_1$ не перестановочны. Поскольку для Q_{\pm} предельный переход $2\ell \to n$ не вызывает затруднений, то такая конструкция кажется более удобной для описания конечномерных представлений. Итого, обе конструкции операторов Бакстера являются взаимодополняющими, каждая из них имеет свои достоинства и недостатки, которые проявляются при описании представлений разных типов.

Несмотря на схожесть описания конечномерных и бесконечномерных представлений, всё-таки имеется существенное различие между двуми типами представлений в рамках обеих конструкций. Оно связано с необходимостью φ-регуляризации для описания конечномерных представлений, которая нарушает исходную $s\ell_2$ симметрию модели. Это является сильным недостатком обоих построений. Чтобы разрешить эту проблему, в конце главы приведё несколько способов, позволяющих получить набор $s\ell_2$-инвариантных операторов Бакстера. Рассуждения вновь основаны на аккуратном изучении предельных переходов в формулах для бесконечномерных представлений. Для того чтобы перейти от общей формулы со следом монодромии к явной формуле для конечномерных Q-операторов, нужно выполнить несколько предельных переходов, которые вообще говоря не перестановочны:
выбрать спин (полу)цельным, вычислить след по бесконечномерному вспомогательному про-
странству, снять q-регуляризацию. Чтобы построение было корректным, нужно использо-
вать в качестве базового такой оператор, в котором предельные переходы можно выпол-
нять в произвольной последовательности. Таким оператором оказывается аналитически
продолженная конечномерная трансфер-матрица. При помощи неё удаётся избавиться от
q-регуляризации в конечномерных Q-операторах, построенных в начале главы. Более того,
выбирая иную последовательность предельных переходов в аналитически продолженной
конечномерной трансфер-матрице, удалось построить $s\ell_2$-инвариантные конечномерные
операторы Бакстера, которые не используют q-регуляризацию на промежуточных шагах.
Примечательно, что для них удалось получить явные формулы, которые устроены намно-
гого проще, чем в случае с q-регуляризацией на промежуточном шаге.
Глава 3

Факторизация общего R-оператора для модулярного дубля

Одной из квантовых интегрируемых систем, описанных в главе 1, была спиновая цепочка с тригонометрически деформированной алгеброй симметрии. В этой главе останавливаемся подробнее на вопросе тригонометрической деформации и взглянем на него с несколько иной точки зрения. Начнём с того, что отметим явные недостатки предыдущего построения. Работая с тригонометрически деформированной алгеброй симметрии $U_q(sl_2)$, т.е. с тригонометрической деформацией универсальной обёртывающей алгеброй для sl_2, использовали её представления старшего веса (модули Верма). В нашей реализации пространством представления выбиралось пространство полиномов $C[z_k]$, которое служило в качестве локального квантового пространства в k-ом узле цепочки. В основе конструкции общих R-операторов (локальный уровень) и Q-операторов Бакстера (глобальный уровень) лежит операторное представление $s^i \mapsto S^i(u)$ симметрической группы, заданное соотношениями сплетения,

$$S^i(u) L_1(u_1, u_2) L_2(v_1, v_2) = L_1(u'_1, u'_2) L_2(v'_1, v'_2) S^i(u) ; \quad s^i u = (u'_1, u'_2, v'_1, v'_2).$$

На этом этапе столкнулись с двумя затруднениями. Во-первых, операторы элементарных перестановок параметров представлений S^i выводят из пространства полиномов. Во-вторых, решение S^i предыдущего соотношения сплетения далеко не единствено: оно определено с точностью до умножения на произвольную мультипликативно-периодическую функцию с периодом q^2. Возникает естественный вопрос: как фиксировать этот произвол естественным образом? Решения, которые использовались ранее, можно назвать "минимальными". Как увидим далее, существует гораздо более естественный способ фиксации этого произвола. Оказывается, что обе эти проблемы взаимосвязаны и разрешаются одно-временно.

Наше построение в главе 1 носило в основном алгебраический характер и основывалось на соотношениях сплетения, так что вопросы, связанные с пространством представления, отходили на второй план. Проблема с выводом из пространства полиномов оказалась существенной только при действии построенными операторами на векторы со-
стояния, в частности при редукции общего R-оператора к L-оператору. Чтобы её разрешить, учитывая неоднозначность решения соотношений сплетения, ввели в конструкцию дополнительный оператор элементарной перестановки, который является модификацией одного из операторов S. В результате операторы Янга–Бакстера \mathbb{R}, \mathbb{R}^1 и \mathbb{R}^2 не выводили из пространства полиномов.

Отметим ещё один недостаток конструкции. Все построенные операторы имели вид функций канонических пар (точнее говоря, функций Вейлесвских пар). Хотелось бы представить эти операторы в форме интегральных операторов, так чтобы в основе конструкции (соотношения Кокстера) лежали интегральные тождества.

Чтобы наметить решение очерченного круга проблем, посмотрим как они могут быть разрешены в более простом случае спиновой цепочки с недеформированной $\mathfrak{s}\ell_2$-симметрией, для которой имеют место те же сложности с пространством представления. Идея состоит в том, чтобы рассматривать представления группы $\text{SL}(2, \mathbb{C})$, алгебра Ли которой $\mathfrak{s}\ell_2 + \mathfrak{s}\ell_2$ содержит в двое больше генераторов [67]. Представления параметризируются парой комплексных чисел $(\ell, \bar{\ell})$. Генераторы первой подалгебры могут быть реализованы как дифференциальные операторы (1.53) по переменной z, а генераторы второй подалгебры – по переменной \bar{z}, так что они в самом деле образуют две независимые подалгебры. Пространства представления этих двух подалгебр – $\mathbb{C}[z]$ и $\mathbb{C}[\bar{z}]$ соответственно. Таким образом представление распалось на два независимых сектора: гологорифмный и антигологорифмный. Чтобы "склеить" два сектора, нужно распространить операторы с пространства полиномов $\mathbb{C}[z] \otimes \mathbb{C}[\bar{z}]$ на пространство функций $\Phi(z, \bar{z})$ однозначных на комплексной плоскости. Основным элементом конструкции \mathbb{R}-оператора выступает сплетающий оператор представлений алгебры симметрии. Для $\mathfrak{s}\ell_2$ таким служит комплексная степень оператора дифференцирования ∂_z^a. Применим рецепт и перейдём к сплетающему оператору $\partial_z^a \partial_{\bar{z}}^a$. Он хорошо определён как интегральный оператор, если $a - \bar{a}$ целое число, поскольку в этом случае его ядро – однозначная функция на комплексной плоскости,

$$\partial_z^a \Phi(z) \to \partial_z^a \partial_{\bar{z}}^a \Phi(z, \bar{z}) \sim \int \frac{dyd\bar{y} \Phi(y, \bar{y})}{(z - y)^{a+1}(\bar{z} - \bar{y})^{\bar{a}+1}}, \quad a - \bar{a} \in \mathbb{Z}.$$

Такая сшивка накладывает ограничение на параметры представления $(\ell, \bar{\ell})$: $\ell - \bar{\ell} \in \mathbb{Z}$, и приводит от представления алгебры $\mathfrak{s}\ell_2 + \mathfrak{s}\ell_2$ к представлению группы $\text{SL}(2, \mathbb{C})$, которое является бесконечномерным представлением без старшего вектора.

Похожая идея помогает преодолеть сложности с представлениями тригонометрической деформации алгебры $\mathfrak{s}\ell_2$. Вместо неё используем модулярный дубль квантовой групп.
пы, введённый Л.Д. Фаддеевым [48, 100]. Будем условно обозначать эту алгебраическую структуру $U_q(s\ell_2) \otimes U_q(s\ell_2)$. Модулярный дубль содержит вдвое больше генераторов по сравнению с $U_q(s\ell_2)$, которые распадаются на два сектора, дуальные друг другу, так что генераторы из разных секторов (анти)коммутируют друг с другом. При этом представление модулярного дубля реализуется на пространстве функций, не содержащем старшего вектора. Присоединение дуальных генераторов $U_{\tilde{q}}(s\ell_2)$ позволяет преодолеть все сложности, отмеченные выше. Сплетающие операторы представлений, и как следствие операторы элементарных перестановок параметров представления S^i, становятся хорошо определёнными интегральными операторами, которые по-прежнему можно представить как функции от канонических пар. Все соотношения между S^i следуют из интегральных тождеств. Определяющие соотношения на операторы S^i решаются однозначно. Используя эти соображения, вновь проанализируем спиновую цепочку с тригонометрически деформированной алгеброй симметрии, следуя общей схеме главы 1.

3.1. Модулярный дубль и сплетеющий оператор

Как было пояснено выше в этой главе, в качестве алгебры симметрии модели будет выступать модулярный дубль для $U_q(s\ell_2)$, где параметр тригонометрической деформации $q = e^{i\pi \tau}$, $\tau \in \mathbb{C}$ иррациональное число. Эта квантовая алгебра порождается двумя тройками генераторов E, K, F и $\tilde{E}, \tilde{F}, \tilde{K}$, которые удовлетворяют определяющим коммутационным соотношениям

$$[E, F] = \frac{K^2 - K^{-2}}{q - q^{-1}}, \quad KE = qE K, \quad KF = q^{-1}F K,$$

(3.1)

а для второй тройки генераторов $\tilde{E}, \tilde{F}, \tilde{K}$ имеют место такие же соотношения с параметром $\tilde{q} = e^{i\pi / \tau}$ вместо q. Генераторы E, F коммутируют с \tilde{E}, \tilde{F}. Генератор K антикоммутирует с \tilde{E}, \tilde{F}, и \Ktilde антикоммутирует с E, F. В этой квантовой алгебре есть два центральных элемента (оператора Казимира), один из которых выражается через генераторы формулой

$$C = (q - q^{-1})^2 \cdot F E - q \cdot K^2 - q^{-1} \cdot K^{-2} + 2,$$

(3.2)

а для второго имеет место точно такое же выражение через генераторы $\tilde{E}, \tilde{F}, \tilde{K}$ и параметр \tilde{q}. В дальнейшем будет удобно использовать несколько иное представление для параметров тригонометрической деформации: $\tau = \frac{\omega'}{\omega}$, где комплексные числа ω и ω' ограничены...
условием \(\omega' = -\frac{1}{4} \), так что

\[
q = \exp\left(i\pi \omega' / \omega \right), \quad \tilde{q} = \exp\left(i\pi \omega / \omega' \right),
\]

и замена \(q \equiv \tilde{q} \), отвечающая модулярному преобразованию дуальности и переставляющая факторы модулярного дубля, эквивалентна \(\omega \equiv \omega' \). Также нам будет удобно использовать обозначения

\[
\omega'' = \omega + \omega', \quad \beta = \frac{\pi}{12} \left(\frac{\omega}{\omega'} + \frac{\omega'}{\omega} \right).
\]

(3.3)

В дальнейшем используем неприводимое представление \(\pi_s \) генераторов модулярного дубля конечно-разностными операторами \(K_s = \pi_s(K) \), \(E_s = \pi_s(E) \), \(F_s = \pi_s(F) \) на пространстве целых функций, быстро убывающих на бесконечности вдоль контуров параллельных вещественной оси. Представления параметризуются одним комплексным числом \(s \), который называем спином, а явные выражения для генераторов имеют вид [101],

\[
K_s = e^{-\frac{\pi}{2} p}, \quad (q - q^{-1}) E_s \equiv e_s = e^{i\pi s} \left[e^{-\frac{\pi}{2\omega} (p - s - \omega'')} - e^{\frac{\pi}{2\omega} (p - s - \omega'')} \right],
\]
\[
(q - q^{-1}) F_s \equiv f_s = e^{-i\pi s} \left[e^{\frac{\pi}{2\omega} (p + s + \omega'')} - e^{-\frac{\pi}{2\omega} (p + s + \omega'')} \right],
\]

(3.4)

где \(p = \frac{1}{2\pi i} \partial_x \) обозначает оператор импульса в координатном представлении. Если работать с вещественной формой модулярного дубля и рассматривать унитарные представления, то придётся ограничиться случаем вещественного \(s \), но для наших целей это не играет роли. Выражения для генераторов \(\tilde{K}_s, \tilde{E}_s, \tilde{F}_s \) получаются при помощи модулярного преобразования дуальности \(\omega \equiv \omega' \). В представлении \(\pi_s \) операторы Казимира (3.2) принимают числовые значения

\[
C_s = 4 \cos^2 \left(\frac{\pi s}{2\omega} \right), \quad \tilde{C}_s = 4 \cos^2 \left(\frac{\pi s}{2\omega'} \right).
\]

(3.5)

При работе с представлениями модулярного дубля постоянно встречаются несколько специальных функций. Одна из них это некомпактный квантовый дилогарифм [102, 103], который задаётся интегральным представлением

\[
\gamma(z) = \exp \left(-\frac{1}{4} \int_{-\infty}^{+\infty} dt \frac{e^{itz}}{t \sin(\omega t) \sin(\omega' t)} \right).
\]

(3.6)

В предыдущей формуле контур интегрирования по вещественной оси обходит полюс при \(t = 0 \) в верхней полуплоскости. Вторая важная функция определяется через квантовый дилогарифм,

\[
D_a(z) = e^{-2\pi i a z} \frac{\gamma(z + a)}{\gamma(z - a)}.
\]

(3.7)
Она совпадает с R-матрицей Фаддеева-Волкова [104, 105], введённой при описании эволюции в дискретном пространстве-времени. Эта функция широко использовалась в [31] для описания модулярного магнетика. Все свойства этой функции (необходимые для наших целей) собраны в Приложении A. Отметим, что обе функции \(\gamma(z) \) и \(D_a(z) \) инварианты при преобразовании модулярной дуальности \(\omega \leftrightarrow \omega' \).

Явный вид операторов Казимира (3.5) предполагает, что неприводимые представления \(\pi_s \) и \(\pi_{-s} \) эквивалентны. Чтобы убедиться в этом, построим сплетающий оператор \(W \) для генераторов модулярного дубля в двух представлениях, решив операторные уравнения

\[W K_s = K_{-s} W, \quad W E_s = E_{-s} W, \quad W F_s = F_{-s} W, \]

(3.8)
a также аналогичные уравнения с тройкой генераторов \(\tilde{K}_s, \tilde{E}_s, \tilde{F}_s \). Сплетающий оператор \(W \equiv W_s \) служит основным строительным блоком в конструкции общего R-оператора Янга–Бакстера, как видели это ранее на примере других алгебр симметрии.

Система определяющих соотношений (3.8) эквивалентна набору функциональных уравнений, которые однозначно фиксируют \(W_s \) (с точностью до нормировки). Пара соотношений \(W K_s = K_{-s} W, \quad W \tilde{K}_s = \tilde{K}_{-s} W \) означает, что сплетатель является функцией оператора импульса: \(W = W(p) \). Оставшиеся операторные уравнения \(W E_s = E_{-s} W, \quad W F_s = F_{-s} W \) и дуальные им приводят к паре конечно-разностных уравнений

\[\frac{W(p - \omega')}{W(p + \omega')} = \frac{\cos \frac{\pi}{2\omega}(p + s)}{\cos \frac{\pi}{2\omega}(p - s)}, \quad \frac{W(p - \omega)}{W(p + \omega)} = \frac{\cos \frac{\pi}{2\omega'}(p + s)}{\cos \frac{\pi}{2\omega'}(p - s)}, \]

(3.9)
которая имеет единственное решение с точностью до мультипликативной постоянной. Сравнивая (3.9) и (A.11), заключаем, что

\[W_s(p) = D_{-s}(p), \]

(3.10)
где функция \(D_a \) определена в (3.7), а нормировка выбрана так, чтобы \(W^{-1}(p) = D_s(p) \) (см. (1.15)), ввиду свойства (A.10). Если бы мы работали только с одной половиной модулярного дубля, т.е. с \(U_q(s \ell_2) \), то, во-первых, анзатц \(W = W(p) \) не был бы наиболее общим (пришлось бы рассматривать зависимость вида \(W = W(p, x) = W(p, x + \omega') \)), а, во-вторых, в системе (3.9) осталось бы только первое уравнение, решение которого однозначно и допускает умножение на произвольную периодическую функцию импульса с периодом \(\omega' \).

Если мы работаем с обеими частями модулярного дубля, то решения системы уравнений определены с точностью до эллиптической функции с периодами \(\omega \) и \(\omega' \), однако всякий
ограниченная эллиптическая функция постоянна, так что решение системы в самом деле фиксируется однозначно. Перепишем теперь сплетающий оператор W как интегральный. Это оказывается возможным, благодаря преобразованию Фурье функции D (A.12),

$$W_s \Phi(x) = A(s) \int_{-\infty}^{+\infty} dx' D_{s-\omega'}(x-x') e^{2\pi i x p} \Phi(x')$$

где (см. (3.3), (3.6))

$$A(s) \equiv \gamma(\omega''-2s) e^{-\frac{ix}{2}(2s-\omega'')^2 - \frac{i\omega}{2}}.$$

(3.12)

3.2. L-оператор, факторизация, вырождение, сливание

Перейдём к описанию интегрируемой структуры спиновой цепочки и введём L-оператор (1.6), заданный на пространстве $V_s \otimes \mathbb{C}^2$. Он строится из тройки генераторов модульного дубля, взятых в представлении π_s (3.4),

$$L(u|s) = \begin{pmatrix} e^{\frac{ix}{2}u} K_s - e^{-\frac{ix}{2}u} K_s^{-1} & f_s \\ e_s & e^{\frac{ix}{2}u} K_s^{-1} - e^{-\frac{ix}{2}u} K_s \end{pmatrix}. \quad (3.13)$$

Также будем использовать обозначение $L(u)$, опуская зависимость от параметра представления s. L-оператор удовлетворяет RLL-соотношению (1.5) со стандартной 4×4 тригонометрической R-матрицей, что эквивалентно определяющим коммутационным соотношениям алгебры симметрии (3.1). Поскольку модульный дубль содержит вдвое больше генераторов, то нам также потребуется второй L-оператор, получающийся из $L(u)$ преобразованием модульной дуальности $\omega \leftrightarrow \omega'$: $\tilde{L}(u) = L(u)|_{\omega \leftrightarrow \omega'}$. В дальнейшем будем явно выписывать только соотношения с L-оператором (3.13), подразумевая при этом, что имеется второй набор соотношений с \tilde{L}-оператором, которые имеют тот же вид и получаются из первого набора заменой $\omega \leftrightarrow \omega'$. Несложно убедиться, что L-оператор (3.13) можно факторизовать в произведение трёх матриц (см. (1.44)),

$$L(u_1, u_2) = \begin{pmatrix} U_2 & -U_1^{-1} \\ -U_1^{-1} e^{\frac{ix}{2}u} & U_2 e^{\frac{ix}{2}u} \end{pmatrix} \begin{pmatrix} e^{\frac{ix}{2}(p-\omega'')} & 0 \\ 0 & e^{\frac{ix}{2}(p-\omega'')} \end{pmatrix} \begin{pmatrix} -U_1 e^{-\frac{ix}{2}u} & U_1^{-1} e^{-\frac{ix}{2}u} \\ U_1 e^{-\frac{ix}{2}u} & -U_1^{-1} \end{pmatrix},$$

$$U_1 = e^{\frac{ix}{2}u_1}, \quad U_2 = e^{\frac{ix}{2}u_2},$$

где введены параметры u_1 и u_2 вместо u и s,

$$u_1 = u + s/2 + \omega/2 - \omega'/2; \quad u_2 = u - s/2 + \omega/2 - \omega'/2. \quad (3.14)$$

145
Эта формула аналогична факторизации L-оператора (1.78) для $\mathcal{U}_q(s\ell_2)$. Отметим, что формула связи (3.14) двух наборов параметров устроена аналогично (1.9): перестановка $u_1 \leftrightarrow u_2$ равносильна перестановке спиновых параметров $s \leftrightarrow -s$ эквивалентных представлений. Далее будем постоянно работать с формулой факторизации, поэтому нам будет удобно записать её в краткой форме

$$L(u_1, u_2) = M_{u_2}(x) H(p) N_{u_1}(x), \quad (3.15)$$

где средняя матрица диагональная $H(p) = \text{diag}(e^{-\frac{i\pi}{2}(p-\omega''')}, e^{\frac{i\pi}{2}(p-\omega''')})$, а левая и правая с точностью до множителя обратны друг другу, $N_u(x) M_u(x) = U^{-2} - U^2$,

$$M_u(x) = \begin{pmatrix} U & -U^{-1} \\ -U^{-1} e^{\frac{i\pi}{2}x} & U e^{\frac{i\pi}{2}x} \end{pmatrix}, \quad N_u(x) = \begin{pmatrix} -U & U^{-1} e^{-\frac{i\pi}{2}x} \\ -U^{-1} & U e^{-\frac{i\pi}{2}x} \end{pmatrix}. $$

В главе 2 подробнее остановились на $s\ell_2$-симметричной спиновой цепочке, и предложили альтернативную конструкцию общего \mathbb{R}-оператора. Помимо стандартного L-оператора (1.54), она использовала операторы L^\pm (2.1), которые могут быть получены из него вырождением $u_1 \to \infty$ или $u_2 \to \infty$. В другом контексте операторы L^\pm используются для описания интегрируемости DST спиновой цепочки [20, 93]. Теперь выведем аналогичные объекты в случае тригонометрической деформации,

$$e^{-\frac{i\pi}{2}u_2} L(u_1, u_2) \to L^+(u_1) \equiv \begin{pmatrix} 1 & 0 \\ 0 & e^{\frac{i\pi}{2}x} \end{pmatrix} H(p) N_{u_1}(x) \quad \text{при} \quad u_2 \to +\infty, \quad (3.16)$$

$$e^{-\frac{i\pi}{2}u_1} L(u_1, u_2) \to L^-(u_2) \equiv M_{u_2}(x) H(p) \begin{pmatrix} -1 & 0 \\ 0 & e^{-\frac{i\pi}{2}x} \end{pmatrix} \quad \text{при} \quad u_1 \to +\infty.$$

Также как невырожденный L-оператор, они решают RLL-соотношение (1.5) с тригонометрической R-матрицей. Явный вид вырожденных решений

$$L^+(u) = \begin{pmatrix} e^{-\frac{i\pi}{2}(p-\omega''')} & 0 \\ 0 & e^{\frac{i\pi}{2}x} e^{\frac{i\pi}{2}(p-\omega''')} \end{pmatrix} \begin{pmatrix} -U & U^{-1} e^{-\frac{i\pi}{2}x} \\ -U^{-1} & U e^{-\frac{i\pi}{2}x} \end{pmatrix},$$

$$L^-(u) = \begin{pmatrix} U & -U^{-1} \\ -U^{-1} e^{\frac{i\pi}{2}x} & U e^{\frac{i\pi}{2}x} \end{pmatrix} \begin{pmatrix} -e^{-\frac{i\pi}{2}(p-\omega''')} & 0 \\ 0 & e^{\frac{i\pi}{2}(p-\omega''')} e^{-\frac{i\pi}{2}x} \end{pmatrix}.$$

При помощи справочной формулы $e^{-ip^2} e^{\pm\frac{i\pi}{2}x} e^{ip^2} = e^{\pm\frac{i\pi}{2}x} e^{i\beta (p+\omega')}$, легко убедиться, что $L^-(u)$ и $L^+(u)$ связаны преобразованием подобия (см. (2.5)),

$$e^{-ip^2} L^+(u) e^{ip^2} = L^-(u). \quad (3.17)$$

146
Отметим, что матрица \[
\begin{pmatrix}
 e^{\pm \frac{i\pi}{2} \omega} & 0 \\
 0 & e^{\pm \frac{i\pi}{2} \omega}
\end{pmatrix}
\] получается в результате двойного выражения, а значит тоже решает RLL-соотношение (1.5). Стандартный L-оператор (3.13) зависит от двух параметров, тогда как каждое однократно выражденное решение только от одного. Алгебра, задаваемая RLL-соотношением, обладает важным свойством копроизведения. Матрично переменная представления этой алгебры, снова получаем представление. К примеру $L_1^+ \cdot L_2^-$ является представлением RLL-алгебры и зависит от двух параметров. Представления этой алгебры могут оказаться эквивалентными. Применительно к интересующей нас ситуации это означает, что L-оператор (3.13) можно собрать из двух выраженных L^\pm-операторов,

\[
- e^{\frac{i\pi}{2} \omega''} L_1(u, v) \begin{pmatrix}
 e^{-\frac{i\pi}{2} \omega} & 0 \\
 0 & e^{\frac{i\pi}{2} \omega}
\end{pmatrix} = e^{-i\pi (p_2 - x_{12})^2} L_1^+(v) L_2^+(u) e^{i\pi (p_2 - x_{12})^2}, \tag{3.18}
\]

\[
- e^{\frac{i\pi}{2} \omega''} \begin{pmatrix}
 e^{-\frac{i\pi}{2} \omega} & 0 \\
 0 & e^{\frac{i\pi}{2} \omega}
\end{pmatrix} L_2(u, v) = e^{i\pi (p_1 - x_{12})^2} L_1^-(v) L_2^+(u) e^{-i\pi (p_1 - x_{12})^2}, \tag{3.19}
\]

в чём нетрудно убедиться прямым вычислением, используя факторизацию (3.15). Предыдущие выражения аналогичны формулам слияния (2.2) и (2.2) для недеформированной симметрии.

Поскольку L^+ и L^- связаны преобразованием подобия (3.17), то достаточно выраженного решения одного сорта, чтобы воспроизвести невырожденный L-оператор,

\[
- e^{-\frac{i\pi}{2} \omega''} \hat{L}_1(u, v) = L_1^+(v) L_2^+(u) \begin{pmatrix}
 e^{\frac{i\pi}{2} (p_1 + x_{12})} & 0 \\
 0 & e^{-\frac{i\pi}{2} (p_1 + x_{12})}
\end{pmatrix}, \tag{3.20}
\]

gде оператор $\hat{L}_1(u, v)$ получен из $L_1(u, v)$ каноническим преобразованием

\[
x_1 \rightarrow X_1 \equiv x_1 + p_1,
\]

\[
p_1 \rightarrow P_1 \equiv -x_1 + p_2 + x_2.
\]

Поскольку $p_1 + x_{12}$ коммутирует с канонической парой X_1 и P_1, то можно наложить связь на операторы $p_1 + x_{12} = 0$, и тогда формула слияние приобретает особенно простой вид

$L_1^+(v) L_2^+(u) \sim L_1(u, v)$.

Отметим, что выраженные решения L^\pm давно известны [106]. Чтобы записать их в виде, используемом в литературе,

\[
L^+(u) = -e^{\frac{i\pi}{2} (u + \omega''')} \begin{pmatrix}
 u & -e^{\lambda} v^{-1} \\
 e^{\lambda} v & u^{-1}
\end{pmatrix}, \quad \lambda \equiv -\frac{i\pi}{2\omega} (2u + \omega''), \tag{147}
\]
нужно ввести Вейлевскую пару \(u, v \),

\[
u = e^{-\frac{i\pi}{2} \omega p}, \quad v = e^{\frac{i\pi}{2} (p-\omega'^{n}) \omega}, \quad u v = q v u.
\]

Тогда формула факторизации (3.20) воспроизводит результат из работы [104].

3.3. Базовые соотношения сплетания и преобразование дуальности

Наша цель состоит в том, чтобы найти общий \(\mathbb{R} \)-оператор, решающий уравнение Янга–Бакстера (1.3). Общая схема его построения была изложена в параграфе 1.1 и основана на операторах элементарных перестановок параметров \(S^i \). В параграфе 2.1 предложили альтернативную конструкцию для алгебры \(sl_2 \), которая использует сплетающие соотношения для вырожденных представлений Янгина \(L^\pm \). В дальнейшем построим \(\mathbb{R} \)-оператор для модульного дубля двумя способами. Для этого нам нужно найти элементарные блоки, т.е. решить набор соотношений сплетания.

Начнём с операторов элементарных перестановок \(S^1, S^3 \) ((1.12) и (1.14)). Как отметили выше перестановка \(u_1 \leftrightarrow u_2 \) эквивалентна переходу к эквивалентному представлению \(\pi_s \rightarrow \pi_{-s} \), так что эти операторы являются двумя копиями сплетающего оператора эквивалентных представлений (см. (1.18)),

\[
D_{u_2-u_1}(p) L(u_1, u_2) = L(u_2, u_1) D_{u_2-u_1}(p), \tag{3.21}
\]

которое для наших дальнейших целей удобно переписать в более явном виде, учитывая факторизацию (3.15),

\[
D_{u_2-u_1}(p) \cdot M_{u_2}(x) H(p) N_{u_1}(x) = M_{u_1}(x) H(p) N_{u_2}(x) \cdot D_{u_2-u_1}(p). \tag{3.22}
\]

Напомним, что это соотношение имеет место и для \(\tilde{L} \)-оператора в силу модульной дуальности \(\omega \rightleftharpoons \omega' \).

Чтобы продвинуться дальше, отметим, что преобразование \(p \rightarrow -x \) и \(x \rightarrow p \) сохраняет канонические коммутационные соотношения. Значит после применения этого преобразования к генераторам и представлении \(\pi_s \) (3.4) они по-прежнему удовлетворяют определяющим коммутационным соотношениям модульного дубля (3.1). Назовём \(L \)-оператор, построенный из них, дуальным по отношению к исходному. Подчеркнём, что эту дуальность не надо путать с модульной дуальностью \(\omega \rightleftharpoons \omega' \). Соотношение сплетания (3.22) после преобразования дуальности принимает вид

\[
D_{u_2-u_1}(x) \cdot M_{u_2}(p) H(-x) N_{u_1}(p) = M_{u_1}(p) H(-x) N_{u_2}(p) \cdot D_{u_2-u_1}(x), \tag{3.23}
\]

148
где учли, что \(D_{u_2 - u_1}(-x) = D_{u_2 - u_1}(x) \) (см. (A.10)). Это наблюдение позволяет доказать соотношение сплетения

\[
D_{u_1 - v_2}(x_{12}) L_1(u_1, u_2) L_2(v_1, v_2) = L_1(v_2, u_2) L_2(v_1, u_1) D_{u_1 - v_2}(x_{12}),
\]

(3.24)

которое является определяющим для оператора элементарных перестановок \(S^2 \) (1.13). В результате находится недостающий билокальный элемент \(S^2(a) \equiv S_{12}(a) = D_a(x_{12}) \) (см. (1.47)) в конструкции \(\mathbb{R} \)-оператора.

Остановимся теперь на доказательстве (3.24). Выполним каноническое преобразование \(p \rightarrow x_{21} = x_2 - x_1, x \rightarrow p_1 \) соотношения сплетения (3.22), которое примет вид аналогичный (3.23),

\[
D_{u_1 - v_2}(x_{12}) \cdot M_{u_1}(p_1) H(x_{21}) N_{v_2}(p_1) = M_{v_2}(p_1) H(x_{21}) N_{u_1}(p_1) \cdot D_{u_1 - v_2}(x_{12}).
\]

(3.25)

Далее заметим, что дуальный \(L \)-оператор из предыдущей формулы можно представить в несколько ином факторированном виде, так что каждый матричный множитель зависит лишь от одной координаты или импульса,

\[
M_{u_1}(p_1) H(x_{21}) N_{v_2}(p_1) = -ie^{-\frac{i\pi}{a}} x_{21} \cdot H(p_1) N_{u_1}(x_1) M_{v_2}(x_2) H^{-1}(p_1) \begin{pmatrix} -e^{\frac{i\pi}{a}} & 0 \\ 0 & e^{-\frac{i\pi}{a}} \end{pmatrix}.
\]

Теперь подставим предыдущую формулу в (3.25) и учтём коммутативность трансляционно-инвариантного \(D_{u_1 - v_2}(x_{12}) \) и суммарного импульса \(p_1 + p_2 \):

\[
H(p_2) D_{u_1 - v_2}(x_{12}) H^{-1}(p_2) = H(p_1) D_{u_1 - v_2}(x_{12}) H^{-1}(p_1)
\]

что даёт

\[
D_{u_1 - v_2}(x_{12}) \cdot H(p_1) N_{u_1}(x_1) M_{v_2}(x_2) H(p_2) = H(p_1) N_{v_2}(x_1) M_{u_1}(x_2) H(p_2) \cdot D_{u_1 - v_2}(x_{12}).
\]

В силу формулы факторизации \(L \)-оператора (3.15) полученное соотношение преобразуется в (3.24) после домножения слева на \(M_{u_1}(x_1) \) и справа на \(N_{v_2}(x_2) \).

\(\square\)

Подчеркнём, что получили недостающий оператор \(S^2 \), действующий нетривиально в двух узлах цепочки, путём канонического преобразования сплетающего оператора, действующего в одном узле. В главе 5 этот трюк позволит решить задачу для конформной алгебры в высших размерностях. Таким образом все блоки \((S^1, S^2, S^3) \), необходимые чтобы построить общие операторы Янга–Бакстера, получили из сплетающего оператора эквивалентных представлений. Значит, чтобы построить интегрируемую систему в нашем примере, т.е. предъявить \(\mathbb{R} \)-оператор, достаточно лишь знания теории представлений соответствующей алгебры симметрии. Более того, как успели убедиться ранее, из таких локальных блоков строятся операторы Бакстера, позволяющие решить квантовую модель,
т.е. написать уравнения на спектр гамильтониана и предъявить собственные функции. В итоге полное описание квантовой системы основывается на одном сплетающем операторе.

Вторая конструкция \(\mathbb{R} \)-оператора, эквивалентная первой, основана на соотношениях сплетения для \(L^\pm \). Чтобы вывести их, подставим соотношение слияния двух вырожденных \(L^\pm \) операторов (3.18) в соотношение сплетения \(L \)-операторов для эквивалентных представлений (3.21) и воспользуемся справочной формулой для преобразования подобия \(e^{i\pi(p_2-x_{12})^2} p_1 e^{-i\pi(p_2-x_{12})^2} = p_1 + p_2 - x_{12} \).

\[
D_{v-u}(p_1 + p_2 - x_{12}) L_1^+(v) L_2^+(u) = L_1^+(u) L_2^+(v) D_{v-u}(p_1 + p_2 - x_{12}).
\] \((3.26) \)

Чтобы получить второе необходимое нам соотношение сплетения с переставленными \(L^+ \) и \(L^- \), учтём что они связаны преобразованием подобия (3.17). Выполним его над обьми вырожденными \(L^\pm \)-операторами,

\[
D_{v-u}(x_{12}) L_1^+(v) L_2^+(u) = L_1^+(u) L_2^+(v) D_{v-u}(x_{12}).
\] \((3.27) \)

Если же применить преобразование подобия только к одному из двух факторов,

\[
D_{v-u}(p_2 - x_{12}) L_1^+(v) L_2^+(u) = L_1^+(u) L_2^+(v) D_{v-u}(p_2 - x_{12}),
\]

\[
D_{v-u}(p_1 - x_{12}) L_1^+(v) L_2^+(u) = L_1^+(u) L_2^+(v) D_{v-u}(p_1 - x_{12}).
\]

Отметим, что приведённые формулы для сплетателей аналогичны полученным в начале главы 2 и в параграфе 2.1 в случае \(s\ell_2 \)-симметрии. Однако, в отличие от тех, эти операторы хорошо определены на пространстве представления и могут быть переписаны в интегральной форме.

3.4. Общий R-оператор и его редукции

В предыдущем параграфе сделали все предварительные шаги, чтобы построить согласно схеме из главы 1 общий R-оператор, определённый на тензорном произведении \(V_{s_1} \otimes V_{s_2} \). Для этого нужно решить пару RLL-соотношений: одно с L-оператором (3.13), а второе с \(L \)-оператором,

\[
R_{12}(u_1, u_2|v_1, v_2) L_1(u_1, u_2) L_2(v_1, v_2) = L_1(v_1, v_2) L_2(u_1, u_2) R_{12}(u_1, u_2|v_1, v_2),
\] \((3.28) \)

\[
R_{12}(u_1, u_2|v_1, v_2) \tilde{L}_1(u_1, u_2) \tilde{L}_2(v_1, v_2) = \tilde{L}_1(v_1, v_2) \tilde{L}_2(u_1, u_2) R_{12}(u_1, u_2|v_1, v_2).
\]

Параметры представления \(s_1, s_2 \) и спектральные параметры \(u, v \) связаны с \(u_1, u_2, v_1, v_2 \) формулами (3.14). Подчеркнём, что R-оператор должен удовлетворять одновременно двум
предыдущим соотношениям. В нашем построении это выполняется автоматически в силу его инвариантности при преобразовании модулярной дуальности ω → ω'.

Поскольку уже наши операторы элементарных перестановок S^i, i = 1, 2, 3, то можем автоматически выписать R-оператор в виде произведения четырёх операторов, каждый из которых есть функция от канонических координат или импульсов (см. (1.24)),

\[R_{12}(u_1, u_2|v_1, v_2) = D_{u_2-v_1}(x_{12}) D_{u_1-v_1}(p_2) D_{u_2-v_2}(p_1) D_{u_1-v_2}(x_{12}). \] (3.29)

Перепишем его более явно в терминах спинов представления, используя формулы связи (3.14), свдвинув спектральный параметр \(u - v \rightarrow u \),

\[R_{12}(u) = D_{u-(s+2)/2}(x_{12}) D_{u+(s-2)/2}(p_2) D_{u-(s-2)/2}(p_1) D_{u+(s+2)/2}(x_{12}). \] (3.30)

Достоинство такого R-оператора состоит в том, что при помощи преобразования Фурье (3.11), он переписывается также и в интегральной форме,

\[R_{12}(u) \Phi(x_1, x_2) = \int dx'_1 dx'_2 D_{u-(s+2)/2}(x_1 - x_2') D_{-\omega''-u-(s-2)/2}(x_2 - x'_2). \] (3.31)

\[\cdot D_{-\omega''-u+(s+2)/2}(x_1 - x'_1) D_{u+(s+2)/2}(x_1' - x_2') \Phi(x_1', x_2'). \]

Представления общего R-оператора (3.30) и (3.31) дополняют друг друга. Как уже отмечали в начале главы это напоминает конструкцию для SL(2, C)-симметричной спиновой цепочки.

Предложенный R-оператор решает оба RLL-соотношения, но ещё нужно убедиться, что выполняется уравнение Янга–Бакстера (1.28). Согласно общей схеме оно следует из соотношений Кокстера для операторов элементарных перестановок параметров. Двойные соотношения (1.15) очевидно выполнены (см. (A.10)), а пара тройных соотношений имеет вид

\[D_u(p_1) D_{u+v}(x_{12}) D_v(p_1) = D_v(x_{12}) D_{u+v}(p_1) D_u(x_{12}), \]

\[D_u(p_2) D_{u+v}(x_{12}) D_v(p_2) = D_v(x_{12}) D_{u+v}(p_2) D_u(x_{12}). \]

Оба этих операторных равенства эквивалентны соотношению звезда-треугольник

\[D_u(p) D_{u+v}(x) D_v(p) = D_v(x) D_{u+v}(p) D_u(x), \] (3.32)

которое также можно переписать в интегральной форме при помощи (3.11),

\[\frac{A(u)A(v)}{A(u + v)} \int_{-\infty}^{+\infty} dx'' D_{-\omega''-u}(x - x'') D_{u+v}(x'') D_{-\omega''-v}(x'' - x') = D_v(x) D_{-\omega''-u+v}(x - x') D_u(x'). \] (3.33)
Оно в самом деле выполнено (A.14) и является одним из примечательных интегральных тождеств для квантового дилогарифма.

Сформулируем теперь второй способ построить \(R \)-оператор при помощи вырожденных представлений \(L^\pm \) (3.16) для \(RLL \)-алгебры, следуя аналогии со случаем \(s\ell_2 \) симметрии, разобранным в параграфе 2.1. Решим соотношение \(RLL \)-соотношение (3.28). Для этого домножим его слева на вспомогательную матрицу

\[
\begin{pmatrix}
 e^{-i\frac{\pi}{2}p_a} & 0 \\
 0 & e^{i\frac{\pi}{2}p_a}
\end{pmatrix},
\]

а справа на

\[
\begin{pmatrix}
 e^{-i\frac{\pi}{2}p_b} & 0 \\
 0 & e^{i\frac{\pi}{2}p_b}
\end{pmatrix},
\]

и перепишем полученное соотношение в терминах \(L^\pm \) при помощи формул слияния (3.18) и (3.19),

\[
R' L_a^-(u_2) L_1^+(u_1) L_2^-(v_2) L_b^+(v_1) = L_a^-(v_2) L_1^+(v_1) L_2^-(u_2) L_b^+(u_1) R',
\] (3.34)

где ввели обозначение для подкрученного \(R \)-оператора,

\[
R' \equiv e^{i\pi(p_b-x_2a)} e^{-i\pi(p_a-x_1a)^2} \cdot R_{12}(u_1,u_2|v_1,v_2) \cdot e^{i\pi(p_a-x_1a)^2} e^{-i\pi(p_b-x_2a)^2}.
\] (3.35)

Соотношение (3.34) задано на тензорном произведении квантовых пространств четырёх узлов цепочки, два из которых (\(a \) и \(b \)) вспомогательные. Оно означает, что при протаскивании \(R' \) через произведение четырёх вырожденных L-операторов, он переставляет параметры \((u_2, u_1, v_2, v_1) \mapsto (v_2, v_1, u_2, u_1)\). Такую перестановку можно осуществить за четыре шага, переставляя только соседние параметры при помощи двух базовых соотношений сплетения: для \(L_1^+ L_2^+ \) (3.26) и \(L_1^+ L_2^- \) (3.27). В итоге \(R' \) находится в факторизованном виде,

\[
R' = D_{u_2-v_1}(x_{12}) D_{u_2-v_2}(p_a + p_1 - x_{a1}) D_{u_1-v_1}(p_2 + p_b - x_{2b}) D_{u_1-v_2}(x_{12}).
\]

После выполнения преобразований подобия (3.35) над \(R' \), находим оператор, который действует только в двух узлах цепочки и совпадает с полученным ранее результатом (3.29).

Разобранная альтернативная конструкция общего \(R \)-оператора использует пару формул слияния (3.18) и (3.19), формулу связи между двумя вырожденными L-операторами (3.17) и выражение для сплетающего оператора эквивалентных представлений модулярного дубля (3.10). Отметим, что нам не потребовался билокальный оператор \(S^2 \) (1.13). Это не кажется удивительным, поскольку в первой конструкции он получен из сплетающего оператора эквивалентных представлений преобразованием дуальности.
3.4.1. Редукции общего R-оператора

При помощи общего R-оператора (3.30) извлекается вся существенная информация об интегрируемой системе. Ограничение R-оператора на инвариантное подпространство \(V_s \otimes C^2 \) при \(s_2 = 1/2 \) приводит к \(L(u) \) (3.13) и модулярно дуальному к нему \(\overline{L}(u) \), в силу стандартных аргументов его производная по спектральному параметру в точке \(u = 0 \) равна плотности локального гамильтониана однородной спиновой цепочки, из R-оператора строятся операторы Бакстера, при помощи которых формулируется решение спектральной задачи. Покажем теперь, что из R-оператора (3.30) можно извлечь более простые R-операторы, также заданные на тензорном произведении двух бесконечномерных представлений, для чего выполним его редукцию.

В самом деле, воспользовавшись асимптотикой некомпактного квантового дилогарифма для больших значений аргумента, \(\gamma(z) \to 1 \) при \(z \to +\infty \), можно убедиться, что

\[
e^{4\pi i(2u+v)} \cdot e^{2\pi i\nu p} \cdot R_{12}(u + v|s_1, s_2) \cdot e^{-2\pi i\nu p} \to r_{12}(u|s_1, s_2) \quad \text{при} \quad v \to +\infty,
\]

где оператор \(r_{12}(u|s_1, s_2) \) в отличие от исходного R-оператора содержит вдвое меньше квантовых дилогарифмов,

\[
r_{12}(u) = \frac{e^{-2\pi i(u + \frac{s_1+s_2}{2})x_{12}} \cdot e^{2\pi i(u + \frac{s_1-s_2}{2})p_2} \cdot e^{-2\pi i(u + \frac{s_1-s_2}{2})p_1} \cdot e^{2\pi i(u - \frac{s_1+s_2}{2})x_{12}}}{\gamma(x_{12} - \frac{s_1+s_2}{2} - u) \cdot \gamma(-p_2 + \frac{s_1-s_2}{2} - u) \cdot \gamma(p_1 + \frac{s_1-s_2}{2} - u) \cdot \gamma(-x_{12} + \frac{s_1+s_2}{2} - u)}.
\]

Отметим, что зависимость \(r(u) \) от спектрального параметра устроена весьма просто и сводится к подкрупке нетривиального оператора \(r(0) \) зависимыми от \(u \) экспонентами,

\[
r_{12}(u|s_1, s_2) = e^{-2\pi i\nu p} \cdot r_{12}(0|s_1, s_2) \cdot e^{2\pi i\nu p} = e^{2\pi i\nu p} \cdot r_{12}(0|s_1, s_2) \cdot e^{-2\pi i\nu p}.
\]

Последнее равенство в предыдущей формуле мгновенно следует из трансляционной инвариантности \([r_{12}, p_1 + p_2] = 0 \). В дальнейшем принимаем сокращённое обозначение \(r_{12}^{s_1,s_2} \equiv r_{12}(0|s_1, s_2) \). Воспользуемся теперь формулой для обращения общего R-оператора (1.25) и выполним в ней редукцию (3.36), что приводит к обращению R-оператора,

\[
e^{-4\pi i(2u+v)v} \cdot e^{2\pi i\nu p} \cdot R_{12}(u + v|s_1, s_2) \cdot e^{-2\pi i\nu p} \to r_{12}^{-1}(u|s_2, s_1) \quad \text{при} \quad v \to -\infty.
\]

Проверим, что оператор \(r_{12}(u|s_1, s_2) \) (равно как и его частный случай \(r_{12}^{s_1,s_2} \)), полученный редукцией из общего R-оператора (3.30), удовлетворяет уравнению Янга–Бакстера. Начнём с \(r_{12}^{s_1,s_2} \) и проверим соотношение Янга–Бакстера без спектрального параметра,

\[
r_{23}^{s_1,s_2} \cdot r_{12}^{s_1,s_2} \cdot r_{23}^{s_2,s_3} = r_{12}^{s_2,s_3} \cdot r_{23}^{s_1,s_3} \cdot r_{12}^{s_1,s_2}.
\]

(3.40)
Доказательство сводится к вычислению пределов в уравнении Янга–Бакстера для общего R-оператора (3.30),

\[R_{23}(u-v|s_1, s_2) R_{12}(u|s_1, s_3) R_{23}(v|s_2, s_3) = R_{12}(v|s_2, s_3) R_{23}(u|s_1, s_3) R_{12}(u-v|s_1, s_2). \] (3.41)

Для этого введём в него вспомогательные эксконенты

\[e^{2\pi ivp_3}e^{2\pi i(u-v)p_3} R_{23}(u-v|s_1, s_2) e^{-2\pi i(u-v)p_2}e^{-2\pi iu p_2} R_{12}(u|s_1, s_3) e^{-2\pi iu p_1} R_{23}(v|s_2, s_3) = \]

\[= R_{12}(v|s_2, s_3) e^{2\pi ivp_3} R_{23}(u|s_1, s_3) e^{-2\pi ivp_2} e^{-2\pi iu p_2} R_{12}(u-v|s_1, s_2) e^{-2\pi iu p_1} e^{-2\pi iv p_1} \]

и вычислим предел \(u \to +\infty \) подчёркнутых факторов, редуцируя их к \(\gamma \)-оператору при помощи (3.36). После этого воспользоваться трансляционной инвариантностью и снова собрём факторы так чтобы существовал предел \(v \to +\infty \),

\[r_{23}^{s_1, s_2} r_{12}^{s_1, s_3} e^{2\pi ivp_3} R_{23}(v|s_2, s_3) e^{-2\pi ivp_2} = e^{2\pi ivp_2} R_{12}(v|s_2, s_3) e^{-2\pi iu p_1} r_{23}^{s_1, s_3} r_{12}^{s_1, s_2}. \]

Снова применяем (3.36), чтобы редуцировать подчёркнутые множители, и получаем (3.40).

Воспользовавшись формулой (3.38) для введения спектрального параметра легко убедиться, что из (3.40) следует его обобщение

\[r_{23}(u-v|s_1, s_2) r_{12}(u|s_1, s_3) r_{23}(v|s_2, s_3) = r_{12}(v|s_2, s_3) r_{23}(u|s_1, s_3) r_{12}(u-v|s_1, s_2). \] (3.42)

Таким образом как общий R-оператор (3.30), так и его редукция \(\gamma \)-оператор (3.37) заданы на тензорном произведении \(\mathbb{V}_s \otimes \mathbb{V}_s \) и удовлетворяют уравнению Янга–Бакстера.

Помимо указанных тройных соотношений имеет место также соотношение, связывающее R и \(\gamma \) операторы,

\[r_{23}^{s_1, s_2}(u-v) r_{12}^{s_1, s_3}(u) R_{23}^{s_3, s_3}(v) = R_{12}^{s_3, s_3}(v) r_{23}^{s_1, s_3}(u) r_{12}^{s_1, s_2}(u-v). \] (3.43)

Оно получается редукцией из (3.41) аналогично предыдущему вычислению.

Конструкция общего R-оператора (3.30) основана на интегральных тёкшествах для квантового дилогарифма \(\gamma \), а именно на соотношении звезда-треугольник (3.33), которое содержит интеграл от произведения шести функций \(\gamma \). Помимо (3.33) имеются также тёкшества с интегралом от трёх \(\gamma \gamma \gamma \) и четырёх \(\gamma \gamma \gamma \gamma \), которые могут быть выведены из него посредством предельных переходов. В справедливости (3.42) можно убедиться непосредственным вычислением, применив \(\gamma \gamma \gamma \)-тёкшество, тогда как (3.43) следует из \(\gamma \gamma \gamma \gamma \)-тёкшества.
Отметим, что оператор r^{s_1,s_2} (3.37) без спектрального параметра хорошо известен. Он совпадает с универсальной r-матрицей в представлении $\pi_{s_1} \otimes \pi_{s_2}$ [101]. Универсальная r-матрица [48] выражается в терминах генераторов e,f,K (3.1),

$$ r_{12} = K_1 K_2 \cdot \Phi(e_1 f_2) \cdot K_1 K_2, $$

где $\gamma(x) \equiv \Phi\left(e^{\frac{ix}{2}}\right)$. Она удовлетворяет уравнению Янга–Бакстера без спектрального параметра и ряду других определяющих соотношений, в частности он сплетает копроизведение генераторов $\Delta(G) = \Delta'(G)$,

$$ \Delta_{12}(K) = K_1 K_2, \quad \Delta_{12}(e) = (e_1 K_2 + K_1^{-1} e_2), \quad \Delta_{12}(f) = (f_1 K_2 + K_1^{-1} f_2). $$

Если перейти к представлению $\Delta^{s_1,s_2} = (\pi_{s_1} \otimes \pi_{s_2}) \circ \Delta$, то это означает

$$ r_{12}^{s_1,s_2} \Delta_{12}^{s_1,s_2}(G) = \Delta_{12}^{s_2,s_1}(G) r_{12}^{s_1,s_2}. $$

Общий R-оператор решает RLL-соотношение (3.28). Выведем его аналоги для r-оператора,

$$ r_{12}(u - v|s_1,s_2) \ell_1(u|s_1) L_2(v|s_2) = L_1(v|s_2) \ell_2(u|s_1) r_{12}(u - v|s_1,s_2), $$

$$ r_{12}(u - v|s_1,s_2) L_1(u|s_1) \ell_2(v|s_2) = \ell_1(v|s_2) L_2(u|s_1) r_{12}(u - v|s_1,s_2). $$

где операторы ℓ, ℓ получаются при помощи редукции, отличной от (3.16), из стандартного L-оператора.

$$ e^{-\frac{i\pi}{2} v} \cdot e^{2\pi i u v} \cdot L(u + v) \cdot e^{-2\pi i uv} \rightarrow \ell(u|s) \equiv \begin{pmatrix} e^{\frac{i\pi}{2} u} K_s & 0 \\ e^{\frac{i\pi}{2} u} & e^{-\frac{i\pi}{2} u} K_s^{-1} \end{pmatrix}, \quad \text{при } v \rightarrow +\infty, $$

$$ -e^{\frac{i\pi}{2} v} \cdot e^{2\pi i u v} \cdot L(u + v) \cdot e^{-2\pi i uv} \rightarrow \ell(u|s) \equiv \begin{pmatrix} e^{-\frac{i\pi}{2} u} K_s^{-1} & -f_s \\ 0 & e^{\frac{i\pi}{2} u} K_s \end{pmatrix}, \quad \text{при } v \rightarrow -\infty. $$

Обе предыдущие формулы следуют из RLL-соотношения (3.28). К примеру, чтобы получить первую из них (3.46), преобразуем его к виду

$$ e^{2\pi i u w} R_{12}(u - v + w) e^{-2\pi i w p_1} \cdot e^{2\pi i w p_1} L_1(u + w) e^{-2\pi i w p_1} \cdot L_2(v) = $$

$$ = L_1(v) \cdot e^{2\pi i w p_2} L_2(u + w) e^{-2\pi i w p_2} \cdot e^{2\pi i w p_2} R_{12}(u - v + w) e^{-2\pi i w p_1} $$

и выполним предельный переход $w \rightarrow +\infty$, учитывая формулы для преобразование подобия генераторов алгебры в представлении π_s (3.4),

$$ e^{2\pi i u} \cdot e^{-2\pi i u} = e^{\frac{2\pi}{\ell}} u \cdot e^{2\pi i u} \cdot f_s \cdot e^{-2\pi i u} = e^{-\frac{2\pi}{\ell}} u \cdot f_s. $$
Приравнивая спектральные параметры \(u = v \) в \(rL \) (3.46) и \(rL \vec{L} \) (3.47) соотношении и раскладывая их по \(e^{i\pi u} \), получаем набор сплетающих соотношений с \(\Gamma \)-оператором, среди которых содержится и формула сплетения для копроизведения (3.45). Проведя аналогичное разложение RLL-соотношения (3.28) с нейвыморожденными объектами, несложно убедиться, что оператор \(R(0|s_1, s_2) \) также сплетает копроизведение,

\[
R_{12}(0|s_1, s_2) \Delta_{12}^{s_1, s_2}(G) = \Delta_{12}^{s_2, s_1}(G) R_{12}(0|s_1, s_2).
\]

Однако в отличие от \(r^{s_1, s_2} \) для \(R(0|s_1, s_2) \) неизвестно представление через генераторы алгебры типа (3.44).

3.4.2. Редукция общего \(R \)-оператора на конечномерное подпространство

В этом параграфе получим явную формулу для ограничения общего \(R \)-оператора (3.30) на конечномерное инвариантное подпространство в одном из тензорных сомножителей при соответствующем специальном значении спинового параметра. Вычисление аналогично проделанному в параграфе 1.4.6 для эллиптической деформации. Несмотря на то, что для модульного дубля общий \(R \)-оператор можно представить как в интегральной форме (3.31), так и в виде произведения функций от оператора координаты и импульса (3.30), остаётся вопрос, как применить эти формулы на практике. Чтобы прояснить этот вопрос, для начала получим явную формулу для оператора \(R^2(1.23) \). Для этого применим тройное соотношение Кокстера (1.17),

\[
R_{12}^2(u_1, u_2|v_2) D_{u_1-v_2}(p_1) D_{u_2-v_2}(x_{12}),
\]

c k дельта функции \(\delta(x_1 - x_3) \),

\[
R_{12}^2(u_1, u_2|v_2) \cdot D_{-\omega''+u_2-u_1}(x_{13}) = \frac{A(v_2 - u_1)}{A(u_2 - u_1)} \cdot D_{-\omega''+v_2-u_1}(x_{13}) D_{u_2-v_2}(x_{23}). \tag{3.49}
\]

Как и для других алгебр симметрии нормировка в этой формуле подсказывает, какие значения спиновых параметров отвечают конечномерным представлениям. Обозначим спиновый параметр для первого пространства \(s_0 \), так что \(u_2 - u_1 = -s_0 \) (3.14). Поскольку полюса квантового дилогарифма (3.6) расположены в точках \(-\omega'' - 2nw - 2m\omega'\), где \(n, m = 0, 1, 2, \ldots \), то следует ожидать возникновение конечномерных представлений модульного дубля при \(s_0 = -\omega'' - nw - m\omega' \) (см. (3.12)). В самом деле, подставляя эти значения
спинового параметра, убеждаемся, что функция из левой части (3.49) в самом деле является производящей функцией конечномерного представления размерности \((n+1)(m+1)\),

\[
D_{n\omega+m\omega'}(x_{13}) = e^{\left(\frac{\pi i}{n\omega} + \frac{\pi i}{m\omega'}\right)x_{13}} \prod_{k=0}^{n-1} \left(1 + (-)^m e^{-\frac{\pi i}{2\omega}(x_{13}+n-1-2k)}\right) \prod_{p=0}^{m-1} \left(1 + (-)^n e^{-\frac{\pi i}{2\omega'}(x_{13}+m-1-2p)}\right).
\]

(3.50)

В справедливости предыдущей формулы легко убедиться при помощи формул для сдвига аргумента квантового дилогарифма (A.7). Таким образом конечномерное представление реализовано на пространстве с базисом из функций

\[
e^{\frac{\pi i}{n\omega}x_1 + \frac{\pi i}{m\omega'}x_2}, \text{ где } k = 0, 1, \ldots, n, \ p = 0, 1, \ldots, m.
\]

Далее воспользуемся первой факторизацией из (1.26) для \(R\)-оператора, чтобы вычислить

\[
R_{12}(u_1, u_2|v_1, v_2) \cdot D_{-\omega''-s_0}(x_{13}) \Phi(x_2),
\]

и применим теперь \(R^1\),

\[
R^1_{12}(u_1|v_1, u_2) = D_{u_2-v_1}(x_{12}) D_{u_1-v_1}(p_2) D_{u_1-u_2}(x_{12}).
\]

Сперва разберёмся с подчёркнутыми факторами,

\[
D_{u_1-v_1}(p_2) D_{u_1-u_2}(x_{12}) \cdot D_{u_2-v_2}(x_{23}) \Phi(x_2) = \\
= A(v_1 - u_1) \int_{-\infty}^{+\infty} dx D_{v_1-u_1-\omega''}(x_2-x) D_{u_1-u_2}(x_1-x) D_{u_2-v_2}(x-x_3) \Phi(x),
\]

(3.51)

где для перехода к интегральному представлению воспользовались (3.10), (3.11). Чтобы вычислить этот интеграл, представим подчёркнутый фактор в виде функции от оператора импульса, применимого к \(\delta\)-функции,

\[
D_{u_1-u_2}(x_1-x) = A(-s_0) D_{-s_0-\omega''}(p_1) \cdot \delta(x_1-x),
\]

tак что интеграл в (3.51) мгновенно вычисляется. Собирая вместе все предыдущие формулы, получаем окончательный результат,

\[
\Re_{12}(u|s_0, s) \cdot D_{-\omega''-s_0}(x_{13}) \Phi(x_2) = A(-u - s_0/2 + s/2) A(-u - s_0/2 - s/2).
\]

(3.52)

\[
\cdot D_{u-u} D_{u-\frac{m}{2}} D_{u-\frac{m}{2}} \cdot D_{-\omega''-s_0}(p_2) \cdot D_{u-u} D_{u-\frac{m}{2}} D_{u-\frac{m}{2}} \Phi(x_2).
\]

К этой формуле относятся все те замечания, которые были указаны выше в параграфе 1.4.6 по поводу её эллиптического аналога (1.155). Удобство этой формулы в том, что

157
при значениях спинового параметра s_0, отвечающих конечномерным представлениям, оператор $D_{-\omega''-s_0}(p_2)$ есть конечная сумма из $(n+1)(m+1)$ операторов сдвига, так что не составляет проблем применить его к функциям справа от него. Подчеркнём, что эта формула является следствием дуальности между локальными и билокальными сплетателями, обсуждавшейся в параграфе 3.3, ввиду которой ядро сплетающего оператора эквивалентных представлений в точности совпадает с S^2, т.е. с оператором умножения на функцию.

В начале этой главы в качестве мотивации кратко обсудили интегрируемую систему с группой симметрии $SL(2,\mathbb{C})$, использующую интегральную форму сплетающих операторов. Ясно, что для неё тем же методом можно получить явную формулу для ограничения R-оператора на конечномерное представление в одном из тензорных факторов.

Чтобы проиллюстрировать формулу (3.52) на конкретном примере воспроизведём посредством неё L-оператор (3.13). Для этого выберем спиновый параметр $s_0 = -\omega' - \omega''$, т.е. $m = 1$. Тогда производящая функция (3.50) двумерного представления в первом пространстве имеет вид

$$D_{-\omega''-s_0}(x_{13}) = e^{\frac{i\pi}{2\omega}x_{13}} + e^{-\frac{i\pi}{2\omega}x_{13}},$$

а значит базис \mathbb{C}^2 составляют функции: $e_1 = e^{\frac{i\pi}{2\omega}x_1}$, $e_2 = e^{-\frac{i\pi}{2\omega}x_1}$. Разностный оператор из (3.52):

$$D_{-\omega''-s_0}(p_2) = e^{\frac{i\pi}{2\omega}p_2} + e^{-\frac{i\pi}{2\omega}p_2},$$

так что с точностью до постоянного множителя (3.52) принимает вид

$$\cosh\frac{i\pi}{2\omega}(x_{12} - u + s/2 - \omega/2) \cdot \cosh\frac{i\pi}{2\omega}(x_{23} - u - s/2 - \omega/2 - \omega') \cdot \Phi(x_2 - \omega') +$$

$$+ \cosh\frac{i\pi}{2\omega}(x_{12} + u - s/2 + \omega/2) \cdot \cosh\frac{i\pi}{2\omega}(x_{23} + u + s/2 + \omega/2 + \omega') \cdot \Phi(x_2 + \omega').$$

Чтобы получить окончательный результат, осталось выделить этим выражения множители при $e^{\frac{i\pi}{2\omega}(\pm x_1 \pm x_3)},$

$$R_{12}(u - \omega - \omega'/2) \cdot ie^{\frac{i\pi}{2\omega}x_1} \Phi(x_2) = \left[e^{\frac{i\pi}{2\omega}x_1} \cdot \left(e^{\frac{i\pi}{2\omega}K_s - e^{-\frac{i\pi}{2\omega}K_s^1}} + e^{-\frac{i\pi}{2\omega}x_1} \cdot e_s\right) \Phi(x_2),

$$R_{12}(u - \omega - \omega'/2) \cdot ie^{\frac{i\pi}{2\omega}x_1} \Phi(x_2) = \left[e^{\frac{i\pi}{2\omega}x_1} \cdot f_s + e^{-\frac{i\pi}{2\omega}x_1} \cdot \left(e^{\frac{i\pi}{2\omega}K_s^1 - e^{-\frac{i\pi}{2\omega}K_s} \right) \Phi(x_2).$$

Сравнивая предыдущее выражение с (3.13), находим ожидаемый ответ,

$$R_{12}(u - \omega - \omega'/2) - \omega' - \omega'')|_{\mathbb{C}^2 \otimes \mathbb{V}_s} = -iA(-u + s/2 + \omega' + \omega/2) A(-u - s/2 + \omega' + \omega) \cdot L(u).$$
3.5. Сравнение с конструкцией \mathbb{R}-оператора для тригонометрической деформации

Модулярный дубль состоит из двух копий тригонометрически деформированной алгебры sl_2, связанных друг с другом условием на параметр деформации. При этом каждый сплетающий оператор, использованный при построении \mathbb{R}-оператора для модулярного дубля, склеен из двух сплетающих операторов для $\mathcal{U}_q(sl_2)$ и $\mathcal{U}_q(sl_2)$. Ситуация аналогична примеру недеформированной симметрии, разобранному в начале главы, где сплетающий оператор эквивалентных представлений $\partial^a_z\partial^a_z$ группы $SL(2, \mathbb{C})$ собран из двух сплетающих операторов ∂^a_z и $\partial^\bar{a}_z$ для двух подалгебр sl_2. Проследим эту аналогию на имеющихся формулках, сравнив сплетающие операторы, полученные в этой главе, со сплетающими операторами для тригонометрической деформации из параграфа 1.3. Для этого сначала выполним замену переменных

$$z = e^{\frac{i\pi}{2}z} ; \quad q^{\partial_z} = e^{-\frac{i\pi}{2}p}$$

в представлении конечно-разностными операторами первой тройки генераторов модулярного дубля (3.4),

$$E_s = i z \cdot (q^{z\partial_z-\ell} + q^{-z\partial_z+\ell}) ; \quad F_s = \frac{i}{z} \cdot (q^{z\partial_z+\ell} + q^{-z\partial_z-\ell}) ; \quad K_s = q^{z\partial_z},$$

где введён новый параметр представления $\ell \equiv -\frac{1}{2} - \frac{s}{2\omega'},$ так что для пары эквивалентных представлений $s \leftrightarrow -s \leftrightarrow \ell \leftrightarrow -\ell - 1$ (см. (1.9)). При помощи преобразования подобия свяжем тройку генераторов модулярного дубля (3.4) и $\mathcal{U}_q(sl_2)$ (1.75),

$$z^{\ell-\frac{1}{2\omega'}} \cdot (E_s ; F_s ; K_s) \cdot z^{-\ell+\frac{1}{2\omega'}} = (-S^+(\ell) ; S^-(\ell) ; iK(\ell)).$$

Свяжем теперь L-операторы для модулярного дубля (3.13) и для тригонометрической деформации (1.77). Чтобы не возникло путаницы в этом параграфе, снабдим индексом \sharp операторы для модулярного дубля, а индексом \flat операторы для $\mathcal{U}_q(sl_2)$.

$$z^{\ell-\frac{1}{2\omega'}} \cdot \sigma_3 L^\sharp(u\omega' - \omega/2|s) \cdot z^{-\ell+\frac{1}{2\omega'}} = L^\sharp(u|\ell)$$

Подставим эту формулу связи в соотношение сплетения (1.19) для эквивалентных представлений модулярного дубля, откуда следует, что оператор $z^{\ell-1-\frac{1}{2\omega'}} \cdot W_s \cdot z^{-\ell+\frac{1}{2\omega'}}$ сплетает эквивалентные представления тригонометрически деформированной sl_2 наряду с
В (2ℓ + 1) (1.80). Чтобы сопоставить два сплетателя, воспользуемся явным вырахением для W(ℓ) (3.10) и представим функцию D в виде бесконечного произведения (A.6),

\[z^{-\ell-1-\frac{\omega}{2\pi}} \cdot W_\lambda \cdot z^{\ell+\frac{\omega}{2\pi}} = \frac{c(\ell)}{z^{2\ell+1}} \left(\frac{q^{2z\wp_{\lambda}-4\ell}; q^2}{q^{2z\wp_{\lambda}+2}; q^2} \right) \frac{\left(q^{2z\wp_{\lambda}+2r}; q^2 \right)}{\left(q^{2z\wp_{\lambda}-4r}; q^2 \right)} q^{-(2\ell+1)z\wp_{\lambda}}, \] (3.56)

где постоянная \(c(\ell) = e^{-2\pi i(\frac{2\ell}{\omega} - \omega')}. \) Как видим всё отличие от сплетателя W(2ℓ + 1) заключается в дополнительном факторе, выделенном рамкой, который коммутирует со всеми генераторами \(S^+, S^-, K \) тригонометрически деформированной алгебры.

Установим теперь аналогичную связь между билокальным оператором элементарных перестановок \(S^2 \equiv S_{12} \) (1.13) для двух квантовых алгебр. Для этого воспользуемся инвариантностью L-опператора (3.13) относительно вращений вдоль недеформированного направления: \(\sigma_3 L^2(u) \sigma_3 = e^{2\pi i\omega} L^2(u) e^{2\pi i\omega}, \) и подставим формулу связи (3.55) двух L-операторов в определяющее соотношение (1.13). В результате подкрученный оператор для модульного дубля \((z_1z_2)^\frac{1}{2} e^{-2\pi i\omega_2} \cdot S_{12}^2(u\omega') \cdot e^{2\pi i\omega_2}\) наряду с оператором \(S_{12}^2(u) \) (1.81) решает (1.13) для тригонометрической деформации,

\[(z_1z_2)^\frac{1}{2} e^{-2\pi i\omega_2} \cdot S_{12}^2(u\omega') \cdot e^{2\pi i\omega_2} = c(\ell) \cdot z^{1/2} \left(\frac{z_{21}^* q^{1-u}; q^2}{z_{21}^* q^{1+u}; q^2} \right) \frac{\left(z_{21}^{1/2} q^{r+ru}; q^2 \right)}{\left(z_{21}^{1/2} q^{r-ru}; q^2 \right)}, \] (3.56)

где постоянная \(c(\ell) = e^{-2\pi i\omega u}. \) Видим, что отличие предыдущего выражения от (1.81) состоит в модульном факторе, заключённом в рамку, который невозможно однозначно фиксировать, работая лишь с одной тройкой генераторов и решая определяющие сплетающие соотношения для тригонометрической деформации. Вторая тройка генераторов модульного дубля (подалгебра \(U_q(s_{12}) \)) позволяет “увидеть” этот модульный блок и однозначно фиксирует его. Поскольку общий \(\mathbb{R}-\)оператор строится из элементарных сплетателей, то \(\mathbb{R}-\)оператор для симметрии \(U_q(s_{12}) \) составляет “половину” \(\mathbb{R}-\)оператора для модульного дубля. При подключении генераторов \(U_q(s_{12}) \) восстанавливается недостающий кусок, благодаря которому \(\mathbb{R}-\)оператор становится хорошо определённым объектом, имеющим не только формальный алгебраический смысл, и допускает интегральное представление (3.31).
3.6. Заключение

Впервые R-оператор для модульного дубля был построен в работе [31] при решении RLL-соотношения с тригонометрическим L-оператором. Он был получен в виде произведения функции от оператора s_{12} и универсальной R-матрицы (3.44),

$$R_{12}(u|s_1, s_2) = r_{12}^{s_1,s_2}e^{\pi i s_{12}}D_u(s_{12}),$$

где оператор s_{12} выражается через копроизведение от оператора Казимира

$$4\cos^2\left(\frac{\pi s_{12}}{2\omega}\right) = (\pi_{s_1} \otimes \pi_{s_2})\Delta(C).$$

Отметим, что по виду эта формула аналогична хорошо известной форме R-оператора для $s\ell_2$-цепочки

$$R_{12}(u) = \frac{\Gamma(J + 1 + u)}{\Gamma(J + 1 - u)},$$

где J — „квадратный корень“ из оператора Казимира, $J(J+1) = (\vec{S}_1 + \vec{S}_2)^2$. Таким образом формула (3.57), будучи тригонометрической деформацией, страдает теми же недостатками, что и её недеформированный аналог (3.58). Чтобы её применить для практических вычислений, нужно сначала выполнить разложение тензорного произведения пары представлений на неприводимые, что требует использования коэффициентов Клебша-Гордана. Форма R-оператора, предложенная в настоящей главе, полностью самодостаточно, и для её применений на практике не требуется подготовительных шагов. Она содержит в себе информацию о структуре копроизведения. В частности из неё можно вывести коэффициенты Клебша-Гордана.

Поскольку конструкция R-оператора следует главе схеме из главы 1, то, стартуя с него, можно аналогичным образом подняться на уровень глобальных операторов и построить Q-операторы Бакстера. Также было бы интересно построить иной набор операторов Бакстера, используя для этого выражения R-оператора. Поскольку строительные блоки заметно упрощаются, то и сами Q-операторы будут устроены намного проще. Кроме того, следуя аналогии с $SL(2,\mathbb{C})$ группой, представляется интересным выполнить переход к представлению разделённых переменных при помощи операторов Бакстера, и найти соответствующее унитарное преобразование и подходящую меру.
Глava 4

Спинорная R-матрица

В этой главе переходим к изучению интегрируемых цепочек с (псевдо)ортогональной симметрией. Начнём с соответствующих решений уравнения Янга–Бакстера, заданных на конечномерных пространствах, и сосредоточим особое внимание на числовой R-матрице, определённой на тензорном произведении двух спинорных представлений. В частности проверим непосредственным вычислением, что она удовлетворяет уравнению Янга–Бакстера и предъявим интегральное тождество, ответственное за это. После этого обратимся к решениям, заданным на тензорном произведении конечномерного и бесконечномерных пространств, и найдём L-оператор для so(d), соответствующий спинорной R-матрице. Конструкцию решений, определённых на тензорном произведении двух бесконечномерных пространств, отложим до следующей главы.

4.1. Введение

Пусть \mathcal{A} алгебра Ли и T_a ($a = 0, 1, 2, \ldots$) представления \mathcal{A} на пространствах V_a. Рассмотрим операторы $R_{ab}(u) \in \text{End}(V_a \otimes V_b)$, где u спектральный параметр. Скажем, что \mathcal{A} служит алгеброй симметрии для оператора $R_{ab}(u)$ если $\forall g \in \mathcal{A}$

$$
\left(T_a(g) \otimes I_b + I_a \otimes T_b(g) \right) R_{ab}(u) = R_{ab}(u) \left(T_a(g) \otimes I_b + I_a \otimes T_b(g) \right),
$$

где I_a и I_b обозначают единичные операторы на V_a и V_b соответственно. Рассмотрим семейство RRR уравнений Янга–Бакстера на оператор $R_{ab}(u)$:

$$
R_{ab}(u - v) R_{bc}(u) R_{ab}(v) = R_{bc}(v) R_{ab}(u) R_{bc}(u - v) \in \text{End}(V_a \otimes V_b \otimes V_c), \quad (4.1)
$$

где пространства представлений V_a, V_b, V_c могут быть различными в случае общего положения. Известен эффективный способ построения нетривиальных решений кубического уравнения Янга–Бакстера по известному решению. Проявляям эту процедуру последовательностью специализаций в уравнении Янга–Бакстера (4.1):

$$
V_0 \otimes V_0 \otimes V_0 \rightarrow V_a \otimes V_0 \otimes V_0 \rightarrow V_a \otimes V_a \otimes V_0 \rightarrow V_a \otimes V_a \otimes V_a \rightarrow
$$

$$
\rightarrow V_b \otimes V_a \otimes V_a \rightarrow V_b \otimes V_b \otimes V_a \rightarrow V_b \otimes V_b \otimes V_b \rightarrow \cdots
$$
и соответствующей последовательностью решений
\[R_{0,0} \to R_{a,0} \to R_{a,a} \to R_{b,a} \to R_{b,b} \to \cdots \]

Стараемся с простейшего известного решения \(R_{0,0} \) уравнения Янг–Бакстера (4.1), определённого на пространстве \(V_0 \otimes V_0 \otimes V_0 \), где \(V_0 \) пространство в некотором смысле простейшего представления, к примеру это может быть определяющее представление матричной алгебры Ли \(A \). Далее введём другое представление \(T_a \), заданное на пространстве \(V_a \) (конечномерное или бесконечномерное) и решим уравнение Янг–Бакстера (4.1), ограниченное на пространство \(V_a \otimes V_0 \otimes V_0 \). Оно является квадратичным уравнением на оператор \(R_{a,0} \). В частном случае это уравнение задаёт коммутационные соотношения Янгиана алгебры Ли \(A \) (если \(V_0 \) пространство определяющего представления и \(V_a \) пространство представления Янгиана). На следующем шаге, решая уравнение Янг–Бакстера (4.1), ограниченное на пространство \(V_a \otimes V_0 \otimes V_0 \), найдём \(R_{a,a} \). Имеются хорошо известные аргументы (основанные на соотношениях сплетения произведения трёх \(L \)-операторов), почему \(R_{a,a} \) автоматически удовлетворяет уравнению Янг–Бакстера (4.1) на пространстве \(V_a \otimes V_0 \otimes V_0 \). Тем не менее это соотношение можно проверить и напрямую. Таким образом решение \(R_{a,a} \) кубического уравнения Янг–Бакстера построено за несколько шагов, начиная с простейшего \(R_{0,0} \), и на каждом шаге нужно решать линейное или квадратичное уравнение.

Напомним [68] как эта схема работает для алгебры \(A \simeq so(d) \simeq \text{spin}(d) \), принимая для простоты, что \(d \) чётное. Отметим, что не составляет труда переписать все последующие формулы для \(so(p,q) \) при \(p+q = d \). Соответствующая фундаментальная \(R \)-матрица \(R^0(u) \), определенная на тензорном произведении \(V_0 \otimes V_0 \) двух фундаментальных (определяющих) представлений \(d \)-мерного представления \(so(d) \), имеет вид

\[(R^0)^{ij}_{12}(u) = u \delta^{i2}_{j1} \delta^{i2}_{j2} - \frac{u}{u + d - 1} \delta^{i1}_{j1} \delta^{i2}_{j2} , \quad (4.2) \]

что также полезно проиллюстрировать диаграммой

\[R^0(u) = u \bigcirc + \bigcirc - \frac{u}{u + d - 1} \bigcirc \bigcirc \quad (4.3) \]

\(R^0 \) решает уравнение Янг–Бакстера

\[R^0_{12}(u - v) R^0_{23}(u) R^0_{12}(v) = R^0_{23}(v) R^0_{12}(u) R^0_{23}(u - v) \in \text{End}(V_0 \otimes V_0 \otimes V_0) . \quad (4.4) \]

Его можно считать простейшим решением в иерархии решений универсального уравнения Янг–Бакстера (4.1), связанного с алгеброй Ли \(so(d) \). Оно было найдено в 1978 г. А. Замолодчиковым и Ал. Замолодчиковым [107, 108].

163
Далее введём спинорное представление $so(d)$ на пространстве V размерности 2^d. Обозначим $\gamma_a \ (a = 1, \ldots, d)$ 2^d-мерные гамма-матрицы в \mathbb{R}^d, действующие на V как линейные операторы. Операторы γ_a представляют генераторы алгебры Клиффорда

$$\gamma_a \gamma_b + \gamma_b \gamma_a = 2 \delta_{ab} \cdot 1 .$$

(4.5)

Как векторное пространство алгебра Клиффорда имеет размерность 2^d. Стандартный базис в этом пространстве состоит из антисимметризованных произведений гамма-матриц $\gamma_a \ (a = 1, \ldots, d)$: $\gamma_{A_k} \equiv \gamma_{a_1} \cdots \gamma_{a_k}$ ($\forall k \leq d$, $\forall k > d$) · $\gamma_{A_k} = 0$ ($\forall k \leq d$), $\gamma_{A_k} = 0$ ($\forall k > d$).

(4.6)

Затем, следуя очерченной выше схеме, будем искать оператор $L^0(u)$ на пространстве $V_0 \otimes V$, удовлетворяющий квадратичному соотношению

$$R^0_{23}(u - v) L^0_{12}(u) L^0_{13}(v) = L^0_{12}(v) L^0_{13}(u) R^0_{23}(u - v) \in \text{End}(V \otimes V_0 \otimes V_0),$$

(4.7)

где $R^0_{23}(u)$ фундаментальная R-матрица (4.2). Решение этого уравнения было найдено в [68] (см. также [57, 109–111]),

$$L^0(u) = u \otimes I_n - \frac{1}{4} [\gamma^a, \gamma^b] \otimes e_{ab} ,$$

(4.8)

gде e_{ab} матричные единицы, 1 и I_n единичные операторы в пространстве спинорного и определяющего представления соответственно; подразумевается суммирование по повторяющимся индексам.

Далее из универсального уравнения Янга–Бакстера (4.1) получаем линейное уравнение на R-матрицу $R_{12}(u)$, определённую на тензорном произведении $V \otimes V$ двух спинорных представлений

$$R_{12}(u - v) L^0_{13}(u) L^0_{23}(v) = L^0_{13}(v) L^0_{23}(u) R_{12}(u - v) \in \text{End}(V \otimes V \otimes V_0).$$

(4.9)

В [68] (см. также [57, 109, 110]) спинорная R-матрица искалась в SO(d)-инвариантной форме

$$R(u) = \sum_{k=0}^{\infty} \frac{R_k(u)}{k!} \gamma_{a_1} \cdots \gamma_{a_k} \otimes \gamma^{a_1} \cdots \gamma^{a_k} \in \text{End}(V \otimes V) .$$

(4.10)

В дальнейшем будет удобно считать, что индекс суммирования k в правой части (4.10) пробегает бесконечное множество значений, однако суммирование автоматически обрезается.
сверху ввиду условия \(k \leq d \) (см. (4.6)). В работе [68] сделано утверждение, что R-матрица (4.10) удовлетворяет RLL-соотношению (4.9), если коэфф
фициентные функции \(R_k(u) \) подчинены рекуррентному соотношению
\[
R_{k+2}(u) = \frac{u + k}{k - (u + d - 2)} R_k(u) .
\] (4.11)
Однако не было проведено прямое вычисление, доказывающее, что \(R(u) \) решает уравнение Янга–Бакстера на пространстве \(V \otimes V \otimes V \)
\[
R_{12}(u) R_{23}(u + v) R_{12}(v) = R_{23}(v) R_{12}(u + v) R_{23}(u) \in \text{End}(V \otimes V \otimes V) .
\] (4.12)
В частности это связано с громоздкостью гамма-матричной структуры в предыдущем выражении. Основная цель этой главы – выполнить такую проверку. Чтобы избежать много
кратного суммирования по повторяющимся индексам, применён техник произво
дящих функций и перепишем сумму в (4.10) в виде интеграла по вспомогательному параметру. Это позволит провести вычисление в скаком виде. Это вычисление выполнено в параграфе 4.3. Вывод рекуррентного соотношения (4.11) на коэфффициентные функции содер жится в параграфе 4.4.1.

Рассмотрим подробнее спинорную R-матрицу (4.10). Выведем для начала те её свойства, которые основаны на весьма общих соображениях и не требуют специальной техники произво
дящих функций. В последующих параграфах сформулированы и доказаны осталь
ние свойства.

Известно, что спинорное представление \(T \) генераторов \(M_{ab} \) алгебры Ли \(\text{so}(d) \) строится при помощи гамма-матриц \(T(M_{ab}) = \frac{i}{2} \gamma_{ab} \) (4.6). Далее легко проверить, что R-матрица (4.10) инвариантна относительно \(\text{spin}(d) \), т.e.
\[
(\gamma_{ab} \otimes 1 + 1 \otimes \gamma_{ab}) R(u) = R(u) (\gamma_{ab} \otimes 1 + 1 \otimes \gamma_{ab}) , \quad \forall a, b ,
\]
а также она коммутирует с тензорным произведением двух киральных гамма-матриц
\[
(\gamma_{d+1} \otimes \gamma_{d+1}) R(u) = R(u) (\gamma_{d+1} \otimes \gamma_{d+1}) ,
\] (4.13)
что означает присутствие дополнительной \(u(1) \) симметрии \(R(u) \).

Киральная гамма-матрица \(\gamma_{d+1} \) в (4.13) определена соотношениями
\[
\gamma_{d+1} = \alpha \gamma_{1 \ldots d} , \quad \alpha^2 = (-)^{\frac{d}{2}} ; \quad \gamma_{d+1}^2 = 1 ; \quad \{ \gamma_{d+1} , \gamma_a \} = 0 \text{ at } a = 1, \ldots , d . \] (4.14)
Существует представление гамма-матриц, в котором она принимает вид \(\gamma_{d+1} = \text{diag}(I, -I) \).
Отметим, что рекуррентные соотношения (4.11) независимы для серий чётных $R_{2k}(u)$ и нечётных $R_{2k+1}(u)$ коэффициентных функций. Общее решение этих уравнений имеет вид

$$R_{2k}(u) = A(u)(-1)^k \frac{\Gamma(k + \frac{u}{2})\Gamma\left(\frac{u+d}{2} - k\right)}{\Gamma\left(\frac{u}{2}\right)\Gamma\left(\frac{d}{2}\right)}, \quad R_{2k+1}(u) = B(u)(-1)^k \frac{\Gamma(k + \frac{u+1}{2})\Gamma\left(\frac{u+d-1}{2} - k\right)}{2\Gamma\left(\frac{u+1}{2}\right)\Gamma\left(\frac{u+1}{2}\right)},$$

где A и B произвольные функции спектрального параметра u. К примеру, если A и B полиномиальны по спектральному параметру, то и коэффициентные функции в (4.15) тоже полиномиальны. Поэтому будет удобно разложить спинорную R-матрицу (4.10) в сумму

$$R(u) = R^+(u) + R^-(u),$$

где (4.6)

$$R^+(u) = \sum_{k=0}^{\infty} \frac{R_{2k}(u)}{(2k)!} \gamma_{A_{2k}} \otimes \gamma_{A_{2k}}, \quad R^-(u) = \sum_{k=0}^{\infty} \frac{R_{2k+1}(u)}{(2k+1)!} \gamma_{A_{2k+1}} \otimes \gamma_{A_{2k+1}}.$$

Будем называть $R^+(u)$ и $R^-(u)$ положительной и отрицательной частями спинорной R-матрицы соответственно.

Рассмотрим разложение спинорной R-матрицы в сумму

$$R(u) = P^+ R(u) + P^- R(u),$$

где P^{\pm} проекторы

$$P^\pm = \frac{1}{2} (1 \otimes 1 \pm \gamma_{d+1} \otimes \gamma_{d+1}) \quad P^+P^- = P^-P^+ = 0, \quad (P^\pm)^2 = P^\pm.$$

Утверждение. Чётная и нечётная части (4.16) спинорной R-матрицы выделяются проекционами P^\pm, т.е.

$$R^+(u) = P^+ R(u), \quad R^-(u) = P^- R(u),$$

$$P^\pm R^\pm(u) = R^\pm(u), \quad P^\pm R^\mp(u) = 0, \quad R^\pm(u) R^\mp(v) = 0.$$

В самом деле, из явного выражения для коэффициентных функций (4.15) непосредственно видно, что они удовлетворяют соотношениям взаимности

$$R_{2k}(u) = (-1)^k \frac{1}{k!} \gamma_{A_k} \otimes \gamma_{A_k} = \frac{(-1)^k}{(d - k)!} \gamma_{A_{d-k}} \otimes \gamma_{A_{d-k}}.$$

Учитывая вид базисных элементов алгебры Клиффорда (4.6) и определение киральной гамма-матрицы, имеем

$$\left(\gamma_{d+1} \otimes \gamma_{d+1}\right) \frac{1}{k!} \gamma_{A_k} \otimes \gamma_{A_k} = \frac{(-1)^k}{(d - k)!} \gamma_{A_{d-k}} \otimes \gamma_{A_{d-k}}.$$
где мультииндексы в левой и правой частях дополнительны друг другу, т.е. \(A_{d-k} \cap A_k = \emptyset \) и \(A_{d-k} \cup A_k = \{1, 2, \ldots, d\} \). Из (4.21) и (4.22) немедленно следует (4.19). Соотношения (4.20) есть следствия (4.18) и (4.19).

Утверждение. Уравнение Янга–Бакстера (4.12) эквивалентно следующим соотношениям на \(R^+ \) и \(R^- \) (4.16):

\[
R_{23}^+ R_{12}^+ R_{23}^- = R_{12}^+ R_{23}^+ R_{12}^-, \quad R_{23}^+ R_{12}^- R_{23}^- = R_{12}^- R_{23}^- R_{12}^+, \quad R_{23}^+ R_{12}^+ R_{23}^- = R_{12}^+ R_{23}^- R_{12}^-, \quad \text{для зависимости от спектрального параметра такая же как в (4.12).}
\]

Действительно, уравнение Янга–Бакстера \(R_{23}^+ R_{12}^+ R_{23}^- = R_{12}^+ R_{23}^+ R_{12}^- \) получаем из (4.12), действуя проекторами \(P_{12}^+ \) и \(P_{23}^+ \) слева и справа и учитывая коммутационные соотношения

\[
P_{12}^+ R_{23}^- = R_{23}^- P_{12}^+, \quad P_{23}^+ R_{12}^- = R_{12}^- P_{23}^+.
\]

Соотношение \(R_{23}^+ R_{12}^- R_{23}^- = 0 \) основано на свойствах проектора

\[
R_{23}^+ R_{12}^- R_{23}^- = R_{23}^- R_{12}^+ P_{23}^+ R_{23}^- = R_{23}^- P_{23}^- R_{12}^+ R_{23}^- = 0,
\]

Протаскивая проектор, учили, что \(R_{12}^- P_{23}^+ = P_{23}^- R_{12}^- \).

Подчеркнём, что ввиду (4.23) соотношение Янга–Бакстера (4.12) выполняется для линейной комбинации \(R(u) = \alpha(u)R^+(u) + \beta(u)R^-(u) \) с произвольными коэффициентными функциями \(\alpha(u) \) и \(\beta(u) \). Иначе говоря функции \(A(u) \) и \(B(u) \) в (4.15) не фиксируются уравнением (4.12). Более того при помощи (4.23), легко убедиться в том, что решения \(R(u) \) уравнения Янга–Бакстера (4.12) допускают дискретные преобразования (запишем преобразование для чётной и нечётной частей \(R^\pm(u), R^\mp(u) \)):

\[
R^+ \rightarrow R^+, \quad R^- \rightarrow \pm R^- (\gamma_{d+1} \otimes 1) = \mp (\gamma_{d+1} \otimes 1) R^-, \quad (4.24)
\]

\[
R^+ \rightarrow R^+, \quad R^- \rightarrow \pm R^- (1 \otimes \gamma_{d+1}) = \mp (1 \otimes \gamma_{d+1}) R^-.
\]

Утверждение. Чётная и нечётная части (4.16) спинорной \(R \)-матрицы удовлетворяют соотношению *унитарности*

\[
R^+(u) R^+(u) = h_+(u) P^+, \quad R^-(u) R^-(u) = h_-(u) P^-,
\]

\[
(4.25)
\]

167
где функции \(h_+(u) \), \(h_-(u) \) строятся из коэффициентов \(R_k(u) \) (4.15)

\[
h_+(u) = 2 \sum_{k=0}^{d/2} \left(\frac{d}{2k} \right) R_{2k}(u) R_{2k}(-u) = A(u)A(-u) \prod_{k=0}^{d-1} (k^2 - u^2),
\]

\[
h_-(u) = 2 \sum_{k=0}^{d/2-1} \left(\frac{d}{2k + 1} \right) R_{2k+1}(u) R_{2k+1}(-u) = B(u)B(-u) \prod_{k=1}^{d-1} (k^2 - u^2).
\]

Отметим наличие проекторов \(P^\pm \) (4.18) в правых частях соотношений (4.25).

Во-первых из явного выражения для коэффициентных функций (4.15) видно, что при специальных значениях спектрального параметра спинорная \(R \)-матрица превращается в проектор (4.18):

\[
R^{+}_1(u) = \frac{\epsilon}{\frac{d}{2}} P^+ + O(\epsilon^2) \quad \text{при} \quad \epsilon \to 0.
\]

С учётом этого факта видим, что первое соотношение Янга–Бакстера в (4.23) при \(v = -u + \epsilon \) и \(\epsilon \to 0 \) приводит к

\[
R^{+}_{23}(u) P^{+}_{12} R^{+}_{23}(-u) = R^{+}_{12}(-u) P^{+}_{23} R^{+}_{12}(u).
\]

Это соотношение эквивалентно

\[
P^{+}_{12} R^{+}_{23}(u) R^{+}_{23}(-u) = R^{+}_{12}(-u) R^{+}_{12}(u) P^{+}_{23},
\]

откуда следует, что \(R^{+}_{12}(u) R^{+}_{12}(-u) \sim P^{+}_{12} \). Аналогичным образом второе соотношение Янга–Бакстера в (4.23) приводит к

\[
R^{-}_{23}(u) R^{-}_{12}(-u) \sim P^{-}_{12}.
\]

Спинорная \(R \)-матрица помимо прочего также удовлетворяет важному соотношению кроссинг-унитарности (см. [112] (3.10))

\[
\text{tr}_2 \left(R_{12}(u) R_{23}(-d - u) \right) = h(u) P_{13},
\]

где \(P_{13} \) оператор перестановки, а \(h(u) \) полином по спектральному параметру. В параграфе 4.3.4 покажем, что если коэффициентные функции \(A \) и \(B \) в (4.15) связаны соотношениями

\[
A(u) A(2 - d - u) \prod_{k=0}^{d-1} (u + 2k)^2 = -B(u) B(2 - d - u) \prod_{k=1}^{d-1} (u + 2k - 1)^2,
\]

то для \(R \)-матрицы имеет место кроссинг-унитарность (4.26) с \(h(u) = A(u)A(2 - d - u)(-2)^{-\frac{d}{2}} \prod_{k=0}^{d-1} (u + 2k)^2 \).

Цель последующих параграфов в том, чтобы убедиться в справедливости соотношения Янга–Бакстера (4.12) для \(R \)-матрицы (4.10), (4.15) и проверить другие его свойства. Чтобы добиться этого, нужно осуществить весьма сложное вычисление с алгеброй Клиффорда гамильтония. Для этого будет применена техника производящих функций, сформулированная в [113]. Она кратко описана в следующем параграфе.
4.2. Алгебра Клиффорда

4.2.1. Фермионная реализация алгебры Клиффорда

Введём набор \(d \) генераторов алгебры Клиффорда \(\Gamma_a, \ a = 1, \ldots, d \), которые удовлетворяют стандартным определяющим соотношениям (см. (4.5))

\[
\Gamma_a \Gamma_b + \Gamma_b \Gamma_a = 2 \delta_{ab} \mathbf{1} .
\]

(4.27)

Алгебра Клиффорда — это векторное пространство размерности \(2^d \). Стандартный базис в этом пространстве образуют антисимметризованные произведения генераторов \(\Gamma_a \). К примеру (4.6)

\[
\Gamma_{A_0} = 1, \quad \Gamma_{A_1} = \Gamma_a, \quad \Gamma_{A_2} = \Gamma_{a_1a_2} = \frac{1}{2!} [\Gamma_{a_1} \Gamma_{a_2} - \Gamma_{a_2} \Gamma_{a_1}], \ldots
\]

(4.28)

Здесь использовано обозначение \(\text{As} \) для антисимметризованного произведения операторов \(\Gamma_a \). Под знаком \(\text{As} \)-произведения операторы \(\Gamma_a \) ведут себя как антикоммутирующие переменные.

Опишем, что генераторы алгебры Клиффорда могут быть выбраны в виде [114]

\[
\Gamma_a = \theta_a + \frac{\partial}{\partial \theta_a} ; \quad \{\theta_a, \theta_b\} = 0, \quad \{\partial_{\theta_a}, \partial_{\theta_b}\} = 0, \quad \{\partial_{\theta_a}, \theta_b\} = \delta_{ab},
\]

(4.29)

gде как \(\partial_{\theta_a} = \frac{\partial}{\partial \theta_a} \), так и \(\theta_a \ (a = 1, \ldots, d) \) образуют набор из \(d \) фермионных переменных (генераторы алгебры Грассмана). Далее фермионное представление для операторов \(\Gamma_a \) будет играть для нас особую роль и для того, чтобы отличить его от гамма-матриц \(\gamma_a \) используется специальное обозначение \(\gamma_a \rightarrow \Gamma_a \).

Введём производящую функцию для базисных элементов \(\Gamma_{A_k} \) (4.28)

\[
\sum_{k=0}^{\infty} \frac{1}{k!} u^{a_1} \cdots u^{a_k} \text{As}(\Gamma_{a_1} \cdots \Gamma_{a_k}) = \sum_{k=0}^{\infty} \frac{1}{k!} (u^a \Gamma_a)^k = \exp(u \cdot \Gamma) = \text{As} [\exp(u \cdot \Gamma)] .
\]

(4.30)

Здесь \(u \cdot \Gamma = u^a \Gamma_a, \ u^a \) — антикоммутирующие вспомогательные переменные: \(u^a u^b = u^b u^a \), а также мы принимаем, что \(u^a \Gamma_b = -\Gamma_b u^a \), т.е. для всех введённых фермионов имеют место антикоммутационные соотношения. Имея формулу (4.30) элементы базиса \(\Gamma_{A_k} \) (4.28) могут быть получены из \(\exp(u \cdot \Gamma) \) многократным дифференцированием

\[
\Gamma^{a_1 \cdots a_k} = \partial_{u_a} \cdots \partial_{u_k} \exp(u \cdot \Gamma) \bigg|_{u=0} .
\]

(4.31)
Далее укажем два основных соотношения, на которых основано большинство последующих вычислений с алгеброй Клиффорда.

Утверждение. Произведение нескольких производящих функций (4.30) переписывается в виде одной производящей функции

\[
e^{u_1 \Gamma} \ldots e^{u_k \Gamma} = e^{-\sum_{i<j} u_i u_j} e^{(\sum_{i=1}^k u_i) \Gamma}.
\]

(4.32)

Пусть \(u^a, v^a, \alpha^a, \beta^a\) – антикоммутирующие переменные, \(x, y\) – коммутирующие переменные. Тогда имеет место формула

\[
\exp (x \partial_u \cdot \partial_v) \exp (u \cdot \alpha + v \cdot \beta + y u \cdot v) \big|_{u=v=0} = (1 - xy)^d \exp \left(\frac{x}{1 - xy} \alpha \cdot \beta \right),
\]

(4.33)

gде использованы сокращенные обозначения для квадратичного дифференциального оператора \(\partial_u \cdot \partial_v \equiv \frac{\partial}{\partial u^a} \frac{\partial}{\partial v_a}\).

Формула (4.32) есть следствие формулы Бейкера-Хаусдорфа \(e^A e^B = e^{A+B+\frac{1}{2}[A,B]}\), где положено \(A = u \cdot \Gamma, B = v \cdot \Gamma\) и \([A, B] = -u^a v^b (\Gamma_a \Gamma_b + \Gamma_b \Gamma_a) = -2u \cdot v\).

Формула (4.33) может быть легко получена при помощи стандартного представления [114–117] оператора \(x \partial_u \cdot \partial_v\) в виде гауссова интеграла по \(2d\) антикоммутирующим переменным \(\theta_a\) и \(\bar{\theta}_a\). В самом деле

\[
\exp (x \partial_u \cdot \partial_v) = x^d \int \prod_{a=1}^d d\theta_a d\bar{\theta}_a \exp \left(x^{-1} \bar{\theta} \cdot \theta + \bar{\theta} \cdot \partial_u + \partial_v \cdot \theta \right),
\]

операция дифференцирования ведёт к простому сдвигу \(u \rightarrow u + \bar{\theta}, v \rightarrow v - \theta\), и затем левая часть (4.33) принимает снова вид гауссова интеграла

\[
x^d \int \prod_{a=1}^d d\theta_a d\bar{\theta}_a \exp \left((x^{-1} - y) \bar{\theta} \cdot \theta + \bar{\theta} \cdot \alpha + \beta \cdot \theta \right) = x^d (x^{-1} - y)^d \exp \left(\frac{x}{1 - xy} \alpha \cdot \beta \right).
\]

Подчеркнём, что все последующие вычисления с алгеброй Клиффорда основаны на справочных формулах (4.32) и (4.33).

Отметим, что формулы этого параграфа допускают прозрачную интерпретацию на языке квантовой теории поля. Формула (4.32) – это один из вариантов теоремы Вика, которая содержит в себе процедуру приведения к нормальной форме. Содержание этого параграфа можно понимать как приложение универсальной квантово-полевой техники производящих функционалов [116] к весьма специфическому случаю. Именно такая точка зрения представлена в работе [113]. Также предыдущие вычисления можно выполнить на языке символов фермионных операторов [117].

170
4.2.2. Фермионная реализация R-матрицы

Работая с уравнением Янга–Бакстера (4.12), а также с RLL-соотношением (4.9) приходится иметь дело с тензорным произведением нескольких спинорных представлений. В самом деле необходимо ввести действие гамма-матрицы γ_a в тензорном произведении двух пространств. Поскольку мы рассматриваем вместо гамма-матрицы γ_a генераторы алгебры Клиффорда, то необходимо ввести два набора генераторов $(\Gamma_1)_a$, $(\Gamma_2)_a$, которые антикоммутируют друг с другом

$$(\Gamma_1)_a (\Gamma_2)_b = -(\Gamma_2)_b (\Gamma_1)_a .$$

(4.34)

Такое соглашение весьма естественно с учётом фермионной природы представления (4.29). Более того такое соглашение (4.34) значительно упрощает последующие вычисления, позволяя легко отследить возникновение знаков от антикоммутации фермионов.

SO(d)-инвариантная фермионная R-матрица (4.10) построена из тензорных произведений $(\Gamma_1)_{A_k} (\Gamma_2)^{A_k}$. Перепишем эту гамма-матричную структуру в удобной для нас форме

$$(\Gamma_1)_{A_k} (\Gamma_2)^{A_k} = \text{As} [\Gamma_{1a_1} \cdots \Gamma_{1a_k}] \text{As} [\Gamma_2^{a_1} \cdots \Gamma_2^{a_k}] = \text{As} [\Gamma_{1a_1} \cdots \Gamma_{1a_k} \Gamma_2^{a_1} \cdots \Gamma_2^{a_k}] = \text{As} [\Gamma_{1a_1} \cdots \Gamma_{1a_k}] \Gamma_2^{a_1} \cdots \Gamma_2^{a_k} = \text{As} (1) \Gamma_2^{a_1} \cdots \Gamma_2^{a_k} = \gamma^{a_1} \cdots \gamma^{a_k} ,$$

(4.35)

где $s_k \equiv (-1)^{\frac{k(k-1)}{2}}$, а также $\text{As} (1)$ обозначает операцию As применённую только к произведению операторов $(\Gamma_1)_a$. Далее в обозначении $\text{As} (1)$ индекс (1) опускается, поскольку для выражений вида (4.35) не имеет значения выполнена антисимметризация в первом пространстве или во втором $\text{As} (1) = \text{As} (2)$. На первом шаге преобразований в (4.35) с учётом определения (4.6) можно не учитывать одну из операций As из-за свёртки двух антисимметричных тензоров. На следующем шаге можно выполнить перепорядочение операторов, принимая во внимание договорённость о знаках $\Gamma_1 \cdot \Gamma_2 = -\Gamma_2 \cdot \Gamma_1$. Последнее выражение в (4.35) говорит о том, что $\text{As} [e^{x \Gamma_1 \cdot \Gamma_2}]$ служит производящей функцией для набора тензорных произведений $(\Gamma_1)_{A_k} (\Gamma_2)^{A_k}$

$$\text{As} [e^{x \Gamma_1 \cdot \Gamma_2}] = \sum_k \frac{s_k}{k!} e^{x \Gamma_1 \cdot \Gamma_2} (\Gamma_1)_{A_k} (\Gamma_2)^{A_k} .$$

(4.36)

Таким образом удалось переписать многократное суммирование по повторяющимся индексам в краткой форме.

Утверждение.

$$\text{As} [e^{x \Gamma_1 \cdot \Gamma_2}] = e^x \partial_u \partial_v e^{u \Gamma_1 + v \Gamma_2} \bigg|_{u=v=0}$$

(4.37)
В самом деле, используя (4.31) имеем
\[s_k \left(\Gamma_1 \right) A_k \left(\Gamma_2 \right) = \frac{\partial u_{a_1} \ldots \partial u_{a_k} e^{\nu \Gamma_1} \partial e^{\nu \Gamma_2}}{u=v=0} = \left(\partial_u \cdot \partial_v \right) e^{\nu \Gamma_1} e^{\nu \Gamma_2} \bigg|_{u=v=0}. \]
(4.38)

Подстановка (4.38) в (4.36) даёт (4.37).

Рассмотрим фермионный аналог оператора (4.10) где коэффициентные функции подразумеваются произвольными. Используя произведяющую функцию (4.36) перепишем этот оператор в нескольких эквивалентных формах
\[R(u) = \sum_{k=0}^{\infty} \frac{R_k(u)}{k!} \left(\Gamma_1 \right) A_k \left(\Gamma_2 \right) = \sum_{k=0}^{\infty} \frac{R_k(u)}{k!} \partial_x A_k \left(e^{x \Gamma_1} e^{x \Gamma_2} \right) \bigg|_{x=0} = R(u|x) \ast A \left(e^{x \Gamma_1} e^{x \Gamma_2} \right), \]
(4.39)
где введено сокращённое обозначение \(R(x) \ast F(x) \equiv R(\partial_x) F(x) \big|_{x=0}. \) Отметим, что вся информация о коэффициентных функциях оператора \(R \) в (4.39) содержится в одной функции \(R(u|x) \)
\[R(u|x) = \sum_{k=0}^{\infty} \frac{R_k(u)}{k!} x^k. \]
(4.40)

В конце этого параграфа показано как представить фермионные операторы (4.39) в матричном виде. Имеются два матричных представления \(\rho' \) и \(\rho'' \) для фермионных генераторов алгебры Клиффорда \(\Gamma_{1a} \) и \(\Gamma_{2a} \), согласованные с определяющими соотношениями (4.27) и градуировкой (4.34):
\[\rho' \left(\Gamma_{1a} \right) = \gamma_a \otimes 1, \quad \rho' \left(\Gamma_{2a} \right) = \gamma_{d+1} \otimes \gamma_a \]
(4.41)
\[\rho'' \left(\Gamma_{1a} \right) = \gamma_a \otimes \gamma_{d+1}, \quad \rho'' \left(\Gamma_{2a} \right) = 1 \otimes \gamma_a, \]
где \(\gamma_a, \gamma_{d+1} \) – стандартные \(\gamma \)-матрицы определённые в (4.5) и (4.14). Для чётной и нечётной частей (4.39)
\[R^+ = \sum_{k=0}^{\infty} \frac{R_{2k}}{(2k)!} \left(\Gamma_1 \right) A_{2k} \left(\Gamma_2 \right)^{A_{2k}}, \quad R^- = \sum_{k=0}^{\infty} \frac{R_{2k+1}}{(2k+1)!} \left(\Gamma_1 \right) A_{2k+1} \left(\Gamma_2 \right)^{A_{2k+1}}, \]
с учётом (4.41) получаем матричные представления
\[\rho' \left(R^+ \right) = \sum_{k=0}^{\infty} \frac{R_{2k}}{(2k)!} \gamma_{A_{2k}} \otimes \gamma^{A_{2k}}, \quad \rho' \left(R^- \right) = \left(\sum_{k=0}^{\infty} \frac{R_{2k+1}}{(2k+1)!} \gamma_{A_{2k+1}} \otimes \gamma^{A_{2k+1}} \right) \left(\gamma_{d+1} \otimes 1 \right), \]
(4.42)
\[\rho'' \left(R^+ \right) = \sum_{k=0}^{\infty} \frac{R_{2k}}{(2k)!} \gamma_{A_{2k}} \otimes \gamma^{A_{2k}}, \quad \rho'' \left(R^- \right) = -\left(\sum_{k=0}^{\infty} \frac{R_{2k+1}}{(2k+1)!} \gamma_{A_{2k+1}} \otimes \gamma^{A_{2k+1}} \right) \left(1 \otimes \gamma_{d+1} \right). \]
(4.43)
Принимая во внимание тот факт, что множество решений уравнения Янга–Бакстера (4.12) допускает преобразования (4.24), воспользуемся следующим соглашением, чтобы построить матричное представление \(\rho \) для решений (4.39) уравнения Янга–Бакстера:

\[
\rho \left(\sum_{k=0}^{\infty} \frac{R_k}{k!} (\Gamma_1)^A_k \Gamma_2^A_k \right) = \sum_{k=0}^{\infty} \frac{R_k}{k!} \gamma A_k \otimes \gamma A_k. \tag{4.44}
\]

Отметим, что при чётном \(d \)

\[
\rho' \left(\frac{1}{d!} As (\Gamma_1 \cdot \Gamma_2)^d \right) = \rho'' \left(\frac{1}{d!} As (\Gamma_1 \cdot \Gamma_2)^d \right) = \gamma_{d+1} \otimes \gamma_{d+1}. \tag{4.45}
\]

4.2.3. Операторы замены

В этом параграфе подробно рассмотрим простой пример оператора вида (4.39).

Введём операторы замены \(P, P' \) при помощи соотношений

\[
(\Gamma_1)_a P = P (\Gamma_2)_a; \quad (\Gamma_2)_a P' = P' (\Gamma_1)_a. \tag{4.46}
\]

Эти операторы напоминают оператор перестановки, но не совпадают с ним в точности, как будет видно из дальнейшего рассмотрения. Покажем, что эти операторы можно представить в виде (4.39)

\[
P = e^x \ast As \left(e^x \Gamma_1 \cdot \Gamma_2 \right) = As \left(e^x \Gamma_1 \cdot \Gamma_2 \right) ; \quad P' = e^{-x} \ast As \left(e^x \Gamma_1 \cdot \Gamma_2 \right) = As \left(e^{-x} \Gamma_1 \cdot \Gamma_2 \right). \tag{4.47}
\]

Для большей ясности перепишем предыдущее выражение для оператора \(P \) в развёрнутом виде

\[
P = \sum_{k=0}^{\infty} \frac{S_k}{k!} (\Gamma_1)_a (\Gamma_2)_a = \sum_{k=0}^{\infty} \left(\sum_{a_1 < a_2 < \cdots < a_k} \Gamma_{1a_1} \Gamma_{1a_2} \cdots \Gamma_{1a_k} \Gamma_{2a_1} \Gamma_{2a_2} \cdots \Gamma_{2a_k} \right).
\]

Представленное ниже доказательство послужит хорошим примером, чтобы продемонстрировать типичные вычисления с произведяющими функциями необходимые в дальнейшем.

Сначала проверим тождества

\[
e^{s \Gamma_1} As \left(e^{x \Gamma_1 \cdot \Gamma_2} \right) = As \left(e^{x \Gamma_1 \cdot \Gamma_2} + s (\Gamma_1 + x \Gamma_2) \right) ; \quad As \left(e^{x \Gamma_1 \cdot \Gamma_2} e^{t \Gamma_2} \right) = As \left(e^{x \Gamma_1 \cdot \Gamma_2 + t (\Gamma_2 + x \Gamma_1)} \right). \tag{4.48}
\]

Проведём детальное вычисление для первого произведения

\[
e^{s \Gamma_1} As \left(e^{x \Gamma_1 \cdot \Gamma_2} \right) = e^{x \partial_u \cdot \partial_v} e^{s \Gamma_1} e^{u \Gamma_1 + v \Gamma_2} \bigg|_{u=v=0} =
\]

\[
= e^{x \partial_u \cdot \partial_v} e^{u+s+u \Gamma_1 + v \Gamma_2} \bigg|_{u=v=0} = As \left(e^{x (\Gamma_1 + s) + \Gamma_2 + s \Gamma_1} \right).
\]

173
Здесь последовательно применено (4.37) и (4.32). Таким образом (4.48) доказано. На самом деле это вычисление служит образцом для всех последующих вычислений с производящими функциями.

Перепишем уравнение (4.46) при помощи производящих функций (4.31), (4.36)

\[P(x) \ast \partial_x e^{x\Gamma_1} As \left(e^{x\Gamma_1\Gamma_2} \right) \bigg|_{s=0} = P(x) \ast \partial_{t_a} As \left(e^{x\Gamma_1\Gamma_2} \right) e^{x\Gamma_2} \bigg|_{t=0} . \]

(4.49)

Подставляя (4.48) в (4.49) и вычисляя производные по \(s_a \) и \(t_a \), имеем

\[P(x) \ast As \left[(\Gamma_{1a} + x\Gamma_{2a}) e^{x\Gamma_1\Gamma_2} \right] = P(x) \ast As \left[(\Gamma_{2a} + x\Gamma_{1a}) e^{x\Gamma_1\Gamma_2} \right] , \]

что эквивалентно

\[[P(x) - \partial_x P(x)] \ast As \left(\Gamma_{1a} e^{x\Gamma_1\Gamma_2} \right) = [P(x) - \partial_x P(x)] \ast As \left(\Gamma_{2a} e^{x\Gamma_1\Gamma_2} \right) , \]

(4.50)

где в последнем преобразовании воспользовались формулой \(P(x) \ast x^n F(x) = \partial_x^n P(x) \ast F(x) \).

Как прямое следствие (4.50) получаем дифференциальное уравнение на функцию \(P(x) \)

\[\partial_x P(x) = P(x) \implies P(x) = e^x , \]

что завершает доказательство (4.47).

В (4.48) вычислено произведение производящих функций двух разных типов (4.30) и (4.36). Именно это соотношение нужно нам, чтобы проверить RLL-соотношения (4.9), (4.75), которые приводят к рекуррентному соотношению на коэффициентные функции R-матрицы (4.11). Соответствующее вычисление выполнено в параграфе 4.4.1.

4.2.4. Производящая функция для уравнения Янга–Бакстера, соотношения унитарности и кроссинга

Начнём с фермионной формы уравнения Янга–Бакстера (4.12), чья правая часть есть сумма тензорных произведений операторов

\[(\Gamma_2)_{A_k} (\Gamma_3)_{B_k} (\Gamma_1)_{C_k} (\Gamma_2)_{A_k} (\Gamma_3)_{B_k} (\Gamma_2)_{C_k} \]

(4.51)
с некоторыми коэффициентными функциями спектральных параметров. Следуя нашему подходу, вместо того чтобы преобразовывать произведения фермионных генераторов алгебры Клиффорда в (4.51), перемножным соответствующие производящие функции (4.36), зависящие от параметров \(x, y \) и \(z \)

\[
As \left(e^{x \Gamma_2 \Gamma_3} \right) As \left(e^{z \Gamma_1 \Gamma_2} \right) As \left(e^{y \Gamma_2 \Gamma_3} \right) = (1-xy)^d As \left(e^{\frac{x(1+xy)}{1-xy} \Gamma_1 \Gamma_2 + \frac{x+y}{1-xy} \Gamma_2 \Gamma_3 + \frac{z(y-x)}{1-xy} \Gamma_1 \Gamma_3} \right). \tag{4.52}
\]

Раскладывая последнюю формулу в ряд по \(x, y, z \) и отбирая подходящие члены получаем структуру из правой части уравнения Янга–Бакстера (4.51), приведённую к нормальной форме. Далее покажем как получить (4.52). Используя (4.37), можно переписать произведение трёх производящих функций в (4.52) в виде

\[
e^{x \partial_x \partial_x} e^{y \partial_y \partial_y} e^{z \partial_z \partial_z} e^{u \Gamma_2 + v \Gamma_3} e^{s \Gamma_1 + t \Gamma_2} e^{p \Gamma_2 + q \Gamma_3}. \tag{4.54}
\]

Затем при помощи (4.32) перемножаем произвольные функции

\[
e^{x \Gamma_2 + v \Gamma_3} \cdot e^{s \Gamma_1 + t \Gamma_2} \cdot e^{p \Gamma_2 + q \Gamma_3} = e^{s \Gamma_1 +(u+t+p) \Gamma_2 +(v+q) \Gamma_3 + t+u+p+t+q+v+p+u}
\]

и применяем несколько раз (4.33), что даёт в точности (4.52). Аналогичное вычисление приводит к производящей функции для тензорных произведений операторов из левой части фермионного уравнения Янга–Бакстера (4.12),

\[
As \left(e^{y \Gamma_1 \Gamma_2} \right) As \left(e^{z \Gamma_2 \Gamma_3} \right) As \left(e^{x \Gamma_1 \Gamma_2} \right) = (1-xy)^d As \left(e^{\frac{x+y}{1-xy} \Gamma_1 \Gamma_2 + \frac{x(1+xy)}{1-xy} \Gamma_2 \Gamma_3 + \frac{z(y-x)}{1-xy} \Gamma_1 \Gamma_3} \right). \tag{4.53}
\]

Отметим, что выражения (4.52) и (4.53) почти тождественны.

Работая с соотношением унитарности (4.25) для спинорной R-матрицы, необходимо вычислить \(R_{12}(u) R_{12}(-u) \), что ведёт к тензорным произведениям фермионных операторов вида \((\Gamma_1)_{A_b} (\Gamma_2)_{A_b} (\Gamma_1)_{B_b} (\Gamma_2)_{B_b} \). Соответствующая производящая функция имеет вид

\[
As \left(e^{x \Gamma_1 \Gamma_2} \right) As \left(e^{y \Gamma_1 \Gamma_2} \right) = (1-xy)^d As \left(e^{\frac{xy}{1-xy} \Gamma_1 \Gamma_2} \right). \tag{4.54}
\]

Чтобы проверить соотношение кроссинг-унитарности (4.26), нужно рассмотреть произведение \(R_{12} R_{23} \), производящая функция которого получается из (4.52) при \(x = 0 \). В самом деле, вычислим след в этом выражении по второму пространству

\[
\text{tr}_2 As \left(e^{x \Gamma_1 \Gamma_2} \right) As \left(e^{y \Gamma_2 \Gamma_3} \right) = \text{tr}_2 As \left(e^{x \Gamma_1 \Gamma_2 + y \Gamma_2 \Gamma_3 + xy \Gamma_1 \Gamma_3} \right) = 2^d As \left(e^{xy \Gamma_1 \Gamma_3} \right), \tag{4.55}
\]

где учит \(\text{tr} 1 = 2^d \), и \(\text{tr} \Gamma_{A_b} = 0 \) при \(k > 0 \).

Таким образом получены производящие функции для тензорных произведений операторов, появляющихся в важных для нас фермионных соотношениях со спинорной R-матри-
цен (4.39). В последующих параграфах, применяя полученные производящие функции, проверим эти соотношения.

Замечание. Формулы (4.52), (4.53), (4.54) порождают двойные и тройные соотношения между операторами замены (4.47):

\[P_{12} P_{23} P_{12} = P_{23} P_{12} P_{23}, \quad P_{12} P_{23} P'_{12} = P'_{23} P_{12} P'_{23}, \]
\[P P = 2^d \frac{d!}{d!} \text{As}(\Gamma_1 \cdot \Gamma_2)^d, \quad P' P' = \left(\frac{-2^d}{d!} \right) \text{As}(\Gamma_1 \cdot \Gamma_2)^d, \quad P P' = P' P = 2^d 1. \]

Эти соотношения явно демонстрируют, что операторы P и P' не являются в точности операторами перестановки.

4.2.5. Локальное уравнение Янга–Бакстера

Отметим, что из формул для произведений производящих функций (4.52) и (4.53) немедленно следует следующее локальное уравнение Янга–Бакстера

\[(1 - xy)^{-d} \text{As}(e^{xy \Gamma_1 \cdot \Gamma_2}) \text{As}(e^{x'y' \Gamma_2 \Gamma_3}) \text{As}(e^{x' \Gamma_1 \Gamma_3}) = \]
\[= (1 - x'y')^{-d} \text{As}(e^{x'y' \Gamma_2 \Gamma_3}) \text{As}(e^{x'y' \Gamma_1 \Gamma_3}) \text{As}(e^{y' \Gamma_2 \Gamma_3}), \quad (4.56) \]

где параметры \(x, y, z \) и \(x', y', z' \) связаны системой уравнений

\[\frac{x + y}{1 - xy} = \frac{z'}{1 - x'y'}, \quad \frac{z(1 + xy)}{1 - xy} = \frac{x' + y'}{1 - x'y'}, \quad \frac{z(x - y)}{1 - xy} = \frac{z'(x' - y')}{1 - x'y'}. \quad (4.57) \]

Перемножая первые два уравнения системы (4.57), а также глядя на последнее уравнение в (4.57), видим, что функции

\[\lambda_1 = \frac{z(x - y)}{(1 - xy)}, \quad \lambda_2 = \frac{z(x + y)(1 + xy)}{(1 - xy)^2} \]

инвариантны при преобразовании параметров \(x, y, z \rightarrow x', y', z' \), которые мы в дальнейшем называем координатами. Таким образом точки \((x, y, z) \) и \((x', y', z') \) лежат на кривой \(\mathcal{C}_{a,b} \), заданной системой уравнений

\[\begin{cases}
 z(x - y) = b(1 - xy) \\
 (x + y)(1 + xy) = a(x - y)(1 - xy),
\end{cases} \quad (4.58) \]

где \(b = \lambda_1 \) и \(a = \frac{\lambda_2}{\lambda_1} \) — параметры, задающие семейство кривых. Определим преобразование координат геометрически. Второе уравнение в (4.58) задаёт семейство кривых в плоскости \((x, y) \), параметризованное числом \(a \). Значит можно ввести новые координаты на
плоскости \((x, y) \to (a, t)\), где \(t\) — это координата на кривой, фиксируемой параметром \(a\). Переменная \(t\) также служит координатой на кривой \(C_{a,b}\). Из первого уравнения в (4.58) координата \(z\) вычисляется по \(b\) и \((x, y)\), или что то же самое по \(b\) и \((a, t)\). Преобразование \((x, y, z) \to (x', y', z')\) эквивалентно замене координат \(t \to t'\) на кривой \(C_{a,b}\). Теперь выберем конкретный вид координаты \(t\) на кривой, и укажем согласно с (4.58) новые переменные \((a, b, t)\) взамен \((x, y, z)\):

\[
a = \frac{1 + xy}{1 - xy} x + y, \quad b = \frac{x - y}{1 - xy}, \quad t = \frac{x - y}{1 + xy}.
\]

В новых переменных преобразование координат \(x, y, z \to x', y', z'\) выглядит намного проще

\[
a \to a' = a, \quad b \to b' = b, \quad t \to t' = \frac{b}{a t}.
\]

Преобразование \(t \to t'\) следует из второго уравнения (4.57), которое в новых переменных переписывается как \(b/t = a't'\).

Локальные уравнения Янга–Бакстера были введены в работе [118, 119] и нашли многочисленные применения в исследованиях трёхмерных интегрируемых систем [120].

4.3. Уравнение Янга–Бакстера, унитарность и кроссинг

Для того чтобы проверить основные свойства спинорной \(R\)-матрицы (4.10) имеет смысл преобразовать её к более удобной форме. В параграфе 4.3.1 фермионная реализация спинорной \(R\)-матрицы (4.39) записывается как интеграл по вспомогательному пространству

\[
R(u) = \int_0^\infty dx \frac{x^{u-1}}{(1 + x^2)^{u+2}} \left[a(u) \text{As} \left(e^{x \Gamma_1 \cdot \Gamma_2} \right) + b(u) \text{As} \left(e^{-x \Gamma_1 \cdot \Gamma_2} \right) \right],
\]

где \(a(u)\) и \(b(u)\) — две произвольные функции, связанные с \(A(u)\) и \(B(u)\), которые входят в (4.15). Представление (4.60) оказывается крайне полезным, поскольку позволяет избежать многократных суммирования по повторяющимся индексам в (4.10). Более того конечная сумма по индексу \(k\) в (4.10) заменена на интеграл по вспомогательному параметру. Значит уравнение Янга–Бакстера (4.12), подразумевающее равенство двух громоздких многократных сумм, если использовать представление (4.10), превращается в равенство двух интегралов. Используя представление (4.60) проверим прямым вычислением, что соотношение Янга–Бакстера (4.12) выполнено. Более того покажем, что это соотношение эквивалентно симметрии некоторого интеграла по пространству вспомогательных параметров.
4.3.1. Спинорная R-матрица

Ранее показали, что гамма-матричная структура спинорной R-матрицы (4.10) сильно упрощается в фермионной реализации (4.39). Теперь выполним ещё одно упрощение, преобразовав функцию $R(u|x)$ из (4.39), которая содержит в себе всю информацию о коэффициентных функциях $R_k(u)$. Напомним, что коэффициентные функции удовлетворяют рекуррентным соотношениям (4.11). Ранее были указаны их решения (4.15), содержащие две произвольные функции спектрального параметра. Используя эту свободу коэффициентные функции могут быть выбраны в другом виде, используя бета-функцию Эйлера

$$R_2k(u) = A(u) (-^k) \frac{\Gamma(k + \frac{u}{2}) \Gamma\left(\frac{u+d}{2} - k\right)}{\Gamma\left(u + \frac{d}{2}\right)}, \quad R_{2k+1}(u) = B(u) (-^k) \frac{\Gamma(k + \frac{u+1}{2}) \Gamma\left(\frac{u+d-1}{2} - k\right)}{\Gamma\left(u + \frac{d}{2}\right)},$$

(4.61)

где $A(u)$ и $B(u)$ — две произвольные функции спектрального параметра. Далее разделим чётные и нечётные вклады в (4.40)

$$R(u|y) = \sum_{k=0}^{\infty} \frac{R_k(u) s_k}{k!} y^k = \sum_{k=0}^{\infty} \frac{R_{2k}(u) s_{2k}}{(2k)!} y^{2k} + \sum_{k=0}^{\infty} \frac{R_{2k+1}(u) s_{2k+1}}{(2k+1)!} y^{2k+1},$$

учтём что $s_{2k} = s_{2k+1} = (-)^k$, воспользуемся интегральным представлением для бета-функции

$$\frac{\Gamma(k + \frac{u}{2}) \Gamma\left(\frac{u+d}{2} - k\right)}{\Gamma\left(u + \frac{d}{2}\right)} = 2 \int_0^{\infty} \frac{dx}{(1+x^2)^{u+d/2}} x^{2k},$$

$$\frac{\Gamma(k + \frac{u+1}{2}) \Gamma\left(\frac{u+d-1}{2} - k\right)}{\Gamma\left(u + \frac{d}{2}\right)} = 2 \int_0^{\infty} \frac{dx}{(1+x^2)^{u+d/2}} x^{2k+1},$$

и отсуммируем ряд

$$R(u|y) = \int_0^{\infty} \frac{dx}{(1+x^2)^{u+d/2}} \left[(A + B) e^{xy} + (A - B) e^{-xy}\right].$$

(4.62)

В результате мы заменили конечный набор коэффициентных функций, входящих в (4.10), на интеграл по вспомогательному параметру. Окончательно, применяя (4.39), получаем желаемый вид (4.60) спинорной R-матрицы, указанный ранее. В (4.17) было указано естественное разложение спинорной R-матрицы в сумму чётных R^+ и нечётных R^- частей (4.16). Формулы (4.60) и (4.62) приводят к второму естественному разложению

$$R(u) = A(u) R^+(u) + B(u) R^-(u) = a(u) \mathcal{R}^+(u) + b(u) \mathcal{R}^-(u),$$

(4.63)
где

\[
\mathcal{R}^+(u) \equiv \int_0^\infty \frac{dx}{(1 + x^2)^{u + \frac{3}{2}}} \As \left(e^{x \Gamma_1 \cdot \Gamma_2} \right), \quad \mathcal{R}^-(u) \equiv \int_0^\infty \frac{dx}{(1 + x^2)^{u + \frac{3}{2}}} \As \left(e^{-x \Gamma_1 \cdot \Gamma_2} \right),
\]

и \(a = A + B, \quad b = A - B \).

4.3.2. Интегральное тождество

Теперь выполнены все подготовительные шаги, чтобы проверить соотношение Янга–Бакстера (4.12). Точнее, для начала будет проверено соотношение Янга–Бакстера для спинорной R-матрицы в фермионной реализации. Структура тензорного произведения для него обсуждалась выше в параграфе 4.2.4. А именно были указаны соответствующие произведенные функции для его правой части (4.52) и левой части (4.53). Далее в предыдущем параграфе было показано, что коэффициентные функции спинорной R-матрицы собираются в одну функцию (4.62). Отметим, что уравнение Янга–Бакстера (4.12) в фермионной реализации эквивалентно набору из восьми тройных соотношений для \(\mathcal{R}^+, \mathcal{R}^- \) (4.64)

\[
\mathcal{R}^i_{12}(u) \mathcal{R}^k_{23}(u + v) \mathcal{R}^j_{12}(v) = \mathcal{R}^j_{23}(v) \mathcal{R}^k_{12}(u + v) \mathcal{R}^i_{23}(u),
\]

где \(i, j, k = +, - \) поскольку \(a(u) \) и \(b(u) \) в выражении для спинорной R-матрицы (4.63) – произвольные функции. Для начала одно из этих соотношений, а именно соотношение Янга–Бакстера для чётной части \(\mathcal{R}^+(u) \).

Учитывая (4.52), (4.53) и (4.62) легко видеть, что соотношение Янга–Бакстера (4.65) при \(i = j = k = + \) равно примерно тождеству

\[
\As \left[\Gamma^{u,v}(\Gamma_1 \cdot \Gamma_2, \Gamma_1 \cdot \Gamma_3, \Gamma_2 \cdot \Gamma_3) \right] = \As \left[\Gamma^{u,v}(\Gamma_2 \cdot \Gamma_3, \Gamma_1 \cdot \Gamma_3, \Gamma_1 \cdot \Gamma_2) \right],
\]

где введено обозначение для интеграла, зависящего от пары спектральных параметров, а также трёх бозонных параметров

\[
\Gamma^{u,v}(A, B, C) \equiv \int_D \frac{dxdydz}{(1 + x^2)^{u+v+\frac{3}{2}}(1 + y^2)^{u+v+\frac{3}{2}}(1 + z^2)^{u+v+\frac{3}{2}}} x^{\frac{A+B}{1+xy}} y^{\frac{A+C}{1+xy}} z^{\frac{B+C}{1+xy}},
\]

область интегрирования \(D = \{(x, y, z) : x \geq 0, \quad y \geq 0, \quad z \geq 0\} \). Вместо того, чтобы проверить (4.66), убедимся, что выполнено более общее соотношение

\[
\Gamma^{u,v}(A, B, C) = \Gamma^{u,v}(C, B, A),
\]

179
где левая и правая часть понимаются в смысле формальных степенных рядов по элементам A, B, C произвольной ассоциативной алгебры. Дискретную симметрию (4.68) интеграла (4.67) проверим при помощи замены переменных интегрирования $(x, y, z) \rightarrow (x', y', z')$, порождённой локальным уравнением Янга–Бакстера (4.56). Напомним, что оно ведёт к формулам замены, заданным системой уравнений (4.57). Легко видеть, что при таком преобразовании переменных интегрирования внешние параметры A и C в экспоненте в (4.67) меняются местами. Однако далеко нетривиальный факт состоит в том, что все остальные факторы интегранда преобразуются так, чтобы было выполнено (4.68).

Чтобы увидеть это, воспользуемся геометрической интерпретацией преобразования (4.57), обсуждавшейся в параграфе 4.2.5, где была введена замена переменных $(x, y, z) \rightarrow (a, b, t)$ по формулам (4.59). В таких переменных область интегрирования D представляется в виде объединения непересекающихся 1-мерных многообразий $\bigcup_{a,b} \mathcal{C}_{a,b}$, где $\mathcal{C}_{a,b}$ — кривая, фиксируемая парой параметров a и b. Таким образом выполним в (4.67) естественную замену переменных интегрирования $(x, y, z) \rightarrow (a, b, t)$, заданную формулами (4.59). Являя такой замены имеет весьма простой вид

$$\frac{\partial(t, a, b)}{\partial(x, y, z)} = 2 \left(1 + x^2\right) \left(1 + y^2\right) \left(1 + z^2\right).$$

Преобразование (4.59) отображает область D на несвязную область G

$$G = \{(a, b, t) : a \geq 1, b \geq 0\} \cup \{(a, b, t) : a \leq -1, b \leq 0\},$$

что изображено на Рис. 4.1, 4.2. После несложного вычисления получаем

$$\Gamma^u(A, B, C) = \frac{1}{2^{u+v-1}} \int_G \frac{da \, db \, dt \, |b|^{u+v-1} t^{2(u+v)+d-1} \exp(A \, a \, t - B \, b + C \, b \, t^{-1})}{|1+a|^{1-u} |1-a|^{1-v} |b^2 + (1+b^2)t^2 + a^2 t^4|^{u+v+\frac{d}{2}}}. \tag{4.70}$$

После того как интеграл (4.67) переписан в форме (4.70) легко проверить дискретную симметрию (4.68) при помощи замены переменных интегрирования $(a, b, t) \rightarrow (a, b, t')$, где $t' = \frac{b}{a^2}$. Она отвечает перестановке $a \, t \Rightarrow b \, t^{-1}$ в (4.70). При этом интеграл в (4.70) преобразуется подходящим образом, т.е. всё сводится к перестановке $A \Rightarrow C$, а область интегрирования G отображается на себя.

Таким образом соотношение Янга–Бакстера (4.65) при $i = j = k = +$ выполнено. Аналогичным образом проверяются оставшиеся семь тройных соотношений (4.65). Чтобы понять это, заметим, что формулы (4.64) для \mathcal{R}^+ и \mathcal{R}^- практически идентичны. Их можно получить одно из другого отражением переменной интегрирования $x \rightarrow -x$. Другими словами \mathcal{R}^+ и \mathcal{R}^- отличаются лишь контуром интегрирования. В первом случае
Рис. 4.1. Проекция области D на плоскость (x, y). Она разделена кривыми $x = y, xy = 1$ на четыре части, помеченные различными цветами, каждая из которых отображается на соответствующую область на Рис. 4.2.

Рис. 4.2. Проекция области $G (4.69)$ на плоскость (t, a). Она разделена на четыре части, соответствующие четырем подобластям на Рис. 4.1.

Интегрирование выполняется по положительной полуоси, а во втором случае по отрицательной. Следовательно, чтобы проверить какое-нибудь тройное соотношение (4.65), нужно рассмотреть интеграл (4.67) по области, полученной отражением D. К примеру при $i = j = −, k = +$ нужно интегрировать в (4.67) по $x \leq 0, y \leq 0, z \geq 0$. После того как замена переменных (4.59) выполнена, возникает такой же интеграл, как в (4.70), а подходящая область интегрирования отмечена на Рис. 4.3. Симметрия (4.68) проверяется как и раньше при помощи замены переменных $at \equiv bt^{-1}$ в (4.70), которая, как непрудно видеть, не изменяет область интегрирования. Подчеркнём, что все алгебраические манипуляции, необходимые, чтобы доказать тройные соотношения (4.65) одинаковы во всех восьми случаях. Отличия между ними лишь в областях интегрирования как в интеграле (4.67), так и в (4.70).

Итого, восемь тройных соотношений (4.65) проверены и следовательно проверено соотношение Янга–Бакстер (4.12) для спинорной R-матрицы в фермионной реализации. Применяя разложение (4.63) R-матрицы на чётную и нечётную части, получаем восемь тройных соотношений

$$R_{12}^i(u) R_{23}^k(u + v) R_{12}^j(v) = R_{23}^j(v) R_{12}^k(u + v) R_{23}^i(u),$$

(4.71)
Рис. 4.3. Проекция области D и её трёх отражений на плоскость (x, y). При помощи неравенств указаны образы подобластей в пространстве параметров (a, b, t) (см. (4.59)). Предполагается, что $z > 0$. Очевидно, что для $z < 0$ нужно заменить b на $-b$.

gде $i, j, k = +, −$ (см. (4.23)). Отметим однако, что во всех предыдущих вычислениях была использована фермионная реализация R-матрицы, тогда как нас в первую очередь интересуют соотношения для привычной матричной реализации.

В конце параграфа 4.2.2 было показано, как представить фермионный оператор (4.39) в матричной форме (4.44). Легко проверить, что тройные соотношения (4.71) остаются верными в обоих матричных представлениях ρ' и ρ'' (4.41). Таким образом соотношение Янга–Бакстера (4.12) для спинорной R-матрицы (4.10) установлено прямым вычислением.

4.3.3. Унитарность

В введении к этой главе сформулировано и доказано соотношение унитарности (4.25) с точностью до явного вычисления коэффициентных функций $h_+(u), h_-(u), k$ к которому мы обратимся теперь. Воспользуемся фермионной реализацией R-матрицы. Ввиду (4.39) и (4.54)

$$R^+(u)R^+(-u) = R^+(u|x)R^+(-u|y) * (1 - xy)^d As \left(e^{\frac{x+y}{x-y} \Gamma_1 \cdot \Gamma_2} \right). \tag{4.72}$$

Поскольку мы знаем, что $R^+(u)R^+(-u)$ пропорционально проектору P^+, то формула (4.72) содержит лишь фермионные структуры вида 1 и $As (\Gamma_1 \cdot \Gamma_2)^d$. Коэффициенты при остальных структурах обращаются в нуль. Поэтому нам будет достаточно вычислить численный
коэффициент при 1 в (4.72), который равен

\[R^+(u|x)R^+(-u|y) \ast (1 - xy)^d = \sum_{k=0}^{d/2} \binom{d}{2k} R_{2k}(u)R_{2k}(-u). \]

Аналогично вычисляем коэффициент при \(As(\Gamma_1 \cdot \Gamma_2)^d \) в (4.72),

\[R^+(u|x)R^+(-u|y) \ast (x + y)^d = \sum_{k=0}^{d/2} (-1)^{k/2} \binom{d}{2k} R_{2k}(u)R_{2k}(-u). \]

Далее воспользуемся матричным представлением \(\rho' \) (4.42) или \(\rho'' \) (4.43) и получаем (4.44)

\[\rho'(R^+(-u))\rho'(R^+(-u)) = \rho''(R^+(u))\rho''(R^+(u)) = \rho(R^+(u))\rho(R^+(-u)), \]

что окончательно приводит к первому соотношению унитарности (4.25) ввиду (4.45).

Предыдущие рассуждения справедливы и для \(R^-(-u) \). Коэффициент при 1 равен

\[R^-(u|x)R^+(-u|y) \ast (1 - xy)^d = -\sum_{k=0}^{d/2-1} \binom{d}{2k+1} R_{2k+1}(u)R_{2k+1}(-u). \]

Матричная реализация второго соотношения унитарности (4.25) имеет вид

\[\rho'(R^-(-u))\rho'(R^-(-u)) = \rho''(R^-(-u))\rho''(R^-(-u)) = -\rho(R^-(-u))\rho(R^-(-u)). \]

Замечание. Соотношение унитарности (4.25) можно также установить при помощи интегрального представления для R-матрицы (4.60) используя явное выражение для двукратного интеграла

\[\int_0^\infty \int_0^\infty \frac{dx\,dy\,x^{u-1}y^{-u-1}(x + y)^k(1 - xy)^{d-k}}{(1 + x^2)^{u+\frac{k}{2}}(1 + y^2)^{-u+\frac{k}{2}}} = \begin{cases} -\frac{2\pi}{u} \frac{1}{\sin \pi u}, & \text{at } k = 0 \\ -\frac{2\pi}{u} \cot \pi u, & \text{at } k = d \\ 0, & \text{at } k = 1, \ldots, d - 1. \end{cases} \]

4.3.4. Кроссинг-унитарность

Перейдём к соотношению кроссинг-унитарности (4.26), где R-матрица выбрана в фермионной реализации, а R является оператором замены (4.47). Производящая функция для гамма-матричной структуры этого соотношения указана в (4.55). Используя интегральное представление для коэффициентных функций (4.62), перепишем левую часть соотношения кроссинг-унитарности (4.26),

\[2^d \int_0^\infty \int_0^\infty \frac{dx\,dy\,x^{u-1}y^{-u-1-d}}{(1 + x^2)^{u+\frac{k}{2}}(1 + y^2)^{2-u-\frac{k}{2}}} As \left[(a(u)a(2 - u - d) + b(u)b(2 - u - d))e^{\alpha_1R_1+R_3} + \cdots \right], \]

183
Вычислим интегралы в (4.73) и воспользуемся связью нормировочных функций $a = A + B$, $b = A - B$,

$$
c_{2k} = \frac{2^\frac{d+1}{2}}{1 - \frac{d}{2} - u} \cot \left(\frac{\pi u}{2} \right) A(u) A(2-u-d) , \quad c_{2k+1} = -\frac{2^\frac{d+1}{2}}{1 - \frac{d}{2} - u} \tan \left(\frac{\pi u}{2} \right) B(u) B(2-u-d) .
$$

(4.74)

Отметим, что коэффициентные функции c_{2k} и c_{2k+1} не зависят от индекса k. Сравнивая предыдущий результат (4.73) с оператором замены $P_{13} = A_\text{т} \cdot B_\text{т} (4.47)$, заключаем, что $c_{2k} = c_{2k+1}$, откуда следует ограничение на A, B: $\tan^2 \left(\frac{\pi u}{2} \right) = -A(u) A(2-u-d) B(u) B(2-u-d)$.

Переход к матричному представлению $R \rightarrow \rho(R)$ (4.44) не вызывает затруднений и не приводит к появлению дополнительных знаков, так что соотношение кроссинг-унитарности полностью сохраняет свой вид.

4.4. L-оператор для $so(d)$

Рассмотрим теперь решения уравнения Янга–Бакстера, заданные на бесконечномерных пространствах. Для этого введём пространство V' некоторого представления, которое предполагаем вообще говоря бесконечномерным и ограничиваем универсальное уравнение Янга–Бакстера (4.1) на пространство $V \otimes V \otimes V'$

$$
R_{12}(u - v) L_{13}(u) L_{23}(v) = L_{13}(v) L_{23}(u) R_{12}(u - v) \in \text{End}(V \otimes V \otimes V') .
$$

(4.75)

Оператор $L(u)$ считаем заданным на тензорном произведении $V \otimes V'$ спинорного и произвольного T' представления и ищем его в виде

$$
L(u) = u + \frac{i}{4} \gamma_{ab} \otimes T'(M^{ab}) .
$$

(4.76)

Здесь используем обозначения (4.6) и M_{ab} ($a, b = 1, \ldots, d$) генераторы $so(d)$, удовлетворяющие определяющим коммутационным соотношениям

$$
[M_{ab}, M_{cd}] = i(\delta_{bd}M_{ac} + \delta_{ac}M_{bd} - \delta_{ad}M_{bc} - \delta_{bc}M_{ad}) .
$$

(4.77)

Далее проверим, что выполнено RLL-соотношение (4.75) со спинорной R-матрицей (4.10), если представление T' таково, что

$$
T'(\{M_{[ab}, M_{c]d}\}) = 0 ,
$$

(4.78)
где \(\{A, B\} = AB + BA \) антикоммутатор, а квадратная скобка обозначает антисимметризацию по трём индексам. Ниже приведено доказательство этого факта, которое использует технику производящих функций. А именно, устанавлив, что RLL-соотношение (4.75) с L-оператором (4.76) и R-матрицей вида (4.10), приводит к рекуррентным соотношениям (4.11) на коэффициентные функции \(R_k(u) \), а также ограничению (4.78) на представление \(T' \) в квантовом пространстве.

Отметим, что в особом случае \(d = 6 \) имеет место изоморфизм \(so(6, \mathbb{C}) = sl(4, \mathbb{C}) \), при этом соответствующий 8-мерный L-оператор (4.76) распадается в прямую сумму двух 4-мерных L-операторов для алгебр \(sl(4) \), спинорная R-матрица (4.10) сводится к R-матрице Янга при вейлевских проекциях, а ограничение (4.78) на представление \(T' \) не возникает. В конце этой главы приведено соответствующее вычисление.

4.4.1. RLL-соотношение

В дальнейшем для краткости используем обозначения \(T'(M_{ab}) \rightarrow M_{ab} \). Следующее вычисление очень похоже на то, которое было выполнено в параграфе 4.2.3, и использует технику производящих функций. Докажем RLL-соотношение (4.75) в фермионной реализации. Далее переходя к матричному представлению \(\rho' \) или \(\rho'' \) (4.41) сразу же получаем (4.75) для спинорной R-матрицы (4.10) и L-оператора (4.76).

Подставим спинорную R-матрицу (4.39) в фермионной реализации и фермионный аналог L-оператора (4.76) с произвольным представлением \(T' \) в квантовом пространстве в RLL-соотношении (4.75),

\[
\sum_{k=0}^{\infty} \frac{R_k(u-v)}{k!} (\Gamma_1)_{A_k} (\Gamma_2)_{A_k} \left(u + \frac{i}{4} (\Gamma_1)_{ab} M_{ab} \right) \left(v + \frac{i}{4} (\Gamma_2)_{cd} M_{cd} \right) =
\]

\[
= \sum_{k=0}^{\infty} \frac{R_k(u-v)}{k!} \left(v + \frac{i}{4} (\Gamma_1)_{ab} M_{ab} \right) \left(u + \frac{i}{4} (\Gamma_2)_{cd} M_{cd} \right) (\Gamma_1)_{A_k} (\Gamma_2)_{A_k} .
\]

(4.79)

Это соотношение содержит слагаемые линейные и квадратичные по генераторам \(M_{ab} \).

Произведение двух генераторов можно преобразовать при помощи коммутационных соотношений алгебры Ли (4.77)

\[
M_{ab} M_{cd} = \frac{1}{2} \{M_{ab}, M_{cd}\} + \frac{1}{2} \{M_{ab}, M_{cd}\} =
\]

\[
= \frac{i}{2} \left[g_{bc} M_{ad} - g_{ad} M_{bc} - g_{ac} M_{bd} + g_{bd} M_{ac} \right] + \frac{1}{2} \{M_{ab}, M_{cd}\} ,
\]

185
поэтому
\[(\Gamma_1)_{ab} (\Gamma_2)_{cd} M^{ab} M^{cd} = -2i (\Gamma_1)_a^c (\Gamma_2)_{bc} M^{ab} + \frac{1}{2} (\Gamma_1)_{ab} (\Gamma_2)_{cd} \{M^{ab}, M^{cd}\}.\]

Все слагаемые из (4.79) линейные по спектральному параметру в собираются в выражение
\[\sim (u - v)\]
в виде
\[(\Gamma_1)_{A_k} (\Gamma_2)^{A_k} - (\Gamma_1)_{ab} (\Gamma_1)_{A_k} (\Gamma_2)^{A_k} = (\Gamma_1)_{ab} (\Gamma_2)_{cd} - (\Gamma_1)_{A_k} (\Gamma_1)_{Ab} (\Gamma_2)^{A_k},\]
что есть следствие \(so(d)\)-инвариантности
\[[(\Gamma_1)_{ab} + (\Gamma_2)_{ab}, (\Gamma_1)_{A_k} (\Gamma_2)^{A_k}] = 0.\]

После этих преобразований соотношение сплетания (4.79) сводится к виду
\[\sum_{k=0}^{\infty} \frac{R_k(u)}{k!} u M^{ab} \left((\Gamma_1)_{A_k} (\Gamma_2)^{A_k} (\Gamma_2)_{ab} - (\Gamma_1)_{ab} (\Gamma_1)_{A_k} (\Gamma_2)^{A_k} \right) + \]
\[+ \frac{1}{2} \sum_{k=0}^{\infty} \frac{R_k(u)}{k!} M^{ab} \left((\Gamma_1)_{A_k} (\Gamma_1)^c (\Gamma_2)^{A_k} (\Gamma_2)_{bc} - (\Gamma_1)^c (\Gamma_1)_{A_k} (\Gamma_2)^{A_k} (\Gamma_2)_{bc} \right) + \]
\[+ i \sum_{k=0}^{\infty} \frac{R_k(u)}{k!} \left((\Gamma_1)_{A_k} (\Gamma_1)_{ab} (\Gamma_2)^{A_k} (\Gamma_2)_{cd} - (\Gamma_1)_{cd} (\Gamma_1)_{A_k} (\Gamma_2)^{A_k} \right) \{M^{ab}, M^{cd}\} = 0.\]

(4.80)

Воспользуемся формулами для проведения произведения двух производящих функций к нормальной форме (см. (4.48))
\[
\text{As} \left(e^{x\Gamma_1 \Gamma_2} \right) e^{s\Gamma_1} = \text{As} \left(e^{x\Gamma_1 \Gamma_2 + s(\Gamma_1 - x\Gamma_2)} \right) ; \quad e^{s\Gamma_1} \text{As} \left(e^{x\Gamma_1 \Gamma_2} \right) = \text{As} \left(e^{x\Gamma_1 \Gamma_2 + s(\Gamma_1 + x\Gamma_2)} \right),
\]
\[
\text{As} \left(e^{x\Gamma_1 \Gamma_2} \right) e^{t\Gamma_2} = \text{As} \left(e^{x\Gamma_1 \Gamma_2 + t(\Gamma_2 - x\Gamma_1)} \right) ; \quad e^{t\Gamma_2} \text{As} \left(e^{x\Gamma_1 \Gamma_2} \right) = \text{As} \left(e^{x\Gamma_1 \Gamma_2 + t(\Gamma_2 + x\Gamma_1)} \right),
\]
чтобы получить удобное представление для первого слагаемого (4.80)
\[
\sum_{k=0}^{\infty} \frac{R_k}{k!} M^{ab} \left[(\Gamma_1)_{A_k} (\Gamma_2)^{A_k} (\Gamma_2)_{ab} - (\Gamma_1)_{ab} (\Gamma_1)_{A_k} (\Gamma_2)^{A_k} \right] = \]
\[= R(x) * M^{ab} \partial_{a_1} \partial_{a_2} \text{As} e^{x\Gamma_1 \Gamma_2} \left[e^{s(\Gamma_2 + x\Gamma_1)} - e^{s(\Gamma_1 + x\Gamma_2)} \right] = \]
\[= R(x) * M^{ab} \text{As} e^{x\Gamma_1 \Gamma_2} \left[(\Gamma_2 a + x\Gamma_1 b)(\Gamma_2 b + x\Gamma_1 a) - (\Gamma_1 a + x\Gamma_2 a)(\Gamma_1 b + x\Gamma_2 b) \right] = \]
\[= R(x) * (x^2 - 1) M^{ab} \text{As} e^{x\Gamma_1 \Gamma_2} [\Gamma_1 a \Gamma_1 b - \Gamma_2 a \Gamma_2 b] = \]
\[= (\partial_x^2 R(x) - R(x)) * M^{ab} \text{As} e^{x\Gamma_1 \Gamma_2} [\Gamma_1 a \Gamma_1 b - \Gamma_2 a \Gamma_2 b].\]

186
Сложным образом при помощи формул

\[\text{As} \left(e^{x \Gamma_1 \Gamma_2} e^{s \Gamma_1 + t \Gamma_2} \right) = \text{As} \left(e^{x(\Gamma_1-s) \cdot (\Gamma_2-t) + s \Gamma_1 + t \Gamma_2} \right), \]

\[e^{s \Gamma_1 + t \Gamma_2} \text{As} \left(e^{x \Gamma_1 \Gamma_2} \right) = \text{As} \left(e^{x(\Gamma_1+s) \cdot (\Gamma_2+t) + s \Gamma_1 + t \Gamma_2} \right), \]

перемножаем производящие функции и переписываем второе слагаемое из (4.80) в виде

\[\sum_{k=0}^{\infty} \frac{R_k}{k!} M^{ab} \left((\Gamma_1)_{A_k} (\Gamma_1)_a c (\Gamma_2)_b c (\Gamma_2)_c b - (\Gamma_1)_{A_k} (\Gamma_1)_a c (\Gamma_2)_b c (\Gamma_2)_c b \right) = \]

\[= -2 R(x) \cdot M^{ab} \text{As} e^{x \Gamma_1 \Gamma_2} [\Gamma_{1a} \Gamma_{1b} - \Gamma_{2a} \Gamma_{2b}] \left[(x^3 + x) \Gamma_1 \Gamma_2 - (d - 2) x^2 \right] = \]

\[= -2 \left[x \partial_x^3 R(x) + x \partial_x^2 R(x) - (d - 2) \partial_x^2 R(x) \right] M^{ab} \text{As} e^{x \Gamma_1 \Gamma_2} [\Gamma_{1a} \Gamma_{1b} - \Gamma_{2a} \Gamma_{2b}], \]

а последнее слагаемое в (4.80) принимает вид

\[\sum_{k=0}^{\infty} \frac{R_k}{k!} \left((\Gamma_1)_{A_k} (\Gamma_1)_{ab} (\Gamma_2)_{cd} - (\Gamma_1)_{cd} (\Gamma_1)_a b (\Gamma_2)_d c \right) \{ \{ M^{ab}, M^{cd} \} = \]

\[= 4 R(x) \cdot (x^3 - x) \{ M^{ab}, M^{cd} \} \text{As} e^{x \Gamma_1 \Gamma_2} [\Gamma_{1a} \Gamma_{1b} \Gamma_{1c} - \Gamma_{2a} \Gamma_{2b} \Gamma_{2c} \Gamma_{1d}] = \]

\[= 4 \left[\partial_x^3 R(x) - \partial_x^2 R(x) \right] \{ M^{ab}, M^{cd} \} \text{As} e^{x \Gamma_1 \Gamma_2} [\Gamma_{1a} \Gamma_{1b} \Gamma_{1c} \Gamma_{2d} - \Gamma_{2a} \Gamma_{2b} \Gamma_{2c} \Gamma_{1d}]. \]

Таким образом переписали (4.80) в терминах производящих функций

\[\left[x \partial_x^3 R(x) + x \partial_x^2 R(x) - (d - 2) \partial_x^2 R(x) - u \left(\partial_x^2 R(x) - R(x) \right) \right] \cdot M^{ab} \text{As} e^{x \Gamma_1 \Gamma_2} [\Gamma_{1a} \Gamma_{1b} - \Gamma_{2a} \Gamma_{2b}] = \]

\[- \frac{i}{2} \left[\partial_x^2 R(x) - \partial_x R(x) \right] \{ M^{ab}, M^{cd} \} \text{As} e^{x \Gamma_1 \Gamma_2} [\Gamma_{1a} \Gamma_{1b} \Gamma_{1c} \Gamma_{2d} - \Gamma_{2a} \Gamma_{2b} \Gamma_{2c} \Gamma_{1d}] = 0. \] (4.81)

Предыдущее соотношение содержит две линейно независимые гамма-матричные структуры, так что требование заполнения коэффициентов при них ведёт к дифференциальному уравнению на коэффициенты функцию R(x)

\[x \left[\partial_x^3 R(x) + \partial_x R(x) \right] - (d - 2) \partial_x^2 R(x) - u \left[\partial_x^2 R''(x) - R(x) \right] = 0 \]

и требованию \{ M_{ab}, M_{cd} \} = 0 (4.78). Дифференциальное уравнение порождает рекуррентное соотношение (4.11) для коэффициентов R_k(u):

\[R(x) = \sum_{k=0}^{\infty} \frac{s_k}{k!} \frac{R_k(u)}{u^k} x^k \rightarrow R_{k+2}(u) = - \frac{u + k}{u + d - 2 - k} R_k(u). \]

187
4.4.2. Спинорная R-матрица в особом случае $d = 6$

Рассмотрим особый случай малой размерности $d = 6$, в котором общая картина несколько упрощается. Рекуррентные соотношения (4.11) для чётных и нечётных коэффициентов независимы, что позволяет фиксировать их в виде $R_0(u) = (u + 4)/8$ и $R_1(u) = 0$. При этом R-матрица (4.10) принимает вид

$$R(u) = R_0(u) \mathbf{1} \otimes \mathbf{1} + \frac{R_2(u)}{2!} \gamma_{a_1a_2} \otimes \gamma^{a_1a_2} + \frac{R_4(u)}{4!} \gamma_{a_1...a_4} \otimes \gamma^{a_1...a_4} + \frac{R_6(u)}{6!} \gamma_{a_1...a_6} \otimes \gamma^{a_1...a_6}, \quad (4.82)$$

где

$$R_0(u) = (u + 4)/8, \quad R_2(u) = -u/8, \quad R_4(u) = u/8, \quad R_6(u) = -(u + 4)/8,$$

а последний член в (4.81), порождающий ограничение (4.78), сводится к

$$\frac{2}{3!} \left[R_6(u) + R_4(u) \right] \left\{ M^{ab}, M^c_d \right\} \gamma_{abc_1c_2c_3} \otimes \gamma^{dc_1c_2c_3} + \gamma_{abc_1c_2c_3} \otimes \gamma^{dc_1c_2c_3} \right] . \quad (4.83)$$

Все прочие слагаемые исчезают из-за специального выбора коэффициентов $R_k(u)$ и благодаря конечности алгебры Клиффорда гамма-матрицы. Ввиду соотношений $\alpha \gamma_{abc_1c_2c_3} = \epsilon_{abc_1c_2c_3} \gamma_7$ и $\gamma_7 \gamma_7 = 1$ (4.14), гамма-матричная структура в (4.83) заметно упрощается

$$\gamma_{abc_1c_2c_3} \otimes \gamma^{dc_1c_2c_3} = \gamma_7 \otimes \gamma_7 \gamma_{abc_1c_2c_3} \gamma^{dc_1c_2c_3} = 120 \gamma_7 \otimes \gamma_7 \left[\delta^d_a \gamma_{bc} - \delta^d_b \gamma_{ac} + \delta^d_c \gamma_{ab} \right] .$$

Отсюда заключаем, что устанавливается (4.83), поскольку оно пропорционально

$$\left\{ M^{ab}, M^c_d \right\} \left[\delta^d_a \gamma_{bc} - \delta^d_b \gamma_{ac} + \delta^d_c \gamma_{ab} \right] = 2 \left\{ M^{ab}, M^c_d \right\} \gamma_{bc} = 0 .$$

В предыдущем выражении круглые скобки $(...)$ обозначают симметризацию. В итоге RLL-соотношение (4.79) имеет место для произвольных представлений генераторов $\left\{ M_{ab} \right\}$ алгебры $so(6)$.

Перепишем спинорную R-матрицу (4.82) в более явном виде. Все гамма-матричные структуры в (4.82) блочно-диагональны для вейлевского представления гамма-матриц. Поэтому естественно рассмотреть проекции (4.82) на неприводимые подпространства. Введём подпространства V_+ и V_-, соответствующие паре вейлевских проекций: $V_+ = \frac{1 + \Gamma_5}{2} V$ и $V_- = \frac{1 - \Gamma_5}{2} V$. Сначала заметим, что

$$\left[1 \otimes 1 - \frac{1}{6!} \gamma_{A_0} \otimes \gamma^{A_0} \right]_{V_+ \otimes V_-} = \left[\frac{1}{2!} \gamma_{A_2} \otimes \gamma^{A_2} - \frac{1}{4!} \gamma_{A_4} \otimes \gamma^{A_4} \right]_{V_+ \otimes V_-} = 0$$

приводит к заполнению проекций $R(u)|_{V_+ \otimes V_-} = R(u)|_{V_- \otimes V_+} = 0$. Другая пара матричных соотношений

$$\left[1 \otimes 1 + \frac{1}{6!} \gamma_{A_0} \otimes \gamma^{A_0} \right]_{V_- \otimes V_-} = \left[\frac{1}{2!} \gamma_{A_2} \otimes \gamma^{A_2} + \frac{1}{4!} \gamma_{A_4} \otimes \gamma^{A_4} \right]_{V_- \otimes V_-} = 0$$

188
приводит к R-матрице Янга

\[
R(u)|_{V_- \otimes V_-} = [2 \, R_0(u) \, \mathbf{1} \otimes \mathbf{1} + R_2(u) \, \gamma_{ab} \otimes \gamma_{ab}]_{V_- \otimes V_-} = \mathbf{1} \otimes \mathbf{1} + u \, P, \quad (4.84)
\]
где P обозначает перестановку. Здесь учли \(-\frac{1}{2} \, \gamma_{ab} \otimes \gamma_{ab}|_{V_- \otimes V_-} = P - \frac{1}{4} \, \mathbf{1} \otimes \mathbf{1} \). Совершенно аналогичным образом \(R(u)|_{V_+ \otimes V_+} = \mathbf{1} \otimes \mathbf{1} + u \, P \).
Глava 5

Конформно-инвариантный R-оператор

В настоящей главе переходим к конструкции решений уравнения Янга–Бакстера, заданных на тензорном произведении двух бесконечномерных пространств. В отличие от предыдущей главы, где рассматривалась (псевдо)ортогональная симметрия, теперь нас будет интересовать конформная алгебра $\text{conf}(\mathbb{R}^{p,q})$ (псевдо)евклидова пространства и её бесконечномерные представления на тензорных полях. Основная задача – построить R-оператор, заданный на тензорном произведении двух бесконечномерных представлений конформной алгебры и решающий уравнение Янга–Бакстера. Построим его в виде произведения более простых операторов S^1, S^2 и S^3. Операторы S^1 и S^3 отождествлены со сплетающими операторами двух неприводимых представлений конформной алгебры, а S^2 получен из него при помощи некоторого преобразования дуальности. Имеют место соотношения Кокстера для базовых блоков S^1, S^2 и S^3, из которых следуют все прочие соотношения между R-операторами. Для конформной алгебры n-мерного Евклидова пространства построим R-оператор для скалярных представлений (представление на скалярных полях), при этом соответствующее соотношение Кокстера сводится к хорошо известному соотношению звездо-треугольник для пропагаторов скалярных полей. Такая конструкция представлена в параграфе 5.4.

В случае конформной алгебры 4-мерного Евклидова пространства, R-оператор получен для более широкого класса представлений на произвольных тензорных полях. В результате для 4-мерного Евклидова пространства выполнено обобщение скалярного соотношения звездо-треугольник для пропагаторов полей произвольного спина. В параграфе 5.5 доказано интегральное тождество, эквивалентное такому спинорному соотношению звездо-треугольник. Для этого вычислен соответствующий интеграл при помощи преобразования инверсии переменных интегрирования.

Однако перед тем как приступить к конструкции R-оператора, в начале этой главы выполнена подготовительная работа. В параграфе 5.1 напоминаются основные факты о конформной алгебре $\text{conf}(\mathbb{R}^{p,q}) = \text{so}(p+1,q+1)$ и её представлениях [72–74, 121–124]. Строится представление конформной алгебры $\text{so}(p+1,q+1)$ на пространстве тензорных полей методом индуцированных представлений. Изложение приспособлено для наших целей и несколько отличается от стандартного подхода. Известен также альтернативный подход.
5.1. Конформная алгебра в \(\mathbb{R}^{p,q} \)

В этом параграфе собраны стандартные сведения о конформных алгебрах Ли, которые нам понадобятся в последующих параграфах. \(\mathbb{R}^{p,q} \) обозначает псевдоевклидово пространство с метрикой

\[
g_{\mu \nu} = \text{diag}(1, \ldots, 1, -1, \ldots, -1).\]

Конформная алгебра \(\text{conf}(\mathbb{R}^{p,q}) \) это алгебра Ли конформной группы пространства \(\mathbb{R}^{p,q} \), порождённая генераторами \(\{ L_{\mu \nu}, P_\mu, K_\mu, D \} \ (\mu, \nu = 0, 1, \ldots, p+q-1) \), которые удовлетворяют коммутационным соотношениям:

\[
[D, P_\mu] = i P_\mu, \quad [D, K_\mu] = -i K_\mu, \quad [L_{\mu \nu}, L_{\rho \sigma}] = i (g_{\nu \rho} L_{\mu \sigma} + g_{\mu \sigma} L_{\nu \rho} - g_{\mu \rho} L_{\nu \sigma} - g_{\nu \sigma} L_{\mu \rho}).
\]
\[[K_\rho, L_{\mu\nu}] = i (g_{\rho\mu} K_\nu - g_{\rho\nu} K_\mu) , \quad [P_\rho, L_{\mu\nu}] = i (g_{\rho\mu} P_\nu - g_{\rho\nu} P_\mu) , \quad (5.1) \]

\[[K_\mu, P_\nu] = 2i (g_{\mu\nu} D - L_{\mu\nu}) , \quad [P_\mu, P_\nu] = 0 , \quad [K_\mu, K_\nu] = 0 , \quad [L_{\mu\nu}, D] = 0 . \]

Отметим, что генераторы \(L_{\mu\nu} \) порождают алгебры Ли \(so(p, q) \) группы вращений \(SO(p, q) \) в \(\mathbb{R}^{p,q} \).

Известно [131], что конформная алгебра Ли (5.1) изоморфна \(so(p+1, q+1) \) с генераторами \(M_{ab} \) \((a, b = 0, 1, \ldots, p + q + 1)\), удовлетворяющими соотношениям

\[[M_{ab}, M_{cd}] = i (g_{bd} M_{ac} + g_{ac} M_{bd} - g_{ad} M_{bc} - g_{bc} M_{ad}) , \quad (5.2) \]

где \(g_{ab} \) обозначает метрику пространства \(\mathbb{R}^{p+1,q+1} \):

\[g_{ab} = \text{diag}(1, \ldots, 1, -1, \ldots, -1) . \quad (5.3) \]

Изоморфизм двух алгебр Ли \(so(p+1, q+1) \) и \(\text{conf}(\mathbb{R}^{p,q}) \) устанавливается при помощи соотношений [121]:

\[L_{\mu\nu} = M_{\mu\nu} , \quad K_\mu = M_{n,\mu} - M_{n+1,\mu} , \quad (n = p + q) . \quad (5.4) \]

При помощи этих формул соответствия легко переписать соотношения (5.1) в краткой форме (5.2). Определим квадратичный оператор Казимира

\[C_2 = \frac{1}{2} M_{ab} M^{ab} , \quad (5.5) \]

который служит центральным элементом в обёртывающей алгебре \(\text{conf}(\mathbb{R}^{p,q}) \). В терминах генераторов \(\text{conf}(\mathbb{R}^{p,q}) \) оператор Казимира \(C_2 \) (5.5) переписывается при помощи формул соответствия (5.4) в виде

\[C_2 = \frac{1}{2} (L_{\mu\nu} L^{\mu\nu} + P_\mu K^\mu + K_\mu P^\mu) - D^2 . \quad (5.6) \]

Опишем некоторое матричное представление конформной алгебры \(\text{conf}(\mathbb{R}^{p,q}) = so(p+1, q+1) \), которое в дальнейшем именуется спинорное представление. В дальнейшем будем рассматривать исключительно случай чётной размерности пространства \(n = p + q \) (обобщение на случай нечётной размерности не составляет труда). Обозначим \(\gamma_\mu \) \((\mu = 0, \ldots, n - 1)\) 2\(\mathbb{Z} \)-мерные гамма-матрицы для пространства \(\mathbb{R}^{p,q} \):

\[\gamma_\mu \gamma_\nu + \gamma_\nu \gamma_\mu = 2 g_{\mu\nu} I , \quad (5.7) \]
\(\gamma_{n+1} \equiv \alpha \gamma_0 \cdot \gamma_1 \cdots \gamma_{n-1} , \quad \alpha^2 = (-1)^q n (n-1)/2 , \) (5.8)

где \(I \) обозначает единичную матрицу, а константа \(\alpha \) подобрана так, что \(\gamma_{n+1}^2 = I \). При помощи гамма-матриц (5.7) легко построить гамма-матрицы \(\Gamma_a \) для пространства \(\mathbb{R}^{p+1,q+1} \) с метрикой \(g_{ab} \) (5.3):

\[
\Gamma_\mu = \sigma_2 \otimes \gamma_\mu = \begin{pmatrix} O & -i \gamma_\mu \\ i \gamma_\mu & O \end{pmatrix} \quad (\mu = 0, \ldots, n - 1),
\]

\[
\Gamma_n = \sigma_1 \otimes I = \begin{pmatrix} O & I \\ I & O \end{pmatrix}, \quad \Gamma_{n+1} = i \sigma_2 \otimes \gamma_{n+1} = \begin{pmatrix} O & \gamma_{n+1} \\ -\gamma_{n+1} & O \end{pmatrix},
\]

\[
\Gamma_{n+3} = -\alpha \Gamma_0 \cdot \Gamma_1 \cdots \Gamma_{n+1} = \begin{pmatrix} I & O \\ O & -I \end{pmatrix},
\]

где \(O \) обозначает нулевую матрицу размерности \(2 \times 2 \). Здесь и далее использованы стандартные матрицы Паули

\[
\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\] (5.10)

Из (5.7) следует, что матрицы (5.9) подчиняются соотношениям алгебры Клиффорда для гамма-матриц пространства \(\mathbb{R}^{p+1,q+1} \):

\[
\Gamma_a \Gamma_b + \Gamma_b \Gamma_a = 2 g_{ab} I , \quad I \equiv I_2 \otimes I ,
\] (5.11)

где \(I_2 \) обозначает единичную матрицу размера \(2 \times 2 \). Стандартное спинорное представление \(T \) генераторов \(M_{ab} \) алгебры \(\text{so}(p + 1, q + 1) \) (5.2) строится как

\[
T(M_{ab}) = \frac{i}{4} (\Gamma_a \Gamma_b - \Gamma_b \Gamma_a) .
\] (5.12)

Подставляя (5.9) в (5.12) и используя (5.4), получаем спинорное представление алгебры \(\text{conf}(\mathbb{R}^{p,q}) \)

\[
T(L_{\mu\nu}) = \frac{i}{2} I_2 \otimes [\gamma_\mu, \gamma_\nu] , \quad T(K_\mu) = \frac{i}{2} (I_2 \otimes \gamma_{n+1} \gamma_\mu - \sigma_3 \otimes \gamma_\mu) ,
\]

\[
T(P_\mu) = -\frac{i}{2} (I_2 \otimes \gamma_{n+1} \gamma_\mu + \sigma_3 \otimes \gamma_\mu) , \quad T(D) = \frac{i}{2} \sigma_3 \otimes \gamma_{n+1} ,
\] (5.13)

\[\mu, \nu = 0, 1, \ldots, n - 1 , \quad n = p + q . \]

Это представление приводимо, поскольку все матрицы (5.13) имеют блочно-диагональный
вид

\[T(L_{\mu\nu}) = \left(\begin{array}{cc} \frac{i}{4} [\gamma_\mu, \gamma_\nu] & 0 \\ 0 & \frac{i}{4} [\gamma_\mu, \gamma_\nu] \end{array} \right), \quad T(K_\mu) = \left(\begin{array}{cc} -\frac{1}{2}(1 - \gamma_{n+1}) \gamma_\mu & 0 \\ 0 & \frac{1}{2}(1 + \gamma_{n+1}) \gamma_\mu \end{array} \right), \]

\[T(P_\mu) = \left(\begin{array}{cc} -\frac{1}{2}(1 + \gamma_{n+1}) \gamma_\mu & 0 \\ 0 & \frac{1}{2}(1 - \gamma_{n+1}) \gamma_\mu \end{array} \right), \quad T(D) = \left(\begin{array}{cc} \frac{i}{2} \gamma_{n+1} & 0 \\ 0 & -\frac{i}{2} \gamma_{n+1} \end{array} \right). \]

Таким образом представление (5.13), (5.14) можно разложить в прямую сумму двух \(2^n\)-мерных представлений алгебры \(\text{conf}(\mathbb{R}^{p,q})\). Эти два подпредставления связаны друг с другом при помощи автоморфизма конформной алгебры (5.1):

\[L_{\mu\nu} \to L_{\mu\nu}, \quad P_\mu \to -K_\mu, \quad K_\mu \to -P_\mu, \quad D \to -D. \]

Одно из этих представлений после применения коммутационных соотношений для гамма-матриц переписывается в виде

\[T_1(L_{\mu\nu}) = \frac{i}{4} [\gamma_\mu, \gamma_\nu] \equiv \ell_{\mu\nu}, \quad T_1(K_\mu) = \gamma_\mu \frac{(1 - \gamma_{n+1})}{2} \equiv k_\mu, \]
\[T_1(P_\mu) = \gamma_\mu \frac{(1 + \gamma_{n+1})}{2} \equiv p_\mu, \quad T_1(D) = -\frac{i}{2} \gamma_{n+1} \equiv d. \]

Легко проверить прямым вычислением, что операторы (5.15) подчинены коммутационным соотношениям (5.1).

Учитывая рекурсию (5.9), воспользуемся следующим представлением для гамма-матриц (5.7):

\[\gamma_\mu = \left(\begin{array}{cc} 0 & \sigma_\mu \\ \sigma_\mu & 0 \end{array} \right), \quad \gamma_{n+1} = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \implies \]

\[\frac{I + \gamma_{n+1}}{2} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \quad \frac{I - \gamma_{n+1}}{2} = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right), \]

где 1, \(\sigma_\mu = ||(\sigma_\mu)_{\alpha\beta}||\) и \(\overline{\sigma}_\mu = ||(\overline{\sigma}_\mu)^{\alpha\beta}||\) — матрицы размерности \(2^{n-1}\); 1 — единичная матрица, а \(\sigma_\mu, \overline{\sigma}_\mu\) подчинены соотношениям

\[\sigma_\mu \overline{\sigma}_\nu + \sigma_\nu \overline{\sigma}_\mu = 2 g_{\mu\nu} 1, \quad \overline{\sigma}_\mu \sigma_\nu + \overline{\sigma}_\nu \sigma_\mu = 2 g_{\mu\nu} 1, \]

которые следуют из соотношений Клиффорда (5.7) и вида \(\gamma_\mu\) (5.16). В терминах гамма-матриц (5.16) конформные генераторы (5.15) можно переписать как

\[\ell_{\mu\nu} = \frac{i}{4} [\gamma_\mu, \gamma_\nu] = \left(\begin{array}{cc} \frac{i}{4}(\sigma_\mu \overline{\sigma}_\nu - \sigma_\nu \overline{\sigma}_\mu) & 0 \\ 0 & \frac{i}{4}(\sigma_\mu \overline{\sigma}_\nu - \sigma_\nu \overline{\sigma}_\mu) \end{array} \right) = \left(\begin{array}{cc} \sigma_{\mu\nu} & 0 \\ 0 & \overline{\sigma}_{\mu\nu} \end{array} \right), \]
\[p^\mu = \begin{pmatrix} 0 & 0 \\ \sigma^\mu & 0 \end{pmatrix}, \quad k^\mu = \begin{pmatrix} 0 & \sigma^\mu \\ 0 & 0 \end{pmatrix}, \quad d = -\frac{i}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \]

Отметим, что диагональные блоки матрицы \(\ell_{\mu\nu} \)

\[\sigma_{\mu\nu} = \frac{i}{4} (\sigma_\mu \sigma_\nu - \sigma_\nu \sigma_\mu) = \frac{1}{4} (\sigma_\mu \sigma_\nu - \sigma_\nu \sigma_\mu) = \frac{1}{4} (\sigma_\mu \sigma_\nu - \sigma_\nu \sigma_\mu) = \frac{1}{4} (\sigma_\mu \sigma_\nu - \sigma_\nu \sigma_\mu) \quad (5.19) \]

являются двумя неживыквивалентными представлениями для генераторов \(L_{\mu\nu} \) алгебры \(so(p, q) \).

Замечание 2. Известно, что любые два \(2^{n/2} \) мерных представления алгебры Клиффорда (5.7) эквивалентны. Поскольку наборы матриц \(\{ \gamma_\mu \} \) и \(\{ \gamma^T_\mu \} \) представляют алгебру Клиффорда (5.7), то

\[\gamma^T_\mu = C \gamma_\mu \cdot C^{-1}, \quad \mu = 0, \ldots, n - 1. \quad (5.20) \]

Рассмотрим комплексификацию группы \(Spin(p, q) \). Групповой элемент, соответствующий матрице \(\ell_{\mu\nu} \) (5.18),

\[U = \exp(i \omega^{\mu\nu} \ell_{\mu\nu}) = \begin{pmatrix} \Lambda_\alpha^\beta & 0 \\ 0 & \Lambda^\alpha_\beta \end{pmatrix}, \quad \det(U) = 1, \quad (5.21) \]

где \(\omega^{\mu\nu} \in \mathbb{C} \), так что соотношения эквивалентности (5.20) приводят к условию

\[\ell^T_{\mu\nu} = -C \cdot \ell_{\mu\nu} \cdot C^{-1} \Rightarrow U^T \cdot C \cdot U = C. \quad (5.22) \]

Из определения \(\gamma_{n+1} \) (5.8) и соотношений эквивалентности (5.20)

\[\gamma^T_{n+1} = \alpha (-1)^n C \cdot \gamma_{n-1} \cdots \gamma_0 \cdot C^{-1} = (-1)^{n(n-1)/2} C \cdot \gamma_{n+1} \cdot C^{-1}, \quad (5.23) \]

где учтена чётность \(n \). Учитывая явный вид (5.16) матрицы \(\gamma_{n+1} = \gamma^T_{n+1} \), можно выбрать \(C \) из (5.20) в форме:

1. \(\frac{n(n-1)}{2} \) — чётное \(\Rightarrow C = \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix}, \quad c^T = c \in \text{Mat}(2^{n/2-1}); \quad (5.24) \)

2. \(\frac{n(n-1)}{2} \) — нечётное \(\Rightarrow C = \begin{pmatrix} 0 & g \\ g & 0 \end{pmatrix}, \quad g^T = g \in \text{Mat}(2^{n/2-1}). \quad (5.25) \)

В итоге из (5.24) следует соотношения для диагональных блоков \(\Lambda \) и \(\Lambda \) матрицы \(U \) (5.21), (5.22):

1. \(\frac{n(n-1)}{2} \) — чётное \(\Rightarrow \Lambda^T \cdot c \cdot \Lambda = c, \quad \Lambda^T \cdot c \cdot \Lambda = c; \quad (5.25) \)

2. \(\frac{n(n-1)}{2} \) — нечётное \(\Rightarrow \Lambda^T \cdot g \cdot \Lambda = g. \quad (5.25) \)
5.1.1. Дифференциальное представление конформной алгебры и индуцированные представления

Введём представление \(\rho \) генераторов \(\{ L_{\mu \nu}, P_\mu, K_\mu, D \} \) алгебры (5.1) дифференциальными операторами [121]:

\[
\rho(P_\mu) = -i \partial_\mu \equiv \hat{p}_\mu, \quad \rho(D) = x^\mu \hat{p}_\mu - i \Delta, \quad (5.26)
\]

\[
\rho(L_{\mu \nu}) = \hat{\ell}_{\mu \nu} + S_{\mu \nu}, \quad \rho(K_\mu) = 2 x^\nu (\hat{\ell}_{\nu \mu} + S_{\nu \mu}) + (x^\nu x_\nu) \hat{p}_\mu - 2i \Delta x_\mu,
\]

где \(x_\mu \) — координаты на \(\mathbb{R}^{p,q} \), \(\Delta \in \mathbb{R} \) — конформная размерность, \(S_{\mu \nu} = -S_{\nu \mu} \) — спиновые генераторы, которые удовлетворяют тем же коммутационным соотношениям, что и генераторы \(L_{\mu \nu} \) (5.1):

\[
[S_{\mu \nu}, S_{\rho \sigma}] = i(g_{\nu \sigma} S_{\mu \rho} + g_{\mu \rho} S_{\nu \sigma} - g_{\mu \sigma} S_{\nu \rho}) \quad (5.27)
\]

и \([S_{\mu \nu}, x_\rho] = 0 = [S_{\mu \nu}, \hat{p}_\rho] \). Отметим, что в дифференциальном представлении (5.26) квадратичный оператор Казимира (5.6) принимает вид:

\[
\rho(C_2) = \frac{1}{2} \left(S_{\mu \nu} S^{\mu \nu} - \hat{\ell}_{\mu \nu} \hat{\ell}^{\mu \nu} \right) + \Delta (\Delta - n). \quad (5.28)
\]

В этом параграфе будет получена реализация конформной алгебры дифференциальными операторами (5.26) при помощи метода индуцированных представлений, который отличается от использоанного в [121].

Во-первых, соберём генераторы (5.26) в \(2^{n/2} \)-мерную матрицу

\[
\frac{1}{2} T_1(M^{ab}) \cdot \rho(M_{ab}) = \frac{1}{2} \left[\hat{\ell}^{\mu \nu} \cdot \rho(L_{\mu \nu}) + p^\mu \cdot \rho(K_\mu) + k^\mu \cdot \rho(P_\mu) \right] - d \cdot \rho(D) =
\]

\[
= \begin{pmatrix}
L + S + \frac{i}{2} \rho(D) 1 & p \\
\overline{K} & \overline{L} + \overline{S} - \frac{i}{2} \rho(D) 1
\end{pmatrix},
\]

где представления \(T_1 \) и \(\rho \) были определены в (5.15) и (5.26) соответственно. В (5.29) и далее используются обозначения

\[
L = \frac{1}{2} \sigma^{\mu \nu} \hat{\ell}_{\mu \nu}, \quad \overline{L} = \frac{1}{2} \bar{\sigma}^{\mu \nu} \hat{\ell}_{\mu \nu}, \quad p = \frac{1}{2} \sigma^\mu \hat{p}_\mu = -\frac{i}{2} \sigma^\mu \partial_\mu, \quad \overline{K} = \frac{1}{2} \bar{\sigma}^\mu \rho(K_\mu), \quad x = -i \bar{\sigma}^\mu x_\mu.
\]

(5.30)

Далее нам потребуется следующее утверждение. Операторы (5.30) могут быть преобразованы как

\[
L = -p \cdot x - \frac{i}{2} (\hat{p}_\mu x^\mu) 1, \quad \overline{L} = x \cdot p + \frac{i}{2} (x^\mu \hat{p}_\mu) 1,
\]

(5.31)

196
\[
\mathbf{K} = (\mathbf{x} \cdot \mathbf{S} - \mathbf{S} \cdot \mathbf{x}) - \mathbf{x} \cdot \mathbf{p} \cdot \mathbf{x} + \left(\Delta - \frac{n}{2} \right) \mathbf{x}. \tag{5.32}
\]
В самом деле первое из выражений в (5.31) выводится в несколько шагов
\[
\mathbf{L} = \frac{i}{4} \mathbf{\sigma}^\nu \mathbf{\sigma}^\mu (\hat{p}_\mu \mathbf{x}_\nu - \hat{p}_\nu \mathbf{x}_\mu) = -\frac{1}{2} \mathbf{p} \cdot \mathbf{x} - \frac{i}{4} (2\mathbf{\sigma}^{\mu\nu} \mathbf{1} - \mathbf{\sigma}^\nu \mathbf{\sigma}^\mu) \hat{p}_\nu \mathbf{x}_\mu = -\mathbf{p} \cdot \mathbf{x} - \frac{i}{2} (\hat{\mathbf{p}}^\mu \mathbf{x}_\mu) \mathbf{1},
\]
примечания (5.17). Второе тождество в (5.31) получается аналогично. Чтобы получить тождество (5.32) отметим, что
\[
\mathbf{x} \cdot \mathbf{S} - \mathbf{S} \cdot \mathbf{x} = \mathbf{\sigma}^\nu x^\mu \mathbf{S}^\mu \nu,
\]
где при преобразованиях вновь было использовано (5.17). Тогда (5.32) следует из (5.26) и (5.33). Теперь подставим (5.31), (5.32) в (5.29). В результате матрица (5.29) переписывается в виде
\[
\frac{1}{2} T_1 (M^{ab}) \cdot \rho (M_{ab}) = \begin{pmatrix}
\Delta - \frac{n}{2} \cdot \mathbf{1} + \mathbf{S} - \mathbf{p} \cdot \mathbf{x}, & \mathbf{p} \\
\mathbf{x} \cdot \mathbf{S} - \mathbf{S} \cdot \mathbf{x} - \mathbf{x} \cdot \mathbf{p} \cdot \mathbf{x} + (\Delta - \frac{n}{2}) \cdot \mathbf{x}, & -\frac{\Delta}{2} \cdot \mathbf{1} + \mathbf{S} + \mathbf{x} \cdot \mathbf{p}
\end{pmatrix},
\]
которая будет активно использоваться в дальнейшем.

Рассмотрим набор матриц
\[
A = i (\omega^{\mu\nu} \ell_\mu^\nu + a^\mu p_\mu + b^\nu k_\nu + \beta d), \quad \omega^{\mu\nu}, a^\mu, b^\nu, \beta \in \mathbb{R}, \tag{5.35}
\]
которые являются линейными комбинациями генераторов (5.18) и образуют базис матричной алгебры Ли. Соответствующая группа Ли \(G \) изоморфна \(\text{Spin}(p + 1, q + 1) \). Элементы \(g \in G \) (по крайней мере те из них, которые лежат в окрестности единицы) могут быть представлены в экспоненциальной форме
\[
g = \exp (i \omega^{\mu\nu} \ell_\mu^\nu + ia^\mu p_\mu + ib^\nu k_\nu + i\beta d).
\]
Отметим, что элементы \(g \in \text{Spin}(p + 1, q + 1) \) удовлетворяют одному из уравнений в (5.25) в зависимости от чётности \((q + 1) \). Группа \(G \simeq \text{Spin}(p + 1, q + 1) \) содержит подгруппу \(H \subset G \), порождённую генераторами \(\{ \ell_\mu^\nu, k_\nu, d \} \):
\[
h = \exp (i \omega^{\mu\nu} \ell_\mu^\nu + ib^\nu k_\nu + i\beta d) \in H. \tag{5.36}
\]
что немедленно следует из коммутационных соотношений (5.1). В представлении (5.18) групповой элемент (5.36) переписывается в матричном виде
\[
h = \begin{pmatrix}
e^{\frac{i}{2}} \cdot \exp (i \omega^{\mu\nu} \mathbf{\sigma}^\mu_\nu) & e^{\frac{i}{2}} \Lambda_0 \\
e^{-\frac{i}{2}} \cdot \exp (i \omega^{\mu\nu} \mathbf{\sigma}^\mu_\nu) & e^{-\frac{i}{2}} \Lambda_0
\end{pmatrix} = \begin{pmatrix}
\delta \cdot \mathbf{1} & 0 \\
0 & \delta \cdot \mathbf{1}
\end{pmatrix} \cdot \begin{pmatrix}
\Lambda & \Lambda_0 \\
0 & \Lambda
\end{pmatrix}, \tag{5.37}
\]
197
здесь \(\delta = \bar{\delta}^{-1} = e^{\frac{\beta}{2}} \). Напомним, что матрицы \(\Lambda, \bar{\Lambda} \) были введены в (5.21), (5.25) и, что \(\text{det}(\Lambda) = \text{det}(\bar{\Lambda}) = 1 \). Пространство смежных классов \(G/H \) можно параметризовать генераторами \(\text{Spin}(p+1, q+1) \) специального вида

\[
Z = \exp(-ix^\mu p_\mu) = \begin{pmatrix} 1 & 0 \\ -ix^\mu \sigma_\mu & 1 \end{pmatrix},
\]

и любой элемент \(g \in G \) единственно записывается в виде произведения \(g = Z \cdot h \), где \(Z \in G/H \) и \(h \in H \). Действие группы \(G \simeq \text{Spin}(p+1, q+1) \) на пространство смежных классов \(G/H \) задано формулой

\[
g^{-1} \cdot Z = Z' \cdot h^{-1}, \quad \forall g \in G, \quad \forall Z \in G/H,
\]

где \(h \in H \) и \(Z' \in G/H \) зависят от \(g \) и \(Z \). Запишем \(g^{-1} \) и \(Z' \) в блочной форме

\[
g^{-1} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}, \quad Z' = \begin{pmatrix} 1 & 0 \\ x' & 1 \end{pmatrix} \in G/H.
\]

Тогда из (5.38) немедленно получаем:

\[
x' = (C + D x)(A + B x)^{-1}, \quad (5.40)
\]

\[
h^{-1} = \begin{pmatrix} A + B x & B \\ 0 & D - x'B \end{pmatrix}. \quad (5.41)
\]

Для подгруппы \(H \), чьи элементы записываются в виде \(h \) (5.37), определим представление \(T \) на пространстве тензоров \(\Phi_{\hat{\alpha}_1 \cdots \hat{\alpha}_2 \ell} \) типа \((\ell, \hat{\ell})\):

\[
[T(h) \cdot \Phi]_\alpha^{\hat{\alpha}} = \delta_\alpha^\beta \delta_\hat{\alpha}^\delta \cdot t(\Lambda)_{\alpha}^{\beta} \cdot \bar{t}(\bar{\Lambda})_{\hat{\alpha}}^{\delta} \cdot \Phi_{\hat{\delta}}. \quad (5.42)
\]

Здесь параметры \(\delta, \bar{\delta} \), задающие \(h \) считаются независимыми, \(\alpha \) и \(\hat{\alpha} \) обозначают набор индексов \((\alpha_1 \ldots \alpha_2)\) и \((\hat{\alpha}_1 \ldots \hat{\alpha}_2)\) соответственно. Матрицы \(t \) и \(\bar{t} \) соответствуют двум неэквивалентным представлениям подгруппы \(\text{Spin}(p, q) \subset \text{Spin}(p+1, q+1) \). Матрица \(t \) обозначает представление \((\ell, 0)\) на тензорах со спинорными индексами без точек, тогда как \(\bar{t} \) соответствует представлению \((0, \hat{\ell})\) на тензорах со спинорными индексами с точками в частности для простейших представлений \((1/2, 0)\) и \((0, 1/2)\) (5.21) \(t(\Lambda)^\alpha_\beta = \Lambda^\alpha_\beta \) и \(\bar{t}(\bar{\Lambda})^{\hat{\alpha}}_{\hat{\beta}} = \bar{\Lambda}^{\hat{\alpha}}_{\hat{\beta}} \) соответственно.

Далее, стартуя с представления (5.42) подгруппы \(H \), индуцируем представление \(\rho \) всей группы \(G \). Представление \(\rho \) определено в пространстве тензорных полей \(\Phi_{\alpha}^{\hat{\alpha}}(x) \) согласно формуле

\[
\rho(g) \cdot \Phi(x) = [T(h) \cdot \Phi](x') \; ; \; h \in H \; ; \; g \in G,
\]

198
где элементы g, h и координаты x, x' связаны формулой (5.38).

Найдём инфинитезимальный вид формулы (5.43). Для этого представляем групповой элемент g^{-1} (5.39) в инфинитезимальной форме

$$g^{-1} = \begin{pmatrix} 1 - \varepsilon_{11} & -\varepsilon_{12} \\ -\varepsilon_{21} & 1 - \varepsilon_{22} \end{pmatrix} = I - ||\varepsilon_{ij}||,$$ \hspace{1cm} (5.44)

gде 2×2 блочная матрица $||\varepsilon_{ij}||$ является линейной комбинацией (5.35) генераторов $Spin(p+1, q+1)$, и как следствие $\text{tr}(\varepsilon_{11}) = -\text{tr}(\varepsilon_{22}) \in \mathbb{R}$. Из (5.40) находим бесконечно малое преобразование координат

$$x' = x + (-\varepsilon_{21} - \varepsilon_{22} \cdot x + x \cdot \varepsilon_{11} + x \cdot \varepsilon_{12} \cdot x),$$

а для параметров δ, $\bar{\delta}$ и диагональных блоков матрицы h (5.37):

$$\delta = 1 + \text{tr}[\varepsilon_{11} + \varepsilon_{12} \cdot x], \quad \bar{\delta} = 1 + \text{tr}[\varepsilon_{22} - \varepsilon_{12} \cdot x],$$

$$\Lambda = 1 + (\varepsilon_{11} + \varepsilon_{12} \cdot x - \text{tr}[\varepsilon_{11} + \varepsilon_{12} \cdot x] \cdot 1) \equiv 1 + \varepsilon(x),$$

$$\overline{\Lambda} = 1 + (\varepsilon_{22} - x \cdot \varepsilon_{12} - \text{tr}[\varepsilon_{22} - \varepsilon_{12} \cdot x] \cdot 1) \equiv 1 + \bar{\varepsilon}(x),$$

где для упрощения формулы след нормирован так, что $\text{tr}(1) = 1$. В частности в такой нормировке

$$\text{tr}[\sigma_\mu \overline{\sigma}_\nu] = g_{\mu\nu}, \quad \text{tr}[\sigma_\mu \overline{\sigma}_\nu \sigma_\lambda \overline{\sigma}_\rho] = 2(g_{\mu\lambda}g_{\nu\rho} - g_{\mu\rho}g_{\nu\lambda} + g_{\mu\nu}g_{\rho\lambda}), \quad \cdots.$$

Далее принимаем, что генераторы $S_{\mu\nu}$ (5.27) бесконечно малых преобразований Лоренца связаны с матричными представлениями t и I (5.42) группы Лоренца при помощи формул

$$t^\alpha_\beta(1 + \varepsilon(x)) = \delta^\alpha_\beta + 2 \text{tr}[\varepsilon(x) S^\beta_\alpha], \quad \overline{t}^\alpha_\beta(1 + \bar{\varepsilon}(x)) = \delta^\alpha_\beta + 2 \text{tr}[\bar{\varepsilon}(x) \cdot S_\alpha^\beta],$$

где $S^\beta_\alpha = \frac{1}{2}(S^{\mu\nu})^\beta_\alpha \cdot \sigma_{\mu\nu}$ и $S_\alpha^\beta = \frac{1}{2}(S^{\mu\nu})_\alpha^\beta \cdot \overline{\sigma}_{\mu\nu}$ (5.30). Операторы $(S^{\mu\nu})^\beta_\alpha$ и $(S^{\mu\nu})_\alpha^\beta$ определяют действие генераторов $S_{\mu\nu}$ на тензорных полях типов $(\ell, 0)$ и $(0, \ell)$

$$(S^{\mu\nu})^\beta_\alpha \Phi^\beta_\alpha = (\sigma_{\mu\nu})^\alpha_\beta \Phi^\alpha_\beta \Phi_{\alpha\beta2\ldots2\alpha1\ldots1} + \cdots + (\sigma_{\mu\nu})^\alpha_\beta \Phi^\alpha_\beta \Phi_{\alpha\beta2\ldots2\alpha1\ldots1},$$

$$(S^{\mu\nu})_\alpha^\beta \Phi^\beta_\alpha = (\sigma_{\mu\nu})^\alpha_\beta \Phi^\alpha_\beta \Phi_{\alpha\beta2\ldots2\alpha1\ldots1} + \cdots + (\sigma_{\mu\nu})^\alpha_\beta \Phi^\alpha_\beta \Phi_{\alpha\beta2\ldots2\alpha1\ldots1}.$$ \hspace{1cm} (5.45)

Итак (5.43) принимает вид

$$\rho(g) \Phi(x) = \left(1 + \Delta \text{tr}[\varepsilon_{11} + \varepsilon_{12} x] - \Delta \text{tr}[\varepsilon_{22} - \varepsilon_{12} x] + 2 \text{tr}[(\varepsilon_{11} + \varepsilon_{12} x) S] + 2 \text{tr}[(\varepsilon_{22} - x \epsilon_{12} S)] \right) \cdot \Phi(x + (-\varepsilon_{21} - \varepsilon_{22} x + x \epsilon_{11} + x \epsilon_{12} x)).$$ \hspace{1cm} (5.46)
Согласно (5.44) обозначим инфинитезимальный вклад в $\rho(g)$ при помощи $\rho(||\varepsilon_{ij}||)$ и перенесем левую часть (5.46) в виде $\rho(g)\Phi(x) = \Phi(x) + \rho(||\varepsilon_{ij}||) \cdot \Phi(x)$. Далее преобразуем бесконечно малый вклад первого порядка в правой части (5.46) в виде следа при помощи

$$ p = -\frac{i}{2} \sigma^\mu \partial_{x^\mu} \quad (5.47) $$

и цикличности следа, учитывая некоммутативность операторов x и p, т.e. $\text{tr}[x \cdot \varepsilon_{11} \cdot p] = \text{tr}[\varepsilon_{11}(p \cdot x + \frac{n}{2})]$, и т.д. Отметим, что здесь оператор p тот же, что и в (5.30). В итоге (5.46) записывается в виде

$$ \rho(||\varepsilon_{ij}||) \Phi(x) = 2 \text{tr} \left[\varepsilon_{11} \cdot \left(\frac{\Delta - n}{2} + S - px\right) + \varepsilon_{12} \cdot \left((\Delta - \frac{n}{2})x + xS - \bar{S}x - xp x\right) + \right. $$
$$ $$ $$ \left. + \varepsilon_{21} \cdot p + \varepsilon_{22} \cdot \left(-\frac{\Delta}{2} + \bar{S} + xp\right)\right] \Phi(x) = \text{Tr} \left[\begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} \\ \varepsilon_{21} & \varepsilon_{22} \end{pmatrix} \begin{pmatrix} \frac{\Delta - n}{2} + S - px \cdot T_1(M^{ab}) \otimes \rho(M_{ab}) \end{pmatrix}\right] \Phi(x). $$

Из этого представления немедленно извлекаются операторы (5.26), задающие дифференциальное представление конформной алгебры, которые собраны в блочной форме так же как в матрице (5.34).

В завершении приведём глобальный форму (5.40) четырёх основных преобразований конформной группы и укажем соответствующие элементы $h \in H$, $g \in G$ использованные в (5.43).

- Сдвиги

$$ g = e^{ia^\mu p_\mu} = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}, \quad x' = x - a, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad a := ia^\mu \sigma_\mu \quad (5.48) $$

- Лоренцевы вращения

$$ g = e^{i\omega^{\mu\nu} \epsilon_{\mu\nu}} = \begin{pmatrix} \Lambda & 0 \\ 0 & \bar{\Lambda} \end{pmatrix}, \quad x' = \bar{X}^{-1} \cdot x \cdot \Lambda, \quad h = \begin{pmatrix} \Lambda & 0 \\ 0 & \bar{\Lambda} \end{pmatrix}. \quad (5.49) $$

- Растяжение

$$ g = e^{i\beta d} = \begin{pmatrix} e^\beta & 0 \\ 0 & e^{-\beta} \end{pmatrix}, \quad x' = e^\beta x, \quad h = \begin{pmatrix} e^\beta & 0 \\ 0 & e^{-\beta} \end{pmatrix}. \quad (5.50) $$
Специальные конформные преобразования

\[g = e^{i\lambda \sigma_\mu} = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, \quad x' = x \cdot (1 - b \cdot x)^{-1}, \]
(5.51)

\[h = \begin{pmatrix} (1 - b \cdot x)^{-1} & (1 - b \cdot x)^{-1} \cdot b \cdot (1 + x' \cdot b)^{-1} \\ 0 & (1 + x' \cdot b)^{-1} \end{pmatrix}, \quad b := i b^\sigma \sigma_\mu. \]

Напомним, что формулы (5.48) – (5.51) выведены для пространства чётной размерности

5.1.2. Операторы спина \(S \) и \(\overline{S} \)

В предыдущем параграфе было введено представление конформной алгебры на пространстве тензорных полей \(\Phi_{\alpha_1 \cdots \alpha_2}(x) \) (см. (5.42) и (5.43)) типа \((\ell, \ell)\). Здесь и далее для обозначения аргументов поля \(\Phi \) используем точку \(x \in \mathbb{R}^{p,q} \) с координатами \(x_\mu \) вместо соответствующей матрицы \(x \) (5.30). Генераторы \(S_{\mu \nu} \) действуют на тензорное поле типа \((\ell, \ell)\) по формулам (5.45):

\[[S_{\mu \nu} \Phi]_{\alpha_1 \cdots \alpha_2} = (\sigma_{\mu \nu})_{\alpha_1}^{\alpha} \Phi_{\alpha_1 \alpha_2 \cdots \alpha_2} + \cdots + (\sigma_{\mu \nu})_{\alpha_2}^{\alpha} \Phi_{\alpha_1 \alpha_2 \cdots \alpha_2} + \cdots + (\sigma_{\mu \nu})_{\alpha_2}^{\alpha} \Phi_{\alpha_1 \alpha_2 \cdots \alpha_2} + \cdots. \]
(5.52)

Ограничимся случаем тех представлений алгебры \(so(p + 1, q + 1) \), для которых тензорные поля \(\Phi_{\alpha_1 \cdots \alpha_2}(x) \) симметричны независимо по набору точечных и бесточных индексов. В такой ситуации удобно работать с производящими функциями

\[\Phi(x, \lambda, \lambda^\dagger) = \Phi_{\alpha_1 \cdots \alpha_2}(x) \lambda^{\alpha_1} \cdots \lambda^{\alpha_2} \lambda_{\bar{\alpha}_1} \cdots \lambda_{\bar{\alpha}_2}, \]
(5.53)

где \(\lambda \) и \(\lambda^\dagger \) вспомогательные спиноры. При помощи производящих функций результат применения (5.52) спиновых генераторов \(S_{\mu \nu} \) к тензорному полю записывается в удобной форме

\[[S_{\mu \nu} \Phi] (x, \lambda, \lambda^\dagger) = \left[\lambda \sigma_{\mu \nu} \partial_\lambda + \lambda^\dagger \sigma_{\mu \nu} \partial_{\lambda^\dagger} \right] \Phi(x, \lambda, \lambda^\dagger), \]
(5.54)

где

\[\lambda \sigma_{\mu \nu} \partial_\lambda = \lambda_\alpha (\sigma_{\mu \nu})^{\alpha} \partial_\lambda; \quad \lambda^\dagger \sigma_{\mu \nu} \partial_{\lambda^\dagger} = \lambda^\dagger_\alpha (\sigma_{\mu \nu})_\alpha^\beta \partial_{\lambda^\dagger}. \]

Согласно (5.54) получили реализацию спиновых генераторов \(S_{\mu \nu} \) дифференциальными операторами по спинорным переменным

\[S_{\mu \nu} = \lambda \sigma_{\mu \nu} \partial_\lambda + \lambda^\dagger \sigma_{\mu \nu} \partial_{\lambda^\dagger}. \]
(5.55)

201
Летко проверить, что операторы $S_{\mu\nu}$, заданные в (5.55), подчинены коммутационным соотношениям (5.27) алгебры $so(p, q)$.

Рассмотрим теперь случай 4-мерного пространства Минковского $n = 4$, т.е. $\mathbb{R}^{p,q} = \mathbb{R}^{1,3}$. В этом случае размерность спинорного пространства равна $2^{n/2} = 2$ и тензорные поля $\Phi^{\alpha_1 \cdots \alpha_2 j}(x)$ автоматически симметричны по точечным и бесточечным индексам. Это вызвано изоморфизмом $so(4, C) = s\ell(2, C) + s\ell(2, C)$. Для пространства Минковского $\mathbb{R}^{1,3}$, в представлении для гамма-матриц (5.16), выберем

$$\sigma_\mu = (\sigma_0, \sigma_1, \sigma_2, \sigma_3), \quad \bar{\sigma}_\mu = (\sigma_0, -\sigma_1, -\sigma_2, -\sigma_3), \quad (5.56)$$

где $\sigma_0 = I_2$ и $\sigma_1, \sigma_2, \sigma_3$ стандартные матрицы Паули (5.10). Легко проверить, что такие σ_μ, $\bar{\sigma}_\mu$ удовлетворяют тождествам (5.17) с метрикой $||g_{\mu\nu}|| = \text{diag}(+1, -1, -1, -1)$. Далее заметим, что

$$\sigma_{\mu\nu} \otimes \sigma^{\mu\nu} = \sigma_i \otimes \sigma_i, \quad \bar{\sigma}_{\mu\nu} \otimes \bar{\sigma}^{\mu\nu} = \sigma_i \otimes \sigma_i, \quad \sigma_{\mu\nu} \otimes \bar{\sigma}^{\mu\nu} = 0,$$

(предполагается суммирование по $i = 1, 2, 3$) и следовательно набор спиновых генераторов $S_{\mu\nu}$ (5.55) распадается на самодуальные компоненты,

$$\mathbf{S} = \frac{1}{2} \sigma^{\mu\nu} S_{\mu\nu} = \frac{1}{2} \sigma_i \cdot \left(\lambda \sigma_i \partial_\lambda \right) = \begin{pmatrix} \frac{1}{2} \lambda_1 \partial_\lambda_1 - \frac{1}{2} \lambda_2 \partial_\lambda_2 & \lambda_2 \partial_\lambda_1 \\ \lambda_1 \partial_\lambda_2 & -\frac{1}{2} \lambda_1 \partial_\lambda_1 + \frac{1}{2} \lambda_2 \partial_\lambda_2 \end{pmatrix}, \quad (5.57)$$

и антисамодуальные компоненты $S_{\mu\nu}$,

$$\mathbf{S} = \frac{1}{2} \bar{\sigma}^{\mu\nu} S_{\mu\nu} = \frac{1}{2} \sigma_i \cdot \left(\tilde{\lambda} \sigma_i \partial_{\tilde{\lambda}} \right) = \begin{pmatrix} \frac{1}{2} \tilde{\lambda}^1 \partial_{\tilde{\lambda}^1} - \frac{1}{2} \tilde{\lambda}^2 \partial_{\tilde{\lambda}^2} & \tilde{\lambda}^2 \partial_{\tilde{\lambda}^1} \\ \tilde{\lambda}^1 \partial_{\tilde{\lambda}^2} & -\frac{1}{2} \tilde{\lambda}^1 \partial_{\tilde{\lambda}^1} + \frac{1}{2} \tilde{\lambda}^2 \partial_{\tilde{\lambda}^2} \end{pmatrix}. \quad (5.58)$$

В неприводимом представлении оператор \mathbf{S} ограничен на пространство однородных полиномов по компонентам спиноров λ степени 2ℓ (см. (5.52) и (5.53)), поэтому естественно выбрать новые переменные $\chi_1 = -\frac{\lambda_1}{\lambda^2}$, $t = -\lambda_2$. В новых переменных \mathbf{S} преобразуется в матрицу $\mathbf{S}^{(t)}$, содержащую параметр представления ℓ (собственное значение оператора $\frac{1}{2} t\partial_t$):

$$\mathbf{S}^{(t)} = \begin{pmatrix} \chi_1 \partial_{\chi_1} - \ell, & -\partial_{\chi_1} \\ \chi_2^2 \partial_{\chi_1} - 2\ell \chi_1, & -\chi_1 \partial_{\chi_1} + \ell \end{pmatrix} \equiv \begin{pmatrix} S_3, & S_- \\ S_+, & -S_3 \end{pmatrix}. \quad (5.59)$$

Аналогично оператор $\bar{\mathbf{S}}$ ограничен на пространство однородных полиномов степени 2ℓ по компонентам спинора $\tilde{\lambda}$. После замены переменных $\chi_2 = -\frac{\tilde{\lambda}_1}{\tilde{\lambda}^2}$ в неприводимом представлении $\bar{\mathbf{S}} = \mathbf{S}^{(t)}$, где

$$\bar{\mathbf{S}}^{(t)} = \begin{pmatrix} \chi_2 \partial_{\chi_2} - \ell, & -\partial_{\chi_2} \\ \chi_2^2 \partial_{\chi_2} - 2\ell \chi_2, & -\chi_2 \partial_{\chi_2} + \ell \end{pmatrix} \equiv \begin{pmatrix} \bar{S}_3, & \bar{S}_- \\ \bar{S}_+, & -\bar{S}_3 \end{pmatrix}. \quad (5.60)$$

202
При построении общего R-оператора в параграфе 5.4 потребуется Евклидов аналог предыдущих формул. Для 4-мерного евклидова пространства \(\mathbb{R}^4 \) выберем представление гамма-матрицы (5.16) с

\[
\sigma_\mu = (\sigma_0, i\sigma_1, i\sigma_2, i\sigma_3) , \quad \overline{\sigma}_\mu = (\sigma_0, -i\sigma_1, -i\sigma_2, -i\sigma_3) .
\]

Блоки \(\sigma_\mu, \overline{\sigma}_\mu \) удовлетворяют соотношениям (5.17) с метрикой \(|g_{\mu\nu}| = \text{diag}(+1,+1,+1,+1) \). Также отметим, что явное выражение для \(S^{(\ell)}, \overline{S}^{(\ell)} \) (5.59), (5.60) остаётся верным.

5.2. L-операторы

Будем называть \(L(u) \in \text{End}(V \otimes V') \) L-оператором на пространствах \(V \) и \(V' \), если выполнено соотношение сплетания

\[
R_{12}(u-v) L_{13}(u) L_{23}(v) = L_{13}(v) L_{23}(u) R_{12}(u-v) \in \text{End}(V \otimes V \otimes V') .
\] (5.61)

В этом параграфе рассмотрим L-операторы, связанные с простыми алгебрами Ли \(\mathfrak{A} \) и их представлениями. Пусть \(X_a \) (\(a = 1, \ldots, \dim \mathfrak{A} \)) генераторы \(\mathfrak{A} \) и \(|g_{ab}| \) — матрица формы Киллинга для \(\mathfrak{A} \) в базисе \(\{X_a\} \). Введём расщеплённый (поляризованный) оператор Казимира для \(\mathfrak{A}

\[
r = g^{ab} X_a \otimes X_b \in \mathfrak{A} \otimes \mathfrak{A} ,
\] (5.62)

где \(g^{ab} \) обратная матрица по отношению к форме Киллинга. Квадратичный оператор Казимира строится по формуле \(C_2 = g^{ab} X_a \cdot X_b \). Он является элементом обёртывающей алгебры \(\mathcal{U}(\mathfrak{A}) \). Оператор \(r \) удовлетворяет тождеству

\[
[r_{12} + r_{13}, r_{23}] = 0 ,
\] (5.63)

где использованы обозначения

\[
r_{13} = g^{ab} X_a \otimes 1 \otimes X_b , \quad r_{12} = g^{ab} X_a \otimes X_b \otimes 1 , \quad r_{23} = g^{ab} 1 \otimes X_a \otimes X_b ,
\]

и 1 служит единичным элементом в \(\mathcal{U}(\mathfrak{A}) \).

Пусть \(T \) и \(T' \) представления \(\mathfrak{A} \) в векторных пространствах \(V \) и \(V' \) соответственно. Далее будем искать решение уравнения (5.61) в виде:

\[
L(u) = (T \otimes T')(u 1 \otimes 1 + r) = u (I \otimes I') + g^{ab} (T_a \otimes T'_b) \in \text{End}(V \otimes V') ,
\] (5.64)
где \(T_a = T(X_a) \) и \(T'_b = T'(X_b) \). Матрица (5.64) строится из расширенного оператора Казимира (5.62) для алгебры \(\mathcal{A} \), и как показано в следующих параграфах эта матрица является решением уравнения (5.61) только при специальном выборе алгебры \(\mathcal{A} \) и представлений \(T \) и \(T' \).

5.2.1. Алгебра \(\mathcal{A} = \mathfrak{sl}(N, \mathbb{C}) \)

Рассмотрим алгебру Ли \(\mathfrak{g}(N, \mathbb{C}) \) с набором генераторов \(E_{ij} \) \((i, j = 1, \ldots, N)\), подчинённых коммутационным соотношениям

\[
[E_{ij}, E_{kl}] = \delta_{jk} E_{il} - \delta_{il} E_{kj} .
\]

Можно вложить алгебру Ли \(\mathfrak{sl}(N, \mathbb{C}) \) в алгебру \(\mathfrak{g}(N, \mathbb{C}) \), выбрав генераторы \(X_a \) алгебры \(\mathfrak{sl}(N, \mathbb{C}) \) следующим образом:

\[
E_{ij} (i \neq j \text{ при } i, j = 1, \ldots, N) \text{ и } H_k = E_{kk} - \frac{1}{N} \sum_m E_{mm} ,
\]

где только \((N - 1)\) генераторов \(H_k \) независимы в силу соотношения \(\sum_k H_k = 0 \). Для этих генераторов имеют место коммутационные соотношения

\[
[E_{ij}, E_{kl}] = \delta_{jk} E_{il} - \delta_{il} E_{kj} , \quad \text{при } i \neq j, k , \quad [E_{ij}, E_{ji}] = H_i - H_j , \quad [H_{k}, E_{ij}] = (\delta_{ki} - \delta_{kj}) E_{ij} , \quad [H_{k}, H_{j}] = 0 .
\]

В определяющем представлении \(T \) алгебры \(\mathfrak{sl}(N, \mathbb{C}) \) элементы \(E_{ij} \) и \(H_k \) реализованы бесследовыми матрицами размера \((N \times N)\)

\[
T(E_{ij}) = e_{ij} , \quad T(H_k) = e_{kk} - \frac{1}{N} I_N \equiv h_k ,
\]

где \(e_{ij} \) — матричные единицы и единичная матрица \(I_N = \sum_j e_{jj} \), действующие в \(N \)-мерном векторном пространстве \(V_N = \mathbb{C}^N \). Введём матрицу перестановки \(P_{12} \), заданную на тензорном произведении \(V_N \otimes V_N \).

Утверждение. [64] Оператор (см. (5.64))

\[
L(u) = u I_N \otimes 1 + \sum_i h_i \otimes H_i + \sum_{i \neq j} e_{ij} \otimes E_{ji} ,
\]

является универсальным \(L \)-оператором алгебры Ли \(\mathfrak{sl}(N, \mathbb{C}) \), т.е. оператор (5.68) решает сплетающее соотношение (5.61) с \(R \)-матрицей Янга

\[
R_{12}(u) = u P_{12} + I_N \otimes I_N ,
\]

а универсальность означает, что второй набор генераторов в (5.68) можно выбрать в произвольном представлении \(T' \) алгебры \(\mathfrak{sl}(N, \mathbb{C}) \) (см. (5.64)).
Чтобы в этом убедиться, сперва запишем оператор (5.68) в терминах генераторов \(g\ell(N, \mathbb{C})\)

\[
L(u) = (u - 1/N) I_N \otimes 1 + e_{ij} \otimes E_{ji},
\]

(5.70)

где подразумевается суммирование по индексам \(i\) и \(j\). Отметим, что расщеплённый оператор Казимира \(\mathbf{r} = E_{ij} \otimes E_{ji}\) удовлетворяет уравнению (5.63), а его представление имеет вид

\[
e_{ij} \otimes E_{ji} = (T \otimes 1) \mathbf{r}, \quad (T \otimes T) \mathbf{r} = e_{ij} \otimes e_{ji} = P_{12}.
\]

(5.71)

Подставляя (5.70) в (5.61) и воспользовавшись (5.71), получаем соотношение

\[
(u - v) P_{12} (T \otimes T \otimes 1) ([r_{13}, r_{23}] + [r_{12}, r_{23}]) = 0,
\]

которое верно в силу (5.63). Таким образом \(L(u)\) (5.68) удовлетворяет сплетающему соотношению (5.61), т.е. это действительно \(L\)-оператор.

Теперь возьмём набор генераторов универсального \(L\)-оператора (5.68) в дифференциальном представлении \(\rho\) алгебры \(s\ell(N, \mathbb{C})\) (см. [56]) и выполним переопределение:

\[
(1 \otimes \rho)L(u + 1/N) \rightarrow L(u) = u I_N \otimes \rho(1) + e_{ij} \otimes \rho(E_{ji}).
\]

(5.72)

Представление \(\rho\) параметризуется набором параметров \((\rho_1, \ldots, \rho_N)\), подчинённых условию

\[
\sum_{k=1}^{N} \rho_k = N(N - 1)/2.
\]

Спектральный параметр \(u\) и параметр \(\rho_k\) собираются в комбинации

\[
u_k = u - \rho_k.
\]

(5.73)

\(L\)-оператор (5.72) допускает факторизованное представление [56]

\[
L(u_1, \ldots, u_N) = Z \cdot D(u_1, \ldots, u_N) \cdot Z^{-1},
\]

(5.74)

где \(Z\) и \(D\) являются нижне-треугольными и верхне-треугольными матрицами размера \((N \times N)\) соответственно,

\[
Z = I_N + \sum_{k>m}^{N} z_{km} e_{km}, \quad D(u_1, \ldots, u_N) = \sum_{k=1}^{N} u_k e_{kk} + \sum_{i<j} D_{ij} e_{ij}.
\]

(5.75)

Здесь использованы обозначения

\[
D_{ij} = -\partial_{ji} - \sum_{k=j+1}^{N} z_{kj} \partial_{ki}, \quad \partial_{ji} = \frac{\partial}{\partial z_{ji}}, \quad (i < j).
\]

(5.76)

205
Подчеркнём, что элементы матрицы Z и D интерпретируются как операторы на пространстве функций $f(Z)$. Для нас важно, что существуют операторы $T^k \ (k = 1, \ldots, N - 1)$, которые переставляют параметры u_k и u_{k+1} в L-операторе:

$$T^k \cdot L(u_1, \ldots, u_k, u_{k+1}, \ldots, u_n) = L(u_1, \ldots, u_{k+1}, u_k, \ldots, u_n) \cdot T^k. \quad (5.77)$$

Можно проверить, что

$$T^k = (D_{k,k+1})^{u_{k+1}-u_k}, \quad (5.78)$$

где $D_{k,k+1}$ является элементом матрицы D.

Операторы T^k имеют непосредственную интерпретацию с точки зрения теории представлений. Они являются сплетающими операторами [67, 132, 133] эквивалентных представлений, который различаются перестановкой параметров ρ_k и ρ_{k+1}. Эти сплетающие операторы отвечают элементарным транспозициям s_k в группе Вейля. Группа Вейля для $s\ell(N, \mathbb{C})$ является симметрической группой, т.е. группой перестановок параметров (ρ_1, \ldots, ρ_n):

$$s_k : (\rho_1, \ldots, \rho_k, \rho_{k+1}, \ldots, \rho_n) \to (\rho_1, \ldots, \rho_{k+1}, \rho_k, \ldots, \rho_n). \quad (5.79)$$

В качестве иллюстрации представим L-оператор (5.74) для простейшего случая $N = 2$, т.е. алгебры $s\ell(2, \mathbb{C})$. В этом случае удобнее использовать стандартные спиновые параметры ℓ вместо ρ_1 и ρ_2, связанных соотношением $\rho_1 + \rho_2 = 1$:

$$\rho_1 = \ell + 1, \quad \rho_2 = -\ell, \quad u_1 = u - \ell - 1, \quad u_2 = u + \ell. \quad (5.80)$$

Оператор $L(u_1, u_2)$ (5.74) для $N = 2$ принимает вид

$$L(u_1, u_2) = \begin{pmatrix} 1 & 0 \\ z & 1 \end{pmatrix} \begin{pmatrix} u_1 & -\partial_z \\ 0 & u_2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -z & 1 \end{pmatrix} = u I_2 + S^{(\ell)}, \quad (5.81)$$

где $z = z_21$, а элементы матрицы $S^{(\ell)}$ являются генераторами $s\ell(2, \mathbb{C})$ в стандартной дифференциальной реализации. Это согласуется с формулами из главы 1 для алгебр ранга один, (1.53) и (1.56). Соотношение сплетения $\partial_z^{2\ell+1} \cdot S^{(\ell)} = S^{(-\ell-1)} \cdot \partial_z^{2\ell+1}$ (см. (1.57) соответствует перестановке $\rho_1 \leftrightarrow \rho_2$ согласно (5.77) и (5.78). В параграфе (5.3.1) рассмотрен L-оператор (5.74) для $s\ell(4, \mathbb{C})$.

5.2.2. Альгебра $\mathcal{A} = so(p + 1, q + 1)$ и спинорная R-матрица

Числовая R-матрица и соответствующий ей L-оператор для алгебры $so(d)$ с бесконечномерным квантовым пространством подробно обсуждались в предыдущей главе. Ясно,
что полученные результаты в равной мере справедливы и при других выборах сигнатуры. Соответствие тех обозначений с обозначениями этой главы: \(d = n + 2 \). Оператор \(L(u) \) (5.64) для алгебры \(so(p + 1, q + 1) \) выбираем в виде (см. (4.76))

\[
L(u) = u I \otimes 1 + \frac{1}{2} T(M_{ab}) \otimes T'(M^{ab}) ,
\]

где \(T \) обозначает спинорное представление (5.12) алгебры \(so(p + 1, q + 1) \). Генераторы \(M_{ab} \) (5.2) во втором тензорном факторе выбраны в произвольном представлении \(T' \). Выше в параграфе 4.4.1 проверили, что такой \(L \)-оператор в самом деле удовлетворяет RLL-соотношению со спинорной \(R \)-матрицей (4.10), (4.11) если представление \(T' \) такое, что (см. (4.78))

\[
T'(\{ M_{[ab}, M_{c]d} \}) = 0 .
\]

Далее укажем случаи, когда (5.83) выполнено

- Дифференциальное представление \(T' \):

\[
M_{ab} \rightarrow T'(M_{ab}) = i (y_a \partial_b - y_b \partial_a) ,
\]

где \(\partial_a = \frac{\partial}{\partial y_a} \), а \(y_a \) координаты на \(\mathbb{R}^{p+1,q+1} \).

- Фундаментальное (определяющее) \((n + 2) \)-мерное представление \(T' \):

\[
M_{ab} \rightarrow T'(M_{ab}) = ig(e_{ab} - e_{ba}) ,
\]

где \(e_{ab} \) матричные единицы и \(g = ||g_{ab}|| \). Такой \(L \)-оператор (5.64) обсуждали в (4.8). Помимо RLL-соотношения со спинорной \(R \)-матрицей он также удовлетворяет RLL-соотношению (4.7) с фундаментальной \(R \)-матрицей (4.2), сплетающей пару определяющих представлений. В [68] была выведена спинорная \(R \)-матрица (4.10) из соотношения сплетания \(L \)-операторов (5.82) по двум спинорным пространствам (5.61).

- Дифференциальное представление \(T' = \rho \) (5.26) в скалярном случае \(S_{\mu \nu} = 0 \) и при произвольном \(\Delta \):

\[
M_{ab} \rightarrow T'(M_{ab}) = \rho(M_{ab}) , \quad S_{\mu \nu} = 0 .
\]

При помощи формулы изоморфизма (5.4) условия (5.83) переписываются для генераторов конформной алгебры в виде

\[
\rho \{ L_{[\mu \nu} , L_{\lambda]a} \} = 0 ; \quad \rho \{ L_{[\mu \nu} , P_{\lambda]} \} = 0 ; \quad \rho \{ L_{[\mu \nu} , K_{\lambda]} \} = 0 ;
\]

207
\[
\rho(\{ L_{\mu\nu}, D \}) + \frac{1}{2} \rho(\{ K_\mu, P_\nu \}) - \frac{1}{2} \rho(\{ K_\nu, P_\mu \}) = 0.
\]

Легко убедиться, что они в самом деле выполнены. Два предыдущих представления (5.85) и (5.86) можно извлечь из дифференциального представления (5.84).

Напомним (см. параграф 4.4.2), что в важном для дальнейшего случае конформной алгебры \(so(2,4)\) 4-мерного пространства Минковского \((n = 4)\) RLL-соотношение (5.61) с R-матрицей вида (4.10) и L-оператором (5.82) может выполняться для произвольных представлений \(T'\), так что ограничение (5.83) излишне. Кроме того L-оператор (5.82) оказывается приводимым, поскольку \(T(M_{ab})\) состоит из двух неприводимых блоков (5.14).

Его проекции на 4-мерное подпространство

\[
L(u) = u I \otimes 1 + \frac{1}{2} T_1(M_{ab}) \otimes M^{ab}
\]

удовлетворяют RLL-соотношению с R-матрицей Янга.

Рассмотрим теперь оператор \(L(u)\) (5.64) для алгебры \(so(p + 1, q + 1)\) в случае представлений \(T = T_1\) (см. (5.87)) и \(T' = \rho\), где \(T_1\) нериво димое спинорное представление (5.15) и \(\rho\) дифференциальное представление (5.26),

\[
L^{(\rho)}(u) = u I + \frac{1}{2} T_1(M^{ab}) \otimes \rho(M_{ab}) = \\
= \begin{pmatrix}
\begin{pmatrix}
\begin{pmatrix}
1 & 0 \\
x & 1
\end{pmatrix} & \begin{pmatrix}
\begin{pmatrix}
1 + S - p \cdot x \\
\Delta - \frac{n}{2}
\end{pmatrix} & \begin{pmatrix} p \end{pmatrix} \\
0 & \begin{pmatrix}
\begin{pmatrix}
1 + \bar{S} + x \cdot p
\end{pmatrix} & \begin{pmatrix} u_+ \cdot 1 + S - p \cdot x \\
\Delta - \frac{n}{2}
\end{pmatrix}
\end{pmatrix} \\
\end{pmatrix}
\end{pmatrix},
\]

где

\[
u_+ = u + \frac{\Delta - n}{2}, \quad u_- = u - \frac{\Delta}{2}, \quad n = p + q,
\]

а также использовано выражение (5.34) для матрицы из генераторов \(\frac{1}{2} T_1(M_{ab}) \otimes \rho(M_{ab})\), введённой в (5.29).

Имеет место примечательная формула факторизации оператора (5.88),

\[
L^{(\rho)}(u) = \begin{pmatrix}
1 & 0 \\
x & 1
\end{pmatrix} \cdot \begin{pmatrix}
\begin{pmatrix}
\begin{pmatrix}
1 + S - p \cdot x \\
\Delta - \frac{n}{2}
\end{pmatrix} & \begin{pmatrix} p \end{pmatrix} \\
0 & \begin{pmatrix}
\begin{pmatrix}
1 + \bar{S} + x \cdot p
\end{pmatrix} & \begin{pmatrix} u_+ \cdot 1 + S - p \cdot x \\
\Delta - \frac{n}{2}
\end{pmatrix}
\end{pmatrix}
\end{pmatrix} \cdot \begin{pmatrix}
1 & 0 \\
x & 1
\end{pmatrix},
\]

в справедливости которой легко убедиться прямым вычислением, перемножив матрицы в (5.90) и получив (5.88).

Замечание 1. Формула (5.90) для оператора \(L^{(\rho)}(u)\) типа \(so(p + 1, q + 1)\) имеет рекуррентную структуру, поскольку оба оператора \((u_+ \cdot 1 + S)\) и \((u_- \cdot 1 + \bar{S})\) на диагонали в средней матрице являются L-операторами типа \(so(p, q)\).
Замечание 2. Рассмотрим L-оператор типа so\((p + 1, q + 1)\), для которого имеет место RLL-соотношение (5.61) со спинорной R-матрицей:

\[
L(u) = u \mathbf{1} - \frac{1}{8} (\Gamma_a \Gamma_b - \Gamma_b \Gamma_a)(y^a \partial^b - y^b \partial^a),
\]

где для второго набора генераторов \(M^{ab}\) использовано дифференциальное представление \(T'\), заданное в (5.84). Для такого L-оператора (5.91) выполнено соотношение кроссинг-единичности

\[
L^T(u) \cdot C \cdot L(u') = \left(uu' - \frac{1}{4} T'(C_2) \right) C,
\]

где \(u' = u + \frac{n}{2}\), \(n = (p + q)\), \(C\) это \(2^{n+1}\)-мерный вариант матрицы \(C\), введённой в (5.20), \(C_2\) оператор Казимира (5.5). Поскольку представление \(T\) (5.12) приводимо (см. (5.14)) оператор \(L(u)\) (5.91) имеет блочно-диагональный вид

\[
L(u) = \begin{pmatrix} L_+ (u) & 0 \\ 0 & L_- (u) \end{pmatrix},
\]

так что при помощи соотношений (5.24) можно переписать (5.92) для блоков \(L_\pm (u)\),

1.) \(\frac{(n+2)(n+1)}{2}\) — чётное \(\Rightarrow L^T_\pm (u) \cdot c \cdot L_\pm (u') = z(u) \cdot c\)

2.) \(\frac{(n+2)(n+1)}{2}\) — нечётное \(\Rightarrow L^T_\pm (u) \cdot g \cdot L_- (u') = z(u) \cdot g\),

где \(z(u) = (uu' - \frac{1}{16} T'(C_2))\). Ясно, что неприводимые блоки \(L_\pm (u)\) оператора (5.91) удовлетворяют RLL-соотношению (5.61):

\[
R^{(\pm)}_{12} (u - v) L_\pm (u) L_\pm (v) = L_\pm (v) L_\pm (u) R^{(\pm)}_{12} (u - v),
\]

где \(R^{(\pm)} (u) = R(u)|_{V_\pm \oplus V_\pm}\) вейлевские проекции спинорной R\((u)\)-матрицы (4.10) на неприводимые подпространства \(V_\pm = \frac{1 + \Gamma_2}{2} V\).

Имеет смысл рассмотреть помимо \(L_\pm (u)\), заданные в (5.91), (5.93) более общие операторы, зависящие нелинейно от спектрального параметра,

\[
L_\pm (u) = 1 + \sum_{k=1}^{\infty} \frac{1}{u^k} L^{(k)}_\pm.
\]

Тогда RLL-соотношения (5.95) определяют бесконечномерную квадратичную алгебру порождаемую элементами \(\{(L^{(0)}_\pm)_{\alpha \beta}, (L^{(1)}_\pm)_{\alpha \beta}, \ldots\}, (\alpha, \beta = 1, 2, \ldots, 2^\frac{n}{2})\). Обозначим её \(Y(\text{spin}(n + 2, \mathbb{C}))\). Помимо RLL-соотношений на генераторы \(Y(\text{spin}(n + 2, \mathbb{C}))\) необходимо наложить дополнительные ограничения (5.94), где функция \(z(u)\) служит центральным элементом для
Из установленных выше результатов следует, что \(Y(\text{spin}(n+2, \mathbb{C})) \) обладает точечным гомоморфизмом, так что \((L_+^{(k)})_{\alpha \beta} \to 0\) при \(k > 1\) и \((L_+^{(1)}) \to \frac{1}{2} T_1(M_{ab})T'(M_{ab})\). Пригодные в этом случае представления \(T'\) для генераторов \(M_{ab}\) алгебры \(\text{spin}(n+2, \mathbb{C})\) перечислены в \((5.84), (5.85), (5.86)\). В особом случае \(n = 4\) матрица \(R(u)|_{V_{-} \otimes V_{-}} \) становится \(R\)-матрицей Янга \((4.84)\), все \(4 \times 4\) матрицы \((\Gamma^{a_1 \ldots a_4})|_{V_{-}}\) образуют базис определяющего представления \(s\ell(4)\), так что алгебра \(Y(\text{spin}(6)) \) изоморфна Янгиану \(Y(s\ell(4))\).

5.3. I-оператор для конформной алгебры в четырёх измерениях

Теперь рассмотрим подробно случай 4-мерного пространства Минковского \(\mathbb{R}^{1,3}\), т.е., \(p = 1, q = 3\) и \(n = 4\). В этом случае матричные генераторы \((5.15)\) в спинорном представлении принимают вид

\[
\ell_{\mu \nu} = \frac{i}{4} [\gamma_\mu, \gamma_\nu], \quad p_\mu = \gamma_\mu \frac{1 + \gamma_5}{2}, \quad k_\mu = \gamma_\mu \frac{1 - \gamma_5}{2}, \quad d = -\frac{i}{2} \gamma_5,
\]

где \(\gamma_5 = -i \gamma_0 \gamma_1 \gamma_2 \gamma_3\) и выбрано общее представление \((5.16)\) для \(\gamma\)-матриц

\[
\gamma_\mu = \begin{pmatrix} 0 & \sigma_\mu \\ \overline{\sigma_\mu} & 0 \end{pmatrix}, \quad \gamma_5 = \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix}, \quad \frac{1 + \gamma_5}{2} = \begin{pmatrix} I_2 & 0 \\ 0 & 0 \end{pmatrix}, \quad \frac{1 - \gamma_5}{2} = \begin{pmatrix} 0 & 0 \\ 0 & I_2 \end{pmatrix},
\]

которое строится при помощи \(2 \times 2\)-матриц \(\sigma_\mu\) и \(\overline{\sigma_\mu}\) \((5.56)\). Отметим, что в этом представлении \((5.98)\) имеют место тождества

\[
\gamma_{\mu}^\dagger = \gamma_0 \gamma_\mu \gamma_0, \quad \gamma_5^\dagger = \gamma_5 = -\gamma_0 \gamma_5 \gamma_0.
\]

Известно, что пятнадцать матриц \((5.97)\) образуют базис в пространстве \(\text{Mat}(4)\) всех бесследовых матриц размера \(4 \times 4\). При помощи \((5.99)\) легко проверить, что любая матрица \(4 \times 4\) вида \((5.35)\), принадлежащая линейной оболочке \((5.97)\), удовлетворяет уравнению \(A^\dagger \gamma_0 + \gamma_0 A = 0\), которое в свою очередь задаёт компактную форму \(su(2, 2)\) алгебры Ли. Это уравнение означает, что \(4 \times 4\) матрицы \(A\) вида \((5.35)\) не только представляют генераторы конформной алгебры \(so(2, 4) = \text{spin}(2, 4)\), но также и генераторы алгебры \(su(2, 2)\). Другими словами проверили изоморфизм \(so(2, 4) = su(2, 2)\). После комплексификации алгебр \(so(6, \mathbb{C}) = s\ell(4, \mathbb{C})\). Воспользуемся этим изоморфизмом, чтобы связать операторы \(L(u)\) \((5.72)\) и \((5.88)\), соответствующие алгебрам \(s\ell(4, \mathbb{C})\) и \(so(6, \mathbb{C})\). Это предоставляет возможность исследовать L-оператор типа \(so(6, \mathbb{C})\) при помощи метода \([56]\), пригодного для L-оператора типа \(s\ell\).
Теперь представим явно L-опператор для конформной алгебры so(2, 4). Этот L-оператор задан формулами (5.88) и (5.90) (при \(n = p + q = 4 \)):

\[
L^\rho(u) = \begin{pmatrix} I_2 & 0 \\ x & I_2 \end{pmatrix} \cdot \begin{pmatrix} u_+ \cdot I_2 + S, & p \\ 0, & u_- \cdot I_2 + S \end{pmatrix} \cdot \begin{pmatrix} I_2 & 0 \\ -x & I_2 \end{pmatrix} = (5.100)
\]

где \(u_+ = u + \frac{\Delta - 4}{2} \), \(u_- = u - \frac{\Delta}{2} \) и 2x2 матрицы \(p, x, S, \overline{S} \) определены в (5.30), (5.57), (5.58). Подчеркнём, что обе 2x2 матрицы \(u_+ \cdot I_2 + S \) и \(u_- \cdot I_2 + \overline{S} \) являются L-операторами (см. (5.75) – (5.76), (5.81)) для алгебры \(sl(2, \mathbb{C}) = so(1, 3) \). Отметим, что основу алгебры \(so(2, 4) \) (т.е. вещественная форма \(so(6, \mathbb{C}) \)) является одновременно базисом алгебры \(so(6, \mathbb{C}) \) и следовательно оператор (5.88), (5.100) можно считать (после комплексификации, при которой все координаты \(x_\mu \) становятся комплексными) также L-оператором алгебры \(so(6, \mathbb{C}) \).

5.3.1. L-оператор для \(sl(4, \mathbb{C}) \) и \(so(6, \mathbb{C}) \)

Воспользуемся конструкцией L-оператора для \(sl(N, \mathbb{C}) \) (см. параграф 5.2) и изоморфизмом \(so(6, \mathbb{C}) = sl(4, \mathbb{C}) \), чтобы установить связь между L-оператором для \(sl(4, \mathbb{C}) \) и L-оператором (5.100) для алгебры \(so(2, 4) \). Комплексификация предыдущего L-оператора по-прежнему задаётся формулами (5.72), (5.74), но при специальном выборе базисов \(\{ \rho(E_{ij}) \} \rightarrow \{ L_{\mu\nu}, P_\mu, K_\nu, D \} \) и \(\{ e_{ij} \} \rightarrow \{ \ell_{\mu\nu}, p_\mu, k_\nu, d \} \) в представлениях \(\rho \) (5.26) и \(T_1 \) (5.97) соответственно.

Рассмотрим L-оператор (5.74), (5.75) для \(sl(4, \mathbb{C}) \), в котором веса \(\rho_1, \ldots, \rho_4 \) связаны условием \(\rho_1 + \cdots + \rho_4 = 6 \). Факторизованное представление такого L-оператора в правой части (5.74) содержит матрицы Z и D размера (4 x 4):

\[
Z = \begin{pmatrix}
1 & 0 & 0 & 0 \\
z_{21} & 1 & 0 & 0 \\
z_{31} & z_{32} & 1 & 0 \\
z_{41} & z_{42} & z_{43} & 1
\end{pmatrix}, \quad D = \begin{pmatrix}
u_1 & D_{12} & D_{13} & D_{14} \\
0 & u_2 & D_{23} & D_{24} \\
0 & 0 & u_3 & D_{34} \\
0 & 0 & 0 & u_4
\end{pmatrix}
\]

где матричными элементами \(D_{ij} \) служат дифференциальные операторы, определённые в (5.76). Отметим, что \(D_{kl} = -\partial_{4k} \) (к = 1, 2, 3). Принимая во внимание существование изоморфизма \(sl(4, \mathbb{C}) = so(6, \mathbb{C}) \), естественно ожидать, что факторизованное представление

211
(5.74) при \(N = 4\) преобразуется в факторизованную форму L-оператора (5.100) для конформной алгебры \(so(2,4)\). Чтобы получить явный вид такого преобразования, запишем 4 × 4 матрицы (5.102), и затем (5.74) в блочной форме при помощи матриц 2 × 2

\[
z_1 = \begin{pmatrix} 1 & 0 \\ z_{21} & 1 \end{pmatrix}, \quad z_2 = \begin{pmatrix} 1 & 0 \\ z_{43} & 1 \end{pmatrix}, \quad z = \begin{pmatrix} z_{31} & z_{32} \\ z_{41} & z_{42} \end{pmatrix},
\]

\[
d_1 = \begin{pmatrix} u_1 & D_{12} \\ 0 & u_2 \end{pmatrix}, \quad d_2 = \begin{pmatrix} u_3 & -\partial_{43} \\ 0 & u_4 \end{pmatrix}, \quad d = -\begin{pmatrix} \partial_{31} & \partial_{41} \\ \partial_{32} & \partial_{42} \end{pmatrix}.
\]

Воспользовавшись этими блоками, получим для начала факторизованное представление для матриц Z и D:

\[
Z = \begin{pmatrix} z_1 & 0 \\ 0 & I_2 \end{pmatrix} \begin{pmatrix} I_2 & 0 \\ z & I_2 \end{pmatrix} \begin{pmatrix} I_2 & 0 \\ 0 & z_2 \end{pmatrix}, \quad D = \begin{pmatrix} d_1 & d \cdot z_2 \\ 0 & d_2 \end{pmatrix} = \begin{pmatrix} d_1 & d \\ 0 & d_2 \cdot z_2^{-1} \end{pmatrix} \begin{pmatrix} I_2 & 0 \\ 0 & z_2 \end{pmatrix},
\]

и далее L-оператор (5.74) типа \(\mathfrak{sl}(4,\mathbb{C})\), после перемножения матриц в середине, записывается в факторизованном виде

\[
L(u) = Z \cdot D \cdot Z^{-1} = \begin{pmatrix} z_1 & 0 \\ 0 & I_2 \end{pmatrix} \begin{pmatrix} I_2 & 0 \\ z & I_2 \end{pmatrix} \begin{pmatrix} d_1 & d \cdot z_2 \\ 0 & z_2 \end{pmatrix} \begin{pmatrix} I_2 & 0 \\ 0 & z_2^{-1} \end{pmatrix}.
\]

Отметим, что матрица \(z_2 \cdot d_2 \cdot z_2^{-1}\) из предыдущего выражения является L-оператором (5.81) типа \(\mathfrak{sl}(2,\mathbb{C})\)

\[
z_2 d_2 z_2^{-1} = \begin{pmatrix} 1 & 0 \\ z_{43} & 1 \end{pmatrix} \begin{pmatrix} u_3 & -\partial_{43} \\ 0 & u_4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -z_{43} & 1 \end{pmatrix},
\]

так что вся зависимость от \(z_{43}\) из \(L(u)\) (5.106) собралась в операторе (5.107).

Перемножая матрицы в (5.106)

\[
L(u) = \begin{pmatrix} z_1 \cdot (d_1 - d \cdot z) \cdot z_1^{-1}, & z_1 \cdot d \\ z \cdot (d_1 - d \cdot z) \cdot z_1^{-1} - (z_2 \cdot d_2 \cdot z_2^{-1}) \cdot z \cdot z_1^{-1}, & z \cdot d + (z_2 \cdot d_2 \cdot z_2^{-1}) \end{pmatrix}
\]

и сравнивая результат с L-оператором (5.101) типа \(so(2,4)\), видим, что естественная замена переменных даётся формулами

\[
x = z \cdot z_1^{-1}, \quad p = z_1 \cdot d, \quad \chi_1 = z_1, \quad \chi_2 = z_2,
\]

где введены новые обозначения для матриц \(z_1\) и \(z_2\) (5.103), чтобы различать два набора переменных,

\[
\chi_1 = \begin{pmatrix} 1 & 0 \\ \chi_1 & 1 \end{pmatrix}, \quad \chi_2 = \begin{pmatrix} 1 & 0 \\ \chi_2 & 1 \end{pmatrix} \Rightarrow \chi_1 = z_{21}, \quad \chi_2 = z_{43}.
\]
Обратное преобразование по отношению к (5.109):

\[z = x \cdot \chi_1, \quad d = X_1^{-1} \cdot p, \quad z_1 = X_1, \quad z_2 = X_2. \] (5.110)

Фиксируем связь между параметрами

\[u_1 = u_+ - \ell - 1, \quad u_2 = u_+ + \ell, \quad u_3 = u_- - \ell - 1, \quad u_4 = u_- + \ell. \] (5.111)

В новых переменных \(x, \chi_1, \chi_2 \) и \(p \) (5.109) L-оператор (5.106), (5.108) принимает вид (см. (5.101)):

\[
L(u) = \begin{pmatrix}
 u_+ \cdot I_2 + S^{(\ell)} - p \cdot x, \\
 x \cdot (u_+ \cdot I_2 + S^{(\ell)}) - (u_- \cdot I_2 + \overline{S}^{(\ell)}) \cdot x - x \cdot p \cdot x, \\
 u_- \cdot I_2 + \overline{S}^{(\ell)} + x \cdot p
\end{pmatrix},
\] (5.112)

где участвуют два L-оператора типа \(sl(2, \mathbb{C}) \),

\[
z_1 \cdot d_1 \cdot z_1 = \begin{pmatrix}
 1 & 0 \\
 z_{21} & 1
\end{pmatrix}
\begin{pmatrix}
 u_1 & D_{12} \\
 0 & u_2
\end{pmatrix}
\begin{pmatrix}
 1 & 0 \\
 -z_{21} & 1
\end{pmatrix} = \begin{pmatrix}
 1 & 0 \\
 \chi_1 & 1
\end{pmatrix}
\begin{pmatrix}
 u_1 & -\partial \chi_1 \\
 0 & u_2
\end{pmatrix}
\begin{pmatrix}
 1 & 0 \\
 -\chi_1 & 1
\end{pmatrix} = u_+ I_2 + S^{(\ell)}
\] (5.113)

и

\[
z_2 \cdot d_2 \cdot z_2^{-1} = \begin{pmatrix}
 1 & 0 \\
 z_{43} & 1
\end{pmatrix}
\begin{pmatrix}
 u_3 & -\partial \chi_3 \\
 0 & u_4
\end{pmatrix}
\begin{pmatrix}
 1 & 0 \\
 -z_{43} & 1
\end{pmatrix} = \begin{pmatrix}
 1 & 0 \\
 \chi_2 & 1
\end{pmatrix}
\begin{pmatrix}
 u_3 & -\partial \chi_2 \\
 0 & u_4
\end{pmatrix}
\begin{pmatrix}
 1 & 0 \\
 -\chi_2 & 1
\end{pmatrix} = u_- I_2 + \overline{S}^{(\ell)}.
\] (5.114)

Здесь использованы обозначения \(S^{(\ell)} \) (5.59) и \(\overline{S}^{(\ell)} \) (5.60) для матриц генераторов \(sl(2, \mathbb{C}) \) (см. (5.81)). Интерпретируем их как матрицы \(S \) и \(\overline{S} \), соответствующие генераторам спино­
вых вращений \(S_{\mu \nu} \) (см. (5.30)), которые возникают в дифференциальном представлении (5.26) конформной алгебры \(so(2, 4) \). Генераторы двух \(sl(2, \mathbb{C}) \) алгебр, упакованные в матрицы (5.59) и (5.60), являются дифференциальными операторами по переменным \(\chi_1 \) и \(\chi_2 \) и действуют на пространстве функций от \(\chi_1 \) и \(\chi_2 \). Естественно назвать \(\chi_1 \) и \(\chi_2 \) гармоническими переменными.

Укажем ещё раз явно связь между двумя наборами переменных. Из (5.30) и (5.109):

\[\chi_1 = z_{21}, \quad \chi_2 = z_{43}, \] (5.30)

\[
\begin{aligned}
(x)_{11} &= -i(x_0 + x_3) = z_{31} - z_{32} z_{21}, \\
(x)_{12} &= -i(x_1 - ix_2) = z_{32}, \\
(x)_{21} &= -i(x_1 + ix_2) = z_{41} - z_{42} z_{21}, \\
(x)_{22} &= -i(x_0 - x_3) = z_{42}, \quad \chi_2 = z_{43}.
\end{aligned} \]
В следующем параграфе также нам понадобится координаты светового конуса

\[
x_\pm = -i(x_0 \pm x_3), \quad x = -i(x_1 - ix_2), \quad \bar{x} = -i(x_1 + ix_2),
\]

(5.115)

tак что блоки размера 2×2 (5.109) в L-операторе (5.100) принимают вид

\[
x = \begin{pmatrix} x_+ & x \\ \bar{x} & x_- \end{pmatrix}, \quad \mathbf{p} = \begin{pmatrix} -\partial_x^+ & -\partial_x^- \\ -\partial_x^- & -\partial_x^+ \end{pmatrix} \equiv \mathbf{p}_x.
\]

(5.116)

Разрешая (5.89), (5.73) (для $n = 4$) и (5.111) находим связь между параметрами ρ_k и Δ, ℓ, ℓ'

\[
\rho_1 = -\frac{\Delta}{2} + \ell + 3, \quad \rho_2 = -\frac{\Delta}{2} - \ell + 2, \quad \rho_3 = \frac{\Delta}{2} + \ell + 1, \quad \rho_4 = \frac{\Delta}{2} - \ell.
\]

(5.117)

Таким образом установлена связь между видом L-оператора для $s\ell(4, \mathbb{C})$ и $so(6, \mathbb{C})$ (или для компактных форм $su(2, 2)$ и $so(2, 4)$). В следующем параграфе применим конструкцию [56] сплетающих операторов для $s\ell(4, \mathbb{C})$ к случаю $so(6, \mathbb{C})$.

5.3.2. Сплетающие операторы и соотношение звезда-треугольник

для $so(6, \mathbb{C}) = s\ell(4, \mathbb{C})$

В параграфе 5.2.1 введены операторы \mathcal{T}^k, которые сплетают два L-оператора (5.74) типа $s\ell(N, \mathbb{C})$, переставляя их параметры согласно (5.77). В этом параграфе рассмотрим сплетающие операторы для произведения двух L-операторов (5.74) типа $s\ell(4, \mathbb{C})$:

\[
L_1(u_1, u_2, u_3, u_4) L_2(v_1, v_2, v_3, v_4) \in \operatorname{End}(\mathbb{C}^4 \otimes V_{\Delta_1, \ell_1, \ell_1} \otimes V_{\Delta_2, \ell_2, \ell_2}).
\]

(5.118)

Здесь операторы L_1 и L_2 действуют на различных квантовых пространствах $V_{\Delta_1, \ell_1, \ell_1}$ и $V_{\Delta_2, \ell_2, \ell_2}$ (пространства дифференциальных представлений ρ), что отмечено индексами 1 и 2. Напомним определение набора спектральных параметров в операторах L_1 и L_2 (см. (5.117)):

\[
(u_1, u_2, u_3, u_4) = \left(u + \frac{\Delta_1}{2} - \ell_1 - 3, u + \frac{\Delta_1}{2} + \ell_1 - 1, u - \frac{\Delta_1}{2} - \ell_1 - 1, u - \frac{\Delta_1}{2} + \ell_1 \right),
\]

\[
(v_1, v_2, v_3, v_4) = \left(v + \frac{\Delta_2}{2} - \ell_2 - 3, v + \frac{\Delta_2}{2} + \ell_2 - 1, v - \frac{\Delta_2}{2} - \ell_2 - 1, v - \frac{\Delta_2}{2} + \ell_2 \right),
\]

(5.119)

где Δ_1, Δ_2 конформные размерности, а $(\ell_1, \ell_1), (\ell_2, \ell_2)$ спиновые параметры. Для общего случая L-оператора типа $s\ell(N, \mathbb{C})$ сплетатели S, заданные уравнениями

\[
S \cdot L_1(u_1, \ldots, u_N) L_2(v_1, \ldots, v_N) = L_1(u'_1, \ldots, u'_N) L_2(v'_1, \ldots, v'_N) \cdot S,
\]

214
были построены в [56]. В уравнении (5.120) с обозначает некоторую перестановку $2N$ спектральных параметров $(v_1,\ldots,v_N,u_1,\ldots,u_N)$. В этом параграфе обсудим сплетающие операторы S для произведения $L_1(u_1,\ldots,u_4) \; L_2(v_1,\ldots,v_4)$ двух L-операторов типа $s\ell(4,\mathbb{C})$, которые переставляют параметры в наборе $u = (v_1,\ldots,v_4,u_1,\ldots,u_4)$. Выберем подходящие переменные для L_1: координаты светового конуса $\vec{y} = (y_+,y_-,y_0)$ для записи пространственно-временной координаты (см. (5.115)) и гармонические переменные χ_1 и χ_2. Для L_2 выберем $\vec{z} = (z_+,z_-,z,\vec{z})$ в качестве пространственно-временных координат и ζ_1, ζ_2 для гармонических переменных. После перехода к новым переменным дифференциальные операторы $D_{k,k+1}$ (5.76), соответствующие L_1 и L_2, принимают вид

$$
L_1: \quad D_{12} \rightarrow \partial_{\chi_1}, \quad D_{23} \rightarrow D_y = \partial_y + \chi_2 \partial_{y_-} - \chi_1 \partial_{y_+} - \chi_1 \chi_2 \partial_{y_0}, \quad D_{34} \rightarrow \partial_{\chi_2},
$$

$$
L_2: \quad D_{12} \rightarrow \partial_{\zeta_1}, \quad D_{23} \rightarrow D_{\vec{z}} = \partial_+ + \zeta_2 \partial_{z_-} - \zeta_1 \partial_{z_+} - \zeta_1 \zeta_2 \partial_{\vec{z}}, \quad D_{34} \rightarrow \partial_{\zeta_2}.
$$

Согласно [56] (см. параграф 5.2.1), сплетающие операторы \mathcal{T}^k (5.77), (5.78), которые по отдельности переставляют спектральные параметры (v_1,\ldots,v_4) в L_2 и (u_1,\ldots,u_4) в L_1, имеют вид

$$
L_2: \quad \mathcal{T}^1(u) = \partial_{\chi_1}^{v_2-v_1}, \quad \mathcal{T}^2(u) = D_y^{v_3-v_2}, \quad \mathcal{T}^3(u) = \partial_{\zeta_2}^{v_4-v_3},
$$

$$
L_1: \quad \mathcal{T}^5(u) = \partial_{\chi_1}^{v_2-v_1}, \quad \mathcal{T}^6(u) = D_{\vec{z}}^{v_3-v_2}, \quad \mathcal{T}^7(u) = \partial_{\zeta_2}^{v_4-v_3}.
$$

"Средний" сплетающий оператор, который отвечает перестановке $u_1 \leftrightarrow v_4$ в произведении двух L-операторов (5.118), имеет вид [56]

$$
\mathcal{T}^4(u) = S(\vec{y} - \vec{z})^{u_1-v_4},
$$

t.e. является оператором умножения на функцию, где

$$
S(\vec{y} - \vec{z}) = (\vec{y} - \vec{z}) + \chi_1 (y_- - z_-) + \zeta_2 (z_+ - y_+) + \chi_1 \zeta_2 (z - y).
$$

Далее построим составные сплетающие операторы S^1 и S^2. Первый из них S^1 переставляет пары параметров (v_1,v_2) и (v_3,v_4): $(v_1,v_2,v_3,v_4) \rightarrow (v_3,v_4,v_1,v_2)$. В терминах физических параметров это перестановка соответствует $(\Delta, \ell_2, \ell_2) \rightarrow (4 - \Delta, \ell_2, \ell_2)$. Ниже объяснен причину выбора этого сплетающего оператора (см. замечание к этому параграфу). Согласно (5.122) составной оператор S^1 выражается через элементарные блоки формулой

$$
S^1 = \mathcal{T}^2(s_1s_3s_2u) \; \mathcal{T}^1(s_3s_2u) \; \mathcal{T}^3(s_2u) \; \mathcal{T}^2(u) = D_{\vec{z}}^{v_4-v_1} \; \partial_{\chi_2}^{v_3-v_2} \; \partial_{\chi_1}^{v_2-v_1} \; D_{\vec{z}}^{v_3-v_2}.
$$
Отметим, что в (5.125) для каждого T^k должны учитываться предшествующие перестановки s_m (5.79) спектральных параметров.

Второй сплетающий оператор S^2 переставляет пары (v_3, v_4) и (u_1, u_2):

$$
(v_1, v_2, v_3, v_4, u_1, u_2, u_3, u_4) \rightarrow (v_1, v_2, u_1, u_2, v_3, v_4, u_1, u_2),
$$

и имеет явный вид

$$
S^2 = T^4(s_5s_3s_4u)T^5(s_3s_4u)T^3(s_4u)T^4(u) = S(y - \bar{z})^{u_2-v_3} \partial_{x_1}^{u_2-v_4} \partial_{x_2}^{u_1-v_3} S(y - \bar{z})^{u_1-v_4}.
$$

(5.126)

Примечательно, что [56] операторы S^1 и S^2 удовлетворяют соотношению группы кос

$$
S^1 S^2 S^1 = S^2 S^1 S^2.
$$

(5.127)

В параграфе 5.4 тождество (5.127) интерпретировано как соотношение звезда-треугольник для пропагаторов безмассовых частиц произвольного спина в некоторой конформной теории поля.

Очевидный недостаток формул (5.125) и (5.126) для операторов S^1 и S^2 связан с отсутствием явной ковариантности по отношению к преобразованиям из Лоренцевой подгруппы $SO(4, \mathbb{C}) \subset SO(6, \mathbb{C})$, порождённой генераторами $\rho(L_{\mu\nu})$ (5.26). Далее покажем, что их можно переписать в явно ковариантной форме.

Начнём с замечания, что конструкция сплетающих операторов [56] для комплексно группы $SL(N, \mathbb{C})$, упомянутая в параграфе 5.2.1, на самом деле требует $\frac{N(N-1)}{2}$ комплексных переменных z_{ik} и $\frac{N(N-1)}{2}$ комплексно сопряжённых переменных \bar{z}_{ik}. В случае $SL(4, \mathbb{C})$ задействовано 6 комплексных переменных и 6 комплексно сопряжённых. В параграфе 5.3.1 все объекты хорошо определены, поскольку работаем с дифференциальными операторами, так что можно ограничиться только 6 комплексными переменными и забыть о втором наборе переменных – разделение голоморфного и антиголоморфного секторов. Теперь же, когда перешли к сплетающим операторам, ситуация изменилась, поскольку операторы типа ∂_2^a (т.е. операторы D_2^a, ∂_2^a в (5.125), (5.125)) при нечётных a имеют лишь формальный смысл. Если же их домножить на антиголоморфную часть ∂_2^a, то их произведению $[\partial_2^a]a = \partial_2^a \cdot \partial_2^a$ можно придать смысл интегрального оператора на пространстве функций на плоскости $f(z, \bar{z})$ (см. начало главы 3),

$$
[\partial_2^a]f(z, \bar{z}) = A(a) \int d^2w \left| z - w \right|^{-a} f(w, \bar{w}),
$$

(5.128)
где постоянная \(A(u) = \frac{e^{\beta u}}{\pi} \frac{\Gamma(1+a)}{\Gamma(1-a)} \). В дальнейшем, чтобы работать с \(S^1 \) и \(S^2 \) в форме (5.125) и (5.126) необходимо доопределить их, введя антиголоморфный сектор. В следующем параграфе сплетающие операторы для конформной алгебры будут построены напрямую, без использования связи с известной конструкцией сплетающих операторов для \(SL(4, \mathbb{C}) \). Теперь же, в качестве иллюстрации, продемонстрируем, что можно переписать сплетающие операторы в ковариантной форме, используя эту связь.

Представление \(SL(4, \mathbb{C}) \) задано на бесконечномерном пространстве функций от 6 переменных \(\zeta_1, \zeta_2, \bar{z} \equiv (z_+, z_, z, \bar{z}) \) и сопряжённых им. Спиновые параметры дифференциального представления \(\rho_{\Delta, \ell, \bar{l}} \) предполагаются неотрицательными (полу)целями \(2\ell, 2\bar{l} = 0, 1, 2, \ldots \), так что представление реализовано на тензорных полях, и имеются два конечномерных подпространства с размерностями \(2\ell + 1 \) и \(2\bar{l} + 1 \) по переменным \(\zeta_1 \) и \(\zeta_2 \) соответственно. Они соответствуют конечномерным представлениям двух Лоренцовых подалгебр \(so(3) + so(3) \subset so(6) \). Поэтому естественно выполнить ограничение \(S^1 \) (5.125) на это инвариантное подпространство, применять его к производящей функции для представления \(SL(2, \mathbb{C}) + SL(2, \mathbb{C}) \), заданного параметрами \((\ell, \bar{\ell}, \ell, \bar{\ell}) \): \([1 + \eta_1 \zeta_1]^2 [1 + \eta_2 \zeta_2]^2 \) (см. формулу (1.64) для производящей функции представления алгебры \(s\ell_2 \), в которой задействован только голоморфный сектор). Здесь \(\eta_1, \bar{\eta}_1, \eta_2, \bar{\eta}_2 \) параметры производящей функции. Далее явно указываем только голоморфную часть, подразумевая всякий раз присутствие антиголоморфной.

Будем последовательно применять операторы из (5.125) к производящей функции, и для начала вычислим \([D_z]^a \cdot \Phi(\bar{z}) \). Для этого заметим, что

\[
D_z = \bar{n}(\zeta_1, \zeta_2) \cdot \partial_x + \bar{n}(\zeta_1, \zeta_2) \equiv (\zeta_1, \zeta_2, 1, -\zeta_1 \zeta_2),
\]

и воспользуемся (5.128),

\[
[D_z]^c \cdot \Phi(\bar{z}) = [\partial_x]^c \cdot \exp(\lambda D_z) \cdot \Phi(\bar{z})|_{\lambda = 0} = [\partial_x]^c \cdot \Phi(\bar{z} + \lambda \bar{n}(\zeta_1, \zeta_2))|_{\lambda = 0} = A(c) \int d^2 \chi_4 \left[\chi_4 \right]^{-1 - c} \Phi(\bar{z} - \chi_4 \bar{n}(\zeta_1, \zeta_2)).
\]

Затем применим дифференцирования по \(\eta_1 \) и \(\eta_2 \) из (5.125), понимая их как интегральные операторы (5.128),

\[
[\partial_{\zeta_1}]^{b_1} [\partial_{\zeta_2}]^{b_2} \cdot [1 + \eta_1 \zeta_1]^2 [1 + \eta_2 \zeta_2]^2 \Phi(\bar{z} - \chi_4 \bar{n}(\zeta_1, \zeta_2)) = A(b_1) A(b_2) \int d^2 \chi_1 d^2 \chi_2 \left[\frac{[1 + \eta_1 \chi_1]^2 [1 + \eta_2 \chi_2]^2}{[\chi_1 - \chi_1 \chi_2 + \chi_2 - \chi_2][\chi_2 - \chi_2 \chi_1 + \chi_1 - \chi_1]} \right] \Phi(\bar{z} - \chi_4 \bar{n}(\chi_1, \chi_2)).
\]

Последний оператор из (5.125) действует аналогично первому, так что в результате

\[
S^1 \cdot [1 + \eta_1 \zeta_1]^2 [1 + \eta_2 \zeta_2]^2 \Phi(\bar{z}) = \int d^4 \bar{y} S^1(\bar{z} - \bar{y}) \Phi(\bar{y}),
\]

217
где ядро оператора S^1 (5.125), примененного к произвольной когомологической представлению Лоренцевых подалгебр, имеет вид

$$S^1(z) = A(a, b_1, b_2, c) \int d^2 \chi_1 d^2 \chi_2 d^2 \chi_4 \frac{|\xi_{a}^{1} e_{[1+\eta x]_{1}^{[2]} e_{[1+\eta_2 x]}^{2} e_{1+\eta}^{1+\epsilon}}\Phi(z)}{|z_{1} |^{4-\Delta+\epsilon}}.$$

Здесь параметры $a = v_4 - v_1$, $b_1 = v_3 - v_1$, $b_2 = v_4 - v_2$, $c = v_3 - v_2$. Чтобы получить желаемый результат осталось лишь упростить предыдущее выражение, вычислив четырёхкратный интеграл. Это легко сделать, поскольку четыре δ-функции однозначно фиксируют переменные,

$$S^1(z) = \frac{A(a, b_1, b_2, c)}{[z_{+}z_{-} - z z]^{4-\Delta+\epsilon}} [z_{+} + \eta_1 \xi_{z_{+}} - \xi_{z_{-}} - \eta_{1} z]^{2\xi}[\eta_{2} \xi_{z_{+}} + z_{+} + \xi_{z_{1}} z + \eta_{2} z]^{2\xi}.$$

Далее заметим, что в знаменателе предыдущей формулы возник квадрат расстояния $z_{+}z_{-} - z z = v z_{v}$, а комбинации в числителе (см. (5.16))

$$[z_{+} + \eta_1 \xi_{z_{+}} - \xi_{z_{-}} - \eta_{1} z]^{2\xi} = \left(1 \xi_{1} \sigma^{\nu} z_{\nu} \left(1 \eta_{1}\right), \right.$$

$$[\eta_{2} \xi_{z_{+}} + z_{+} + \xi_{z_{1}} z + \eta_{2} z]^{2\xi} = \left(1 \xi_{1} \sigma^{\nu} z_{\nu} \left(1 \eta_{2}\right).$$

Чтобы окончательно переписать ядро $S^1(z)$ в ковариантном виде, введем однородные переменные $\lambda_{a}, \hat{\lambda}_{a}^{i}, \mu_{a}, \hat{\mu}_{a}$ (см. параграф 5.1.2):

$$\xi_{1} = -\lambda_{1} / \lambda_{2}, \xi_{2} = -\hat{\lambda}_{1} \hat{\lambda}_{2}, \eta_{1} = \mu_{2} / \mu_{1}, \eta_{2} = \hat{\mu}_{2} / \hat{\mu}_{1},$$

где $\lambda_{a} = \lambda_{b} e_{beta}$, $\mu_{a} = \mu_{b} e_{beta}$, $\hat{\mu}_{a} = \hat{\mu}_{b} e_{beta}$ (и e_{beta} — антисимметричные тензоры). В итоге сплетающий оператор S^1 (5.125) действует на производящую функцию представления с параметрами $\mu_{a}, \hat{\mu}_{a}$ по правилу

$$S^1 \cdot [\mu_{a} \lambda_{a}]^{2\xi} [\hat{\mu}_{a} \hat{\lambda}_{a}]^{2\xi} \Phi(z) = \int d^4 y \frac{[\hat{\lambda}_{a} (\sigma^{\nu}) \hat{\mu}_{a} (\gamma_{\mu} y_{\nu})^{2\xi} [\lambda_{a} (\sigma^{\nu}) \mu_{a} (\gamma_{\mu} y_{\nu})^{2\xi} \Phi(z - y)}{[y^{2}]^{4-\Delta+\epsilon}}. \quad (5.129)$$

В следующем параграфе, не используя связь с конфомной сплетающих операторов для группы $SL(4, \mathbb{C})$, получим полностью выражение для сплетающего оператора, которые не используют антиголоморфный сектор и совпадает в точности с голоморфной частью (5.129).

Замечание. Неприводимое представление алгебры $so(6, \mathbb{C})$ (комплексификация конформной алгебры $so(2, 4)$) в дифференциальной реализации (5.26) задается конформной размерностью Δ и спиновыми параметрами ($\ell, \hat{\ell}$), которые параметризуют представление подалгебры спина $so(4, \mathbb{C}) = sl(2, \mathbb{C}) + sl(2, \mathbb{C})$. Имеется также собственное значение оператора
\(\ell_\mu \bar{\ell}^\nu \) (см. (5.28)), но этот дополнительный параметр не играет роли в наших рассмотрениях. Если значения всех операторов Казимира для двух представлений \(so(6, \mathbb{C}) \) совпадают, то эти представления эквивалентны и для них должен существовать сплетающий оператор. Для алгебры \(so(6, \mathbb{C}) \) (5.26) имеется три оператора Казимира: квадратичный оператор \(\rho(C_2) \) (5.28), а также

\[
\rho(C_3) = e^{abcdef} \rho(M_{ab} M_{cd} M_{ef}), \quad \rho(C_4) = \rho(M_{ab} M^{bc} M_{cd} M^{da}).
\]

В силу изоморфизма \(so(6, \mathbb{C}) = s\ell(4, \mathbb{C}) \), собственные значения этих операторов Казимира являются симметрическими полиномами от четырёх параметров \(\rho_1, \rho_2, \rho_3, \rho_4 \) (5.117) и следовательно любая перестановка этих параметров приводит к эквивалентному представлению. Рассмотрим подробнее спектральные параметры (5.111), (5.119):

\[
(u_1, u_2, u_3, u_4) = (u - \rho_1, u - \rho_2, u - \rho_3, u - \rho_4) = (u_+ - \ell - 1, u_+ + \ell, u_- - \hat{\ell} - 1, u_- + \hat{\ell})
\]

вместо параметров (5.117). Перестановка \(u_1 \leftrightarrow u_2 \) эквивалентна замене \(\ell \rightarrow -1 - \ell \), тогда как перестановка \(u_3 \leftrightarrow u_4 \) ведёт к \(\hat{\ell} \rightarrow -1 - \hat{\ell} \). Обе эти перестановки не допускаются в нашем рассмотрении, поскольку рассматриваем только конечномерные представления спиновых подалгебр (5.59) и (5.60), что соответствует неотрицательным целым параметрам \(2\ell \) и \(2\hat{\ell} \). Остальные перестановки в наборе \((u_1, u_2, u_3, u_4) \) включают транспозицию \(u_+ \leftrightarrow u_- \).

В таком случае имеется альтернатива либо \(\ell \rightarrow -1 - \ell \), либо \(\ell \rightarrow \hat{\ell} \). Первый вариант вновь не подходит, поскольку несовместим с конечномерностью представлений подалгебры спина. В результате остаётся только один допустимый сплетающий оператор, который переставляет \(u_+ \leftrightarrow u_- \), \(\ell \rightarrow \hat{\ell} \) и следовательно соответствует перестановке пар спектральных параметров \((u_1, u_2) \) и \((u_3, u_4) \). Именно этот оператор введён в (5.125) и будет исследован далее в параграфе 5.4.2.

5.4. Общий R-оператор

В этом параграфе построим общий R-оператор, решая определяющее RLL-уравнение [13, 64]

\[
R_{12}(u - v) L_1(u) L_2(v) = L_1(v) L_2(u) R_{12}(u - v)
\]

с конформным L-оператором (5.90). Индексы 1, 2 отвечают двум бесконечномерным пространствам дифференциального представления \(\rho \) конформной алгебры \(conf(\mathbb{R}^n) \) (5.26). Далее рассмотрим два случая:
размерность \(n \) евклидова пространства \(\mathbb{R}^n \) произвольна, а представления конформной алгебры скалярные: \(S = 0 \) and \(\bar{S} = 0 \).

Размерность \(n \) пространства \(\mathbb{R}^n \) равна \(n = 4 \), а дифференциальные представления конформной алгебры наиболее общего вида: \(S \neq 0 \) и \(\bar{S} \neq 0 \).

5.4.1. \(n \)-мерное пространство, скалярные представления

При заданных условиях определяюще RLL-соотношение имеет вид

\[
R_{12}(u - v) L_1(u_+, u_-) L_2(v_+, v_-) = L_1(v_+, v_-) L_2(u_+, u_-) R_{12}(u - v),
\]

где

\[
L_1(u_+, u_-) = \begin{pmatrix} 1 & 0 \\ x_1 & 1 \end{pmatrix}, \quad L_2(v_+, v_-) = \begin{pmatrix} 1 & 0 \\ x_2 & 1 \end{pmatrix},
\]

и \(u_+ = u + \frac{\Delta u}{2}, \quad u_- = u - \frac{\Delta u}{2}, \quad v_+ = v + \frac{\Delta v}{2}, \quad v_- = v - \frac{\Delta v}{2} \) (5.89).

Чтобы найти R-оператор будем следовать методу, описанному в параграфе 1.1. При этом, что описанная там схема для алгебр ранга один допускает обобщения не только на скалярные представления конформной алгебры, но и для представлений на тензорных полях в 4-мерном пространстве. R-оператор в соотношении (5.130) переставляет пару параметров \((u_+, u_-) \) в первом L-операторе с парой \((v_+, v_-) \) во втором L-операторе.

Введём также операторы, которые реализуют другие перестановки на множестве четырёх параметров. Объединим их в набор \(\mathbf{u} = (v_+, v_-, u_+, u_-) \). R-оператор представляет перестановку \(s \),

\[
s \mapsto R(u - v); \quad s \mathbf{u} = (u_+, u_-, v_+, v_-).
\]

Произвольная перестановка строится из элементарных перестановок \(s_1, s_2 \) и \(s_3 \)

\[
s_1 \mathbf{u} = (v_-, v_+, u_+, u_-); \quad s_2 \mathbf{u} = (v_+, u_+, v_-, u_-); \quad s_3 \mathbf{u} = (v_+, v_-, u_-, u_+).
\]

В частности: \(s = s_2 s_1 s_2 s_2 \). Таким образом исходная задача свелась к задаче построить операторы \(S^i(\mathbf{u}) \) (\(i = 1, 2, 3 \)), представляющие элементарные перестановки

\[
(v_+, v_-, u_+, u_-) : S^1(\mathbf{u}) L_2(v_+, v_-) = L_2(v_-, v_+) S^1(\mathbf{u})
\]

\[
(v_+, v_-, u_+, u_-) : S^2(\mathbf{u}) L_1(u_+, u_-) L_2(v_+, v_-) = L_1(v_-, u_-) L_2(v_+, u_+) S^2(\mathbf{u})
\]
Имеет место соответствие

\[s_i \mapsto S^i(u) ; \quad s_is_j \mapsto S^i(s_j u) S^j(u) ; \quad s_is_js_k \mapsto S^i(s_js_k u) S^j(s_k u) S^k(u) ; \quad \cdots \]
(5.135)

Для того, чтобы это действительно было представлением группы перестановок четырёх параметров, необходимо проверить двойные и тройные определяющие соотношения (Кокстера)

\[s_is_i = 1 \mapsto S^i(s_i u) S^i(u) = 1 ; \quad s_is_3 = s_3s_i \mapsto S^i(s_3 u) S^3(u) = S^3(s_i u) S^i(u) \]
(5.136)

\[s_1s_2s_1 = s_2s_1s_2 \mapsto S^1(s_2 s_1 u) S^2(s_1 u) S^1(u) = S^2(s_1 s_2 u) S^1(s_2 u) S^2(u) \]
(5.137)

\[s_2s_3s_2 = s_3s_2s_3 \mapsto S^2(s_3 s_2 u) S^3(s_2 u) S^2(u) = S^3(s_2 s_3 u) S^2(s_3 u) S^3(u) . \]
(5.138)

Тогда R-оператор можно представить в виде произведения четырёх блоков:

\[R(u) = S^2(s_1 s_3 s_2 u) S^1(s_3 s_2 u) S^3(s_2 u) S^2(u) . \]
(5.139)

Далее увидим, что \(S^i \) зависят от параметров весьма специфическим образом

\[S^1(u) = S^1(v_+ - v_-) ; \quad S^2(u) = S^2(u_+ - v_-) ; \quad S^3(u) = S^3(u_- - u_+) , \]
(5.140)

так что оператор \(R(u) \) зависит от разности спектральных параметров \(u - v \), как это и должно быть,

\[R(u) = S^2(u_- - v_+) S^1(u_+ - v_-) S^3(u_- - v_-) S^2(u_+ - v_-) . \]
(5.141)

Уравнение Янга–Бакстера для R-оператора следует напрямую из соотношений Кокстера для элементарных блоков \(S^i(u) \). В явной форме эти соотношения (5.137) и (5.138) имеют вид

\[S^1(u_+ - v_-) S^2(u_+ - v_+) S^1(v_- - v_+) = S^2(v_- - v_+) S^1(u_+ - v_-) S^2(u_+ - v_-) , \]

\[S^2(u_- - u_+) S^3(u_- - v_-) S^2(u_- - v_-) = S^3(u_+ - v_-) S^2(u_- - v_-) S^3(u_- - u_+) , \]

или в более прозрачной записи

\[S^1(a) S^2(a + b) S^1(b) = S^2(b) S^1(a + b) S^2(a) ; \quad S^2(a) S^3(a + b) S^2(b) = S^3(b) S^2(a + b) S^3(a) . \]
(5.142)
Далее явно построим набор операторов $S'(u)$. Начнём с S^1 и S^3, которые являются копиями оператора S, заданного уравнением

$$\hat{S} \cdot L(u_+, u_-) = L(u_-, u_+) \cdot \hat{S}.$$
(5.143)

В настоящий момент имеем дело со скалярным дифференциальным представлением конформной алгебры, которое параметризуется одним числом – конформной размерностью Δ. Обозначим его ρ^Δ. Глядя на определение параметров u_+ и u_-, легко заметить, что их перестановка соответствует изменению конформной размерности $\Delta \rightarrow n - \Delta$. Так как L-оператор линеен по спектральному параметру, то уравнение (5.143) означает, что S сплетает два представления конформной алгебры: ρ^Δ and $\rho^{n-\Delta}$. Отметим, что такая подмена конформной размерности не изменяет значение оператора Казимира (5.28).

Представим сплетающий оператор как интегральный оператор, определённый на скалярных полях $\Phi(x)$ где $x \in \mathbb{R}^{p,q}$

$$[S\Phi](x) = \int d^n y S(x,y) \Phi(y),$$

тогда определяющее уравнение для S (5.143) эквивалентно набору уравнений

$$\int d^n y S(x,y) G^\Delta_y \Phi(y) = \int d^n y G^\Delta_x S(x,y) \Phi(y),$$

которые в свою очередь сводятся к набору дифференциальных уравнений на ядро оператора $S(x,y)$

$$(G^\Delta_y)^T S(x,y) = G^{\Delta_n - \Delta}_x S(x,y).$$
(5.144)

Здесь G^Δ_x обозначают генераторы конформной алгебры в скалярном ($S^\mu = 0$) дифференциальном представлении (5.26), T обозначает транспонирование, возникающие от интегрирования по частям

$$\int d^n y S(x,y) G^\Delta_y \Phi(y) = \int d^n y \left[G^T_y S(x,y) \right] \Phi(y).$$

В итоге имеем набор уравнений:

- Сдвиги

$$\left(\frac{\partial}{\partial x_\mu} + \frac{\partial}{\partial y_\mu} \right) S(x,y) = 0,$$

(5.145)

- Лоренцевы вращения

$$\left(y_\nu \frac{\partial}{\partial y_\mu} - y_\mu \frac{\partial}{\partial y_\nu} \right) S(x,y) = \left(x_\mu \frac{\partial}{\partial x_\nu} - x_\nu \frac{\partial}{\partial x_\mu} \right) S(x,y),$$

(5.146)
Растяжения
\[
(x_\mu \frac{\partial}{\partial x_\mu} + y_\mu \frac{\partial}{\partial y_\mu}) S(x, y) = -2(n - \Delta) S(x, y), \quad (5.147)
\]

Конформные бусты
\[
\left(x^2 \frac{\partial}{\partial x_\mu} - 2x_\mu x_\nu \frac{\partial}{\partial x_\nu} + y^2 \frac{\partial}{\partial y_\mu} - 2y_\mu y_\nu \frac{\partial}{\partial y_\nu}\right) S(x, y) = 2(n-\Delta) (x_\mu + y_\mu) S(x, y). \quad (5.148)
\]

Отметим, что в скалярном случае \(S_{\mu\nu} = 0\) уравнение, соответствующее преобразованию конформными бустами, излишне. Оно следует из (5.145) – (5.147).

Набор предыдущих уравнений на ядро оператора \(\hat{S}\) совпадает с набором уравнений на функцию Грина для двух скалярных полей с совпадающими размерностями в конформной теории поля [134]. Решение этих уравнений известно

\[
S(x, y) = \frac{c}{(x - y)^{2(n-\Delta)}}
\]

и определено однозначно с точностью до умножения на постоянную. Результат применения интегрального оператора с ядром \(S(x, y)\) к скалярному полю \(\Phi(x)\) можно представить в нескольких эквивалентных формах

\[
[\hat{S} \Phi](x) = c \int \frac{d^n y}{(x - y)^{2(n-\Delta)}} \cdot \Phi(y) = c \int \Phi(x - y) = c \int \frac{d^n y \ e^{iy\hat{p}}}{y^{2(n-\Delta)}} \cdot \Phi(x), \quad (5.149)
\]

где \(\hat{p}_{\nu} = -i\partial_{\nu}\). Имеется также полезное представление для этого оператора в виде

\[
\hat{S}(u_- - u_+) = \hat{p}^{2(u_- - u_+)} = \hat{p}^{2(\frac{\Delta}{2} - \Delta)}. \quad (5.150)
\]

В самом деле, при помощи преобразования Фурье

\[
\int d^n y \ e^{-iy\hat{p}} = \frac{a(\alpha)}{p^{2\alpha}}; \quad a(\alpha) = \frac{\pi^{\frac{n}{2}}}{\Gamma(\Delta - \frac{n}{2})},
\]

интегральный оператор переписывается следующим образом

\[
\int \frac{d^n y}{(x - y)^{2(\frac{\Delta}{2} - \alpha)}} \Phi(y) = a(\alpha) \hat{p}^{-2\alpha} \Phi(x).
\]

В нашем случае \(\alpha = \Delta - \frac{n}{2}\), так что остаётся выбрать специальным образом нормировку \(c\) в выражении для сплетающего оператора (5.149)

\[
c = \frac{1}{a(\Delta - \frac{n}{2})} = 4^{\frac{n}{2}} \pi^{\frac{n}{2}} \Gamma(n - \Delta) \Gamma(\Delta - \frac{n}{2}),
\]

223
так чтобы \(\hat{S} \) принял вид (5.150). В итоге построили операторы \(S^1 \) и \(S^3 \), используя исключительно соображения из теории представлений. Явный вид этих операторов

\[
S^1(v_+ - v_-) = \hat{p}_2^{2(v_+ - v_-)}; \quad S^3(u_+ - u_-) = \hat{p}_1^{2(u_+ - u_-)}.
\]

Замечание. Решение (5.150) можно получить напрямую, если переписать уравнения на ядро (5.145) – (5.148) в операторной форме (см. (5.143)):

- сдвиги: \([\hat{p}_\mu, \hat{S}] = 0\), \(\mu \) \(S \) (5.151)
- Лоренцевы вращения: \([x_\nu \hat{p}_\mu - x_\mu \hat{p}_\nu, \hat{S}] = 0\), \(\nu \) \(S \) (5.152)
- дилатация: \((x^\mu \hat{p}_\mu - i(n - \Delta)) \hat{S} = \hat{S} (x^\mu \hat{p}_\mu - i\Delta)\), \(S \) (5.153)
- конформные бусты: \((x_\mu (x^\nu \hat{p}_\nu - 2i(n - \Delta)) - x^2 \hat{p}_\mu) \hat{S} = \hat{S} (x_\mu (x^\nu \hat{p}_\nu - 2i\Delta) - x^2 \hat{p}_\mu)\). \(S \) (5.154)

Уравнение (5.151) означает, что \(\hat{S} \) зависит только от \(\hat{p}_\mu \), из (5.152) следует, что \(\hat{S} \) зависит только от Лоренц-инвариантной комбинации \(\hat{p}^2 \), а уравнение (5.153) приводит к решению (5.150) с точностью до нормировочной постоянной. Уравнение (5.154) излишне, поскольку оператор (5.150) удовлетворяет ему автоматически.

Осталось построить последний элементарный блок в конструкции \(R \)-оператора – оператор \(S^2 \). Оказывается, что его можно получить напрямую из \(S \) при помощи преобразования дуальности

\[
p \rightarrow x_2 - x_1 \equiv x_{21}; \quad u_+ \rightarrow v_+; \quad u_- \rightarrow u_+,
\]

так что \(S^2 \) является оператором умножения на функцию

\[
S^2(u_+ - v_-) = x_{12}^{2(u_+ - v_-)}.
\]

Чтобы объяснить происхождение такого преобразования дуальности, начнём с определяющего уравнения (5.143) для \(S \),

\[
S \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix} \begin{pmatrix} u_+ \cdot 1 & p \\ 0 & u_- \cdot 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -x & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix} \begin{pmatrix} u_- \cdot 1 & p \\ 0 & u_+ \cdot 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -x & 1 \end{pmatrix} S,
\]

и покажем, что определяющее уравнение на \(S^2 \) получается из предыдущего посредством преобразования дуальности. Для этого распишем определяющее уравнение (5.133) для...
оператора S^2 в явном виде, воспользовавшись факторизацией L-оператора $(x_{21} \equiv x_2 - x_1)$

\[
S^2 \begin{pmatrix} 1 & 0 \\ x_1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & u_- \cdot 1 \end{pmatrix} \begin{pmatrix} u_+ \cdot 1 & p_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ x_{21} & 1 \end{pmatrix} \begin{pmatrix} 1 & p_2 \\ 0 & v_- \cdot 1 \end{pmatrix} = \]

\[
\begin{pmatrix} v_+ \cdot 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -x_2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ x_1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & u_- \cdot 1 \end{pmatrix} = \]

\[
\begin{pmatrix} v_- \cdot 1 & p_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ x_{21} & 1 \end{pmatrix} \begin{pmatrix} 1 & p_2 \\ 0 & u_+ \cdot 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -x_2 & 1 \end{pmatrix} S^2.
\]

Предположим теперь, что $[S^2, x_1] = [S^2, x_2] = 0$. Это позволяет сократить подчёркнутые множители, так что уравнение сводится к гораздо более простому виду

\[
S^2 \begin{pmatrix} 1 & p_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} u_+ \cdot 1 & 0 \\ x_{21} & v_- \cdot 1 \end{pmatrix} = \begin{pmatrix} 1 & p_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} v_- \cdot 1 & 0 \\ x_{21} & u_+ \cdot 1 \end{pmatrix} (S^2).
\]

Потребуем в добавок трансляционную инвариантность: $[S^2, p_1 + p_2] = 0$, что позволяет выполнить ещё одно преобразование

\[
S^2 \begin{pmatrix} 1 & p_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} u_+ \cdot 1 & 0 \\ x_{21} & v_- \cdot 1 \end{pmatrix} \begin{pmatrix} 1 & -p_1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & p_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} v_- \cdot 1 & 0 \\ x_{21} & u_+ \cdot 1 \end{pmatrix} \begin{pmatrix} 1 & -p_1 \\ 0 & 1 \end{pmatrix} S^2.
\]

Предыдущее соотношение имеет вид почти тот, что нам нужен. Осталось только выполнить преобразование подобия матрицей $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$:

\[
S^2 \begin{pmatrix} 1 & 0 \\ p_1 & 1 \end{pmatrix} \begin{pmatrix} v_- \cdot 1 & x_{21} \\ 0 & u_+ \cdot 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -p_1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ p_1 & 1 \end{pmatrix} \begin{pmatrix} u_+ \cdot 1 & x_{21} \\ 0 & v_- \cdot 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -p_1 & 1 \end{pmatrix} S^2.
\]

Сравниваем теперь предыдущее уравнение с определяющим уравнением (5.155) для сплетающего оператора S и видим, что преобразование

\[
x \rightarrow p_1 ; \ p \rightarrow x_{21} ; \ u_+ \rightarrow v_- ; \ u_- \rightarrow u_+
\]

приводит (5.155) к виду (5.157). Таким образом S^2 является оператором умножения на функцию

\[
S^2(u_+ - v_-) = x_1^2 \cdot (u_+ - v_-).
\]

225
Двойные соотношения Кокстера (5.136) очевидно верны, в тройные соотношения Кокстера (5.142) принимают явный вид соотношений

$$ \hat{p}^2 a x_1^{2(a+b)} \hat{p}^{2b} = x_1^{2(a+b)} \hat{p}_1^{2b} x_1^{2(a+b)} ; \quad \hat{p}_1^{2a} x_1^{2(a+b)} \hat{p}_1^{2b} = x_1^{2(a+b)} \hat{p}_1^{2(a+b)} x_1^{2a}, $$

(5.159)

каждое из которых эквивалентно операторному тождеству [135, 136]:

$$ \hat{p}^2 a x^{2(a+b)} \hat{p}^{2b} = x^{2(a+b)} \hat{p}^{2(a+b)} x^{2a}, $$

(5.160)

которое также записывается в интегральной форме

$$ \int d^n w (x - w)^{2\alpha} (y - w)^{2\beta} (z - w)^{2\gamma} = V(\alpha, \beta, \gamma) \cdot \frac{1}{(y - z)^{2\alpha'} (x - z)^{2\beta'} (x - y)^{2\gamma'}}, $$

(5.161)

где

$$ V(\alpha, \beta, \gamma) = \pi^{\frac{n}{2}} \frac{\Gamma(\alpha') \Gamma(\beta') \Gamma(\gamma')}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)} ; \quad \alpha' = n - \alpha, \beta' = n - \beta, \gamma' = n - \gamma $$

и параметры связаны соотношением уникальностей

$$ \alpha + \beta + \gamma = n. $$

Это интегральное тождество является хорошо известным соотношением звезда-треугольник [80, 81, 116]. Полезно изобразить тождество графически на Рис. 5.1, где отмеченная вершина соответствует интегрированию по переменной w.

Теперь при помощи (5.139) получаем явное выражение для R-оператора

$$ R_{12}(u - v) = x_1^{2(u_+ - v_+)} \hat{p}_2^{2(u_+ - v_+)} \hat{p}_1^{2(u_+ - v_+)} x_1^{2(u+ - v+)} y_1^{2(u+ - v+)} y_1^{2(u- - v-)} x_1^{2(u_+ - v_+)} p_1^{2(u_+ - v_+)} x_1^{2(u_+ - v_+)} \cdot \frac{1}{(y - z)^{2\alpha'} (x - z)^{2\beta'} (x - y)^{2\gamma'}}, $$

(5.162)

Интегральная форма оператора

$$ [R_{12}(u - v) \Phi](x_1, x_2) = c \int d^n y_1 d^n y_2 \Phi(y_1, y_2) x_1^{2(v_+ - u_+)} (x_1 - y_1)^{2(\alpha - \beta - \gamma)} (x_1 - y_1)^{2(\alpha' - \beta' - \gamma')} y_1^{2(v_+ - u_+)} y_1^{2(v_+ - u_+)}, $$

где

$$ c = 4^u u^v v^u v^u v^u v^u \frac{\Gamma(\alpha' - \beta' - \gamma') \Gamma(u_+ - v_+ + \frac{n}{2}) \Gamma(u_+ - v_+ + \frac{n}{2}) \Gamma(u_+ - v_+ + \frac{n}{2})}{\Gamma(v_+ - u_+) \Gamma(v_+ - u_+)}.$$
Изобразим ядро оператора на Рис. 5.2, используя указанные ранее графические правила.

Соотношения Кокстера (5.159) служат основой для доказательства того, что общий R-оператор (5.162) решает уравнение Янга–Бакстера. Соответствующее вычисление весьма прямолинейно и в использованных нами обозначениях дословно повторяет представленное в [36] доказательство для случая $SL(2, C)$. Проиллюстрируем доказательство на Рис. 5.3. На рисунке на каждом шаге преобразования используется соотношение звездотреугольник.

Используя R-оператором (5.162), который решает уравнение Янга–Бакстера, и можно построить стандартным методом набор коммутирующих операторов (Гамильтонианов) и сформулировать соответствующую квантовую интегрируемую систему на цепочке. Для примера найдём один из этих Гамильтонианов. Рассмотрим цепочку из N узлов. Состояния этой цепочки описываются векторами в пространстве $V_{Δ_1} \otimes \cdots \otimes V_{Δ_N}$, где $V_{Δ}$ является пространством дифференциального представления ρ конформной алгебры $conf(\mathbb{R}^n)$ (5.26).

При $Δ_a = Δ$ R-оператор (5.162) принимает вид

$$R_{ab}(\alpha; \xi) = x_{ab}^{2(\alpha+\xi)} p_a^{2\alpha} p_b^{2\alpha} x_{ab}^{2(\alpha-\xi)} = 1 + \alpha h_{a,b}(\xi) + O(\alpha^2),$$

(5.163)
где \(a, b = 1, 2, \ldots, N\); \(\xi = \frac{n}{2} - \Delta\), параметр \(\alpha = u - v\) предполагается малым, а операторы

\[
h_{a,b}(\xi) = 2 \ln x_{ab}^2 + x_{ab}^{2\xi} \ln(\hat{p}_a^2 \hat{p}_b^2) x_{ab}^{-2\xi} = \]

\[
= \hat{p}_a^{-2\xi} \ln(x_{ab}^2) \hat{p}_a^{2\xi} + \hat{p}_b^{-2\xi} \ln(x_{ab}^2) \hat{p}_b^{2\xi} + \ln(\hat{p}_a^2 \hat{p}_b^2),
\]

при \(b = a + 1\) служат локальными плотностями Гамильтона. Второе выражение для \(h_{a,b}(\xi)\) в (5.164), выводится из R-оператора (5.163), переписанного при помощи соотношений Кокстера (5.159) в ином виде

\[
R_{ab}(\alpha; \xi) = \hat{p}_a^{-2\xi} x_{ab}^2 p_a^{2(\alpha+\xi)} \hat{p}_b^{2(\alpha-\xi)} x_{ab} x_{ab}^{2\xi}.
\]

Гамильтонаин интегрируемой спиновой цепочки даются циклической суммой локальных Гамильтонаинов

\[
H(\xi) = \sum_{a=1}^{N-1} h_{a,a+1}(\xi),
\]

где \(N\) обозначает длину цепочки. Этот оператор служит обобщением Гамильтона модели Липатова [2, 69, 70] для случая высших размерностей. Для \(n = 1\) и специальном выборе параметра \(\xi = 1/2\) такой оператор формально воспроизводит (с точностью до аддитивной постоянной) голоморфную часть Гамильтона [69, 70]. Полный Гамильтонаин [69, 70] есть сумма голоморфной и антиголоморфной частей. Он получается из (5.164) при \(n = 2\) и \(\xi = 1\). Двумерная модель рассмотрена в работе [36]. Другой пример интегрируемой решётной модели, основанный на соотношении звезда-треугольник, сформулирован в [71].

5.4.2. Общий R-оператор для алгебры \(so(5, 1)\)

В предыдущем параграфе продемонстрировали общую стратегию на простейшем негритивном примере. Теперь повторим предыдущее построение шаг в шаг в более сложной ситуации, поясняя необходимые на каждом шаге модификации.

Изменения связаны с использованием более сложных представлений конформной алгебры. Скалярное представление характеризуется одним параметром — конформной размерностью \(\Delta\), так что оператор \(L(u)\) содержит два параметра \(u\) и \(\Delta\), которые естественным образом собираются в линейные комбинации \(u_+ = u + \frac{\Delta - n}{2}\) и \(u_- = u - \frac{\Delta}{2}\).

Тензорное представление характеризуется тремя параметрами — конформной размерностью \(\Delta\) и двумя спиновыми параметрами \(\ell, \ell\). Теперь оператор \(L(u)\) содержит четыре
параметра \(u \) и \(\Delta, \ell, \ell' \). Эти параметры собираются в пары \(u_+ \) и \(u_- \), которые сейчас выступают аналогами \(u_+ \) и \(u_- \) из предыдущего параграфа

\[
\begin{align*}
\mathbf{u}_+ &\equiv (u_+, \ell) = \left(u + \frac{\Delta - n}{2}, \ell \right) ; \quad \mathbf{u}_- \equiv (u_-, \ell) = \left(u - \frac{\Delta}{2}, \ell \right).
\end{align*}
\]

Конформный оператор \(L(u) \) имеет явный вид

\[
\begin{equation}
L(u_+, u_-) = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix} \cdot \begin{pmatrix} u_+ \cdot 1 + S(\ell) & p \\ 0 & u_- \cdot 1 + S(\ell) \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -x & 1 \end{pmatrix},
\end{equation}
\]

и определяющее RLL-соотношение,

\[
R_{12}(u - v) L_1(u_+, u_-) L_2(v_+, v_-) = L_1(v_+, v_-) L_2(u_+, u_-) R_{12}(u - v),
\]

где (5.90)

\[
\begin{align*}
L_1(u_+, u_-) &= \begin{pmatrix} 1 & 0 \\ x_1 & 1 \end{pmatrix} \cdot \begin{pmatrix} u_+ \cdot 1 + S_1(\ell_1) & p_1 \\ 0 & u_- \cdot 1 + S_1(\ell_1) \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -x_1 & 1 \end{pmatrix}, \\
L_2(v_+, v_-) &= \begin{pmatrix} 1 & 0 \\ x_2 & 1 \end{pmatrix} \cdot \begin{pmatrix} v_+ \cdot 1 + S_2(\ell_2) & p_2 \\ 0 & v_- \cdot 1 + S_2(\ell_2) \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -x_2 & 1 \end{pmatrix}.
\end{align*}
\]

Формулы связи между различными представлениями набора параметров

\[
u_+ = u + \frac{\Delta_1 - n}{2}, \quad u_- = u - \frac{\Delta_1}{2}, \quad v_+ = v + \frac{\Delta_2 - n}{2}, \quad v_- = v - \frac{\Delta_2}{2}
\]

\[
u_+ \equiv (u_+, \ell_1), \quad u_- \equiv (u_-, \ell_1), \quad v_+ \equiv (v_+, \ell_2), \quad v_- \equiv (v_-, \ell_2).
\]

Как и ранее построим R-оператор из базовых блоков \(S^1(u) \), \(S^2(u) \) и \(S^3(u) \), которые подчиняются более простым соотношениям (5.132), (5.133), (5.134) с заменой \((v_+, v_-, u_+, u_-) \rightarrow (v_+, v_-, u_+, u_-)\) и представляют элементарные перестановки на множестве из четырёх пар параметров \(u = (v_+, v_-, u_+, u_-) \).

Начнём с операторов \(S^1 \) и \(S^3 \), которые являются двумя копиями оператора \(S \) заданного уравнением

\[
S L(u_+, u_-) = L(u_-, u_+) S.
\]

Перестановка двух пар \(u_+ \leftrightarrow u_- \) эквивалентна \(u_+ \leftrightarrow u_- \) и \(\ell \leftrightarrow \ell' \), т.е. \(\Delta \leftrightarrow 4 - \Delta \) и \(\ell \leftrightarrow \ell' \). Дифференциальное представление конформной алгебры \(\text{conf}(\mathbb{R}^4) \) параметризуется тремя числами \(\Delta, \ell, \ell' \). Обозначим его как \(\rho^{\Delta, \ell, \ell'} \). Таким образом оператор \(S \) сплетает два представления \(\rho^{\Delta, \ell, \ell'} \sim \rho^{4 - \Delta, \ell, \ell} \). Легко видеть, что значения операторов Казимира

229
(5.28) совпадают для этих двух представлений. Как и в предыдущем параграфе оператор \(S \) имеет ясную интерпретацию с точки зрения теории представлений.

Рассмотрим представление конформной алгебры на пространстве тензорных полей \(\Phi^{\alpha_1...\alpha_{2\ell}}(x) \) типа \((\ell, \tilde{\ell})\), которые симметричны как по набору точечных так и по бесточечных индексов, и \(x \in \mathbb{R}^4 \). Вместо того, чтобы обращаться с многими индексами гораздо удобнее работать с производящей функцией

\[
\Phi(x, \lambda, \tilde{\lambda}) = \Phi^{\alpha_1...\alpha_{2\ell}}(x) \lambda^{\alpha_1} \ldots \lambda^{\alpha_{2\ell}} \tilde{\lambda}_{\tilde{\alpha}_1} \ldots \tilde{\lambda}_{\tilde{\alpha}_{2\ell}},
\]

где \(\lambda \) и \(\tilde{\lambda} \) вспомогательные спиноры. Введём свёртку

\[
F(\lambda, \tilde{\lambda}) * G(\lambda, \tilde{\lambda}) = F(\partial_\lambda, \partial_{\tilde{\lambda}}) G(\lambda, \tilde{\lambda}) \bigg|_{\lambda=0, \tilde{\lambda}=0}
\]

и воспользуемся ею, чтобы переписать сплетающий оператор как интегральный оператор, действующий на производящую функцию

\[
[S \Phi](X) = \int d^4y S(X, Y) * \Phi(Y),
\]

где пространственно-временные координаты и два вспомогательных спинора собраны в одну переменную \(X = (x, \lambda, \tilde{\lambda}) \), \(Y = (y, \eta, \tilde{\eta}) \) и производящая функция обозначена для краткости \(\Phi(X) \).

Определяющее уравнение на оператор \(S \) эквивалентно набору дифференциальных уравнений на его ядро \(S(X, Y) \)

\[
\left(G^{\Delta, \ell, \tilde{\ell}}_Y \right)^T S(X, Y) = G^{\Delta-\Delta, \ell, \tilde{\ell}}_X S(X, Y).
\]

Здесь \(G^{\Delta-\Delta, \ell, \tilde{\ell}}_X \) обозначает генераторы конформной алгебры в представлении \(\rho^{\Delta-\Delta, \ell, \tilde{\ell}}_X \), \(G^{\Delta, \ell, \tilde{\ell}}_Y \) – генераторы в представлении \(\rho^{\Delta, \ell, \tilde{\ell}}_Y \). Спиновая часть \(S_{\mu\nu} \) генераторов Лоренцевых вращений выбрана в виде (5.55)

\[
S_{\mu\nu} = \lambda \sigma_{\mu\nu} \partial_\lambda + \tilde{\lambda} \tilde{\sigma}_{\mu\nu} \partial_{\tilde{\lambda}}.
\]

\(T \) обозначает транспонирование

\[
\int d^4y S(X, Y) * G^{\Delta, \ell, \tilde{\ell}}_Y \Phi(Y) = \int d^4y \left[\left(G^{\Delta, \ell, \tilde{\ell}}_Y \right)^T S(X, Y) \right] * \Phi(Y),
\]

возникающее от интегрирования по частям и учёта свойств свёртки

\[
F(\lambda) * \partial_\lambda G(\lambda) = \lambda F(\lambda) * G(\lambda),
\]

\[
F(\lambda) * \lambda G(\lambda) = \partial_\lambda F(\lambda) * G(\lambda).
\]

После подстановки явных выражений для генераторов в (5.167) получаем набор уравнений
Сдвиги
\[\left(\frac{\partial}{\partial x_\mu} + \frac{\partial}{\partial y_\mu} \right) S(X, Y) = 0 \]

Лоренцевы вращения
\[\left[i \left(y_\nu \frac{\partial}{\partial y_\mu} - y_\mu \frac{\partial}{\partial y_\nu} \right) + \eta \sigma_{\mu\nu} \partial_\eta + \tilde{\eta} \sigma^{\mu\nu} \partial_{\tilde{\eta}} \right] S(X, Y) = \]
\[= \left[i \left(x_\nu \frac{\partial}{\partial x_\mu} - x_\mu \frac{\partial}{\partial x_\nu} \right) + \lambda \sigma_{\mu\nu} \partial_\lambda + \tilde{\lambda} \sigma^{\mu\nu} \partial_{\tilde{\lambda}} \right] S(X, Y) \]

Растяжения
\[\left(x_\mu \frac{\partial}{\partial x_\mu} + y_\mu \frac{\partial}{\partial y_\mu} \right) S(X, Y) = -2 (4 - \Delta) S(X, Y) \]

Конформные бусты
\[\left(-iy^2 \frac{\partial}{\partial y_\mu} + 2i y_\nu y_\mu \frac{\partial}{\partial y_\nu} + 2y_\nu (\eta \sigma^{\nu\mu} \partial_\eta + \tilde{\eta} \sigma^{\nu\mu} \partial_{\tilde{\eta}}) + 2i (4 - \Delta) y_\mu \right) S(X, Y) = \]
\[= \left(ix^2 \frac{\partial}{\partial x_\mu} - 2ix_\nu x_\mu \frac{\partial}{\partial x_\nu} + 2x_\nu (\lambda \sigma_{\nu\mu} \partial_\lambda + \tilde{\lambda} \sigma_{\nu\mu} \partial_{\tilde{\lambda}}) - 2i (4 - \Delta) x_\mu \right) S(X, Y). \]

Этот набор уравнений на ядро \(S \) совпадает с набором уравнений на функцию Грина двух полей типа \((\ell, \dot{\ell})\) и \((\dot{\ell}, \ell)\) в конформной теории поля. Их решение известно [134]
\[S(X, Y) = \frac{1}{(2\ell)!} \frac{1}{(2\dot{\ell})!} \frac{\left(\lambda (x - y) \eta \right)^{2\ell}}{(x - y)^{2(4 - \Delta)}} \left(\lambda (x - y) \tilde{\eta} \right)^{2\dot{\ell}}. \]

В этом параграфе применим сокращённые обозначения
\[\mathbf{x} = \sigma_\mu \frac{x_\mu}{|x|}; \quad \mathbf{x} = \sigma_\mu \frac{x_\mu}{|x|}, \quad (5.168) \]
где \(\frac{x_\mu}{|x|} \) единичный вектор в направлении \(x_\mu \). Выражение для ядра \(S(X, Y) \) даёт явную формулу, описывающую как оператор \(S \) действует на производящую функцию (теневое преобразование [128])
\[[S \Phi](X) = \int \frac{d^4 y \Phi (y, \lambda (x - y), \lambda (x - y))}{(x - y)^{2(4 - \Delta)}}, \]
которая может быть более явно представлена в виде (учитываем, что \(u_- - u_+ = 2 - \Delta \))
\[[S(u_- - u_+ \Phi](X) = \int \frac{d^4 y y^2 (u_- - u_+ + 2)}{y^2 (u_- - u_+ + 2)} \cdot \Phi (x - y, \lambda y, \lambda y) = \int \frac{d^4 y y^2 e^{i y \mathbf{p}}}{y^2 (u_- - u_+ + 2)} \cdot \Phi (x, \mathbf{\lambda y}, \mathbf{\lambda y}), \quad (5.169) \]

231
где \(\hat{p} = i\partial_x \). Эта формула явно показывает схожесть и отличия по сравнению со скалярным случаем. Последнее представление с оператором \(\hat{p} \) аналогично (5.149), но теперь присутствует в добавок действие на спинорные переменные \(\lambda \) и \(\tilde{\lambda} \). Эти спиноры преобразуются матрицами \(y \) и \(y \), и меняются местами: \(\lambda \rightarrow \tilde{\lambda} y; \ \tilde{\lambda} \rightarrow \lambda y \).

Операторы \(S^1 \) и \(S^3 \) действуют на функцию \(\Phi(X_1; X_2) \) аналогичным образом

\[
[S^1(v_+ - v_-)](X_1; X_2) = \int \frac{d^4y \ e^{iy\hat{p}}}{y^{2(v_+ - v_-) + 2}} \Phi(x_1, \tilde{\lambda}_2 y, \lambda_2 y)
\]

\[
[S^3(u_+ - u_-)](X_1; X_2) = \int \frac{d^4y \ e^{iy\hat{p}}}{y^{2(u_+ - u_-) + 2}} \Phi(x_1, \tilde{\lambda}_2 y, \lambda_1 y, \lambda_1 y; X_2).
\]

Чтобы построить оператор \(S^2 \) воспользуемся тем же наблюдением, что и в скалярном случае: его можно получить непосредственно из оператора \(S \) при помощи преобразования дуальности

\[
y \rightarrow p; \ p \rightarrow x_2 - x_1 \equiv x_{21}; \ u_+ \rightarrow v_-; \ u_- \rightarrow u_+.
\]

Замена \(u_+ \rightarrow v_-; \ u_- \rightarrow u_+ \) предполагает соответствующую замену спиноров, так что форма для действия оператора \(S^2 \) на произвольную функцию \(\Phi(X_1; X_2) \) имеет вид

\[
[S^2(v_+ - v_-)](X_1; X_2) = \int \frac{d^4p \ e^{ipx_{21}}}{p^{2(v_+ - v_-) + 2}} \Phi(x_1, \tilde{\lambda}_2 p, \tilde{\lambda}_1; x_2, \lambda_2, \lambda_1 p).
\]

В скалярном случае отсутствует зависимость от \(\lambda_1, \lambda_2, \tilde{\lambda}_1, \tilde{\lambda}_2 \), так что интеграл по \(p \) можно вычислить явно и оператор \(S^2 \) сводится к оператору умножения на функцию \(x_{12}^{v_+ - u_-} \).

Доказательству преобразования дуальности повторяет шаг в шаг скалярный случай. Запишем определяющее уравнение (5.166) для оператора \(S \) в факторизованном виде (5.90)

\[
S \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix} \begin{pmatrix} u_+ \cdot 1 + S^{(t)} & p \\ 0 & u_- \cdot 1 + S^{(t)} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -x & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix} \begin{pmatrix} u_- \cdot 1 + S^{(t)} & p \\ 0 & u_+ \cdot 1 + S^{(t)} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -x & 1 \end{pmatrix} \cdot S.
\]

Используя те же аргументы, что и в предыдущем параграфе, легко видеть, что определяющее уравнение на оператор \(S^2 \)

\[
S^2 L_1(u_+, u_-) L_2(v_+, v_-) = L_1(v_-, u_-) L_2(v_+, u_+) S^2
\]

можно преобразовать к виду

\[
S^2 \begin{pmatrix} 1 & 0 \\ p_1 & 1 \end{pmatrix} \begin{pmatrix} v_- \cdot 1 + S^{(t_2)} & x_{21} \\ 0 & u_+ \cdot 1 + S^{(t_1)} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -p_1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ p_1 & 1 \end{pmatrix} \begin{pmatrix} v_- \cdot 1 + S^{(t_2)} & x_{21} \\ 0 & u_+ \cdot 1 + S^{(t_1)} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -p_1 & 1 \end{pmatrix}.
\]

232
при условии
\[
[S^2, x_1] = [S^2, x_2] = [S^2, u_-] = [S^2, v_+] = 0.
\]
Сравнивая уравнения (5.172) и (5.173), заключаем, что замена
\[
x \rightarrow p_1; \quad p \rightarrow x_{21}; \quad u_+ \rightarrow v_-; \quad u_- \rightarrow u_+
\]
преобразует (5.172) в (5.173). Пользуясь второй формулой в (5.169), которая содержит оператор импульса \(\hat{p} \), и предписанием дуальности (5.174), получаем формулу (5.171) для действия оператора \(S^2(u) \) на производящую функцию \(\Phi(X_1; X_2) \).

Таким образом получено операторное представление элементарных перестановок \(s_1, s_2, s_3: \)
\[
s_1 u = (v_-, v_+, u_+, u_-); \quad s_2 u = (v_+, u_+, v_-, u_-); \quad s_3 u = (v_+, v_-, u_-, u_+),
\]
следуя схеме предыдущего параграфа. Соответствующие соотношения Джоцкера устроены намного сложнее по сравнению со скалярным случаем. Первое тройное соотношение
\[
S^4(a) S^2(a + b) S^1(b) = S^2(b) S^1(a + b) S^2(a)
\]
имеет явный вид
\[
\int \frac{d^4z d^4y e^{iz\hat{p}_2 e^{i\hat{p}_2 k x_{21} e^{i\hat{p}_2 k x_1}}}}{z^{2(a+2)} k^{2(a+b+2)} y^{2(b+2)}} \cdot \Phi(x_1, \lambda_2 z \bar{k}, \lambda_1; x_2, \lambda_1 k y, \lambda_2 z y) = \]
\[
= \int \frac{d^4q d^4y d^4k e^{i\hat{q} k x_{21} e^{i\hat{q} y \hat{p}_2 e^{i\hat{q} k x_1}}}}{q^{2(b+2)} y^{2(a+b+2)} k^{2(a+2)}} \cdot \Phi(x_1, \lambda_2 k \bar{y}, \lambda_1; x_2, \lambda_1 q y, \lambda_2 q k),
\]
а второе тройное соотношение
\[
S^3(a) S^2(a + b) S^3(b) = S^2(b) S^3(a + b) S^2(a)
\]
эквивалентно схожему интегральному соотношению
\[
\int \frac{d^4z d^4y d^4k e^{iz\hat{p}_1 e^{i\hat{p}_1 k x_{21} e^{i\hat{p}_1 k x_1}}}}{z^{2(a+2)} k^{2(a+b+2)} y^{2(b+2)}} \Phi(x_1, \lambda_1 z \bar{y}, \lambda_2 k \bar{y} y; x_2, \lambda_2, \lambda_1 k y) = \]
\[
= \int \frac{d^4q d^4y d^4k e^{i\hat{q} k x_{21} e^{i\hat{q} y \hat{p}_1 e^{i\hat{q} k x_1}}}}{q^{2(b+2)} y^{2(a+b+2)} k^{2(a+2)}} \Phi(x_1, \lambda_1 q \bar{k}, \lambda_2 q \bar{y} y; x_2, \lambda_2, \lambda_1 \bar{y} k).
\]
Оба предыдущих интегральных соотношения эквивалентны обобщению скалярного операторного соотношения звезда-треугольник (5.160)

233
\[
\frac{\hat{p}^{\mu_1} \cdots \hat{p}^{\mu_m}}{\hat{p}^{2(a+m)}} \frac{A_{\mu_1\nu_1} \cdots A_{\mu_m\nu_m}}{x^{2(a+b+m)}} \frac{\hat{p}^{\nu_1} \cdots \hat{p}^{\nu_m}}{\hat{p}^{2(b+m)}} = \frac{x^{\mu_1} \cdots x^{\mu_m}}{x^{2(a+b+m)}} \frac{A_{\mu_1\nu_1} \cdots A_{\mu_m\nu_m}}{\hat{p}^{2(a+b+m)}} \frac{x^{\nu_1} \cdots x^{\nu_m}}{x^{2(a+m)}} \tag{5.177}
\]

где \(m = 0, 1, 2, \ldots \) и матрицы \(A \) обладает свойствами \(A_{\mu\nu} A^\nu_\lambda = 0 \); \(A_{\nu\mu} A^\mu_\lambda = 0 \). Эквивалентность соотношений (5.175), (5.176) и (5.177) и справедливость соотношения (5.177) проверено в следующем параграфе.

Соотношения Кокстера (5.175) и (5.176) служат основными соотношениями, позволяющими проверить соотношение Янга–Бакстера для общего R-оператора, построенного из элементарных блоков,

\[
[R_{12} \Phi](X_1; X_2) = \int \frac{d^4q d^4k d^4y d^4z}{q^2(u_1-\nu_1+2)z^2(u_1-\nu_2+2)y^2(u_1-\nu-2)k^2(u_1-\nu_2+2)} e^{i(q+k)z_1} e^{i(k-y)z} \cdot \Phi(x_1 - y, \lambda_1 z, \lambda_2 \eta; x_2 - z, \lambda_1 q, \lambda_2 \eta k). \tag{5.178}
\]

В завершении параграфа следует отметить, что для конформной альгебры so(5, 1) 4-мерного евклидова пространства введены соотношения звезда-треугольник (5.175) и (5.176) для общих представлений типа \(\rho_{\Delta, \ell, \ell} \), учитывающих спиновые степени свободы, т.е. предложено обобщение скалярного соотношения звезда-треугольник на случай пропагаторов частиц с ненулевым спином, числитель которых содержит нетривиальные проекторы на спиновые состояния. Другие обобщения скалярного соотношения звезда-треугольник и соотношения звезда-треугольник с \(\gamma \)-матрицами и пропагаторами частиц с ненулевым спином были рассмотрены в работах [80, 135] и [137]. Интегрируемые модели типа [36, 69–71], связанные со спинорной R-матрицей (5.178) и спинорным соотношением звезда-треугольник (5.175) и (5.176), являются новыми.

5.5. Доказательство соотношения звезда-треугольник

Далее проверим тождества (5.175) и (5.176), которые являются основой предложенной конструкции R-оператора. Первое соотношение (5.175) можно записать в виде операторного тождества

\[
\int \frac{d^4z d^4k d^4y}{z^2(a+2)k^2(a+b+2)y^2(a+2)} e^{i(z + k)x_1} e^{i(y + \eta)z} = \int \frac{d^4q d^4k d^4y}{q^2(a+2)k^2(a+b+2)y^2(a+2)} e^{i(q + k)x_21} e^{i(y + \eta)z}, \tag{5.179}
\]

а второе (5.176) как

\[
\int \frac{d^4z d^4k d^4y}{z^2(a+2)k^2(a+b+2)y^2(a+2)} e^{i(z + k)x_1} e^{i(y + \eta)z} = \int \frac{d^4z d^4k d^4y}{z^2(a+2)k^2(a+b+2)y^2(a+2)} e^{i(z + k)x_1} e^{i(y + \eta)z}.
\]

234
где использованы сокращённые обозначения (5.168). В скалярном случае \(\ell_1 = \ell_2 = \hat{\ell}_1 = \hat{\ell}_2 = 0 \) спинорные переменные пропадают из (5.179) и (5.180), и соответствующие интегралы могут быть легко вычислены явно. Следовательно эти тождества сводятся к (5.159).

Оба предыдущих соотношения эквивалентны производящему интегральному тождеству

\[
\int d^4 z d^4 k \left(\frac{(x-z) A (y-z) e^{-i k [z+y C(x-z)]}}{(x-z)^{2a} k^{2b} (y-z)^{2c}} \right) = \frac{1}{(x-y)^{2b}} \int d^4 k d^4 p \frac{(p A k)^m e^{-i p [z+y C(x-z)]}}{k^{2a} p^{2c}} (5.181)
\]

при условии, что параметры подчинены условию уникальности

\[
a + c - b = 2 + m , \quad m = 0, 1, 2, \ldots .
\] (5.182)

Здесь \(\alpha, \beta \) числовые параметры, матрицы \(A, B, C \) обладают свойствами

\[
A_{\mu\nu} A_{\lambda} = A_{\nu\mu} A_\lambda = 0 ; \quad B_{\mu\nu} B_{\lambda} = B_{\nu\mu} B_\lambda = 0 ; \quad C_{\mu\nu} C_{\lambda} = C_{\nu\mu} C_\lambda = 0 ;
\]

\[
A_{\mu\nu} + A_{\nu\mu} = 2 g_{\mu\nu} \text{tr} A ; \quad B_{\mu\nu} + B_{\nu\mu} = 2 g_{\mu\nu} \text{tr} B ; \quad C_{\mu\nu} + C_{\nu\mu} = 2 g_{\mu\nu} \text{tr} C ;
\] (5.183)

\[
B_{\mu\nu} C_{\nu\lambda} + B_{\nu\lambda} C_{\mu\nu} = 2 g_{\mu\lambda} \text{tr} BC ; \quad A_{\mu\nu} B_{\nu\lambda} = B_{\nu\mu} A_{\lambda\nu} ; \quad A_{\mu\nu} C_{\nu\lambda} = C_{\mu\nu} A_{\lambda\nu},
\]

где след нормирован условием \(\text{tr}(\mathbb{I}) = 1 \). Также использованы сокращённые обозначения

\[
\langle x M y \rangle = x_\mu y_\nu M_{\mu\nu}.
\]

Чтобы получить (5.179), надо выбрать в (5.181)

\[
\left(\tilde{\lambda}_2 \tilde{\sigma}_\mu \tilde{\sigma}_\nu \tilde{\eta}_2 \right) = A_{\mu\nu} ; \quad (\lambda_1 \sigma_\mu \tilde{\sigma}_\nu \eta_2) = B_{\mu\nu} ; \quad (\lambda_2 \tilde{\sigma}_\mu \sigma_\nu \eta_1) = C_{\mu\nu} ; \quad m = 2 \hat{\ell}_2
\]

и применить \(\partial^2 \alpha^2, \partial^2 \beta^2 \big|_{\alpha=\beta=0} \). Чтобы получить (5.180), выбираем в (5.181)

\[
(\lambda_1 \sigma_\mu \tilde{\sigma}_\nu \eta_1) = A_{\mu\nu} ; \quad \left(\tilde{\lambda}_2 \tilde{\sigma}_\mu \tilde{\sigma}_\nu \tilde{\eta}_2 \right) = B_{\mu\nu} ; \quad \left(\lambda_1 \tilde{\sigma}_\mu \sigma_\nu \tilde{\eta}_2 \right) = C_{\mu\nu} ; \quad m = 2 \hat{\ell}_1
\]

и применяем \(\partial^2 \alpha^2, \partial^2 \beta^2 \big|_{\alpha=\beta=0} \). Используя (5.17) и тождество Фирца \(\sigma_\mu \otimes \tilde{\sigma}_\nu = 2 \mathbb{P} \) несложно убедиться, что предыдущие выражения для матриц \(A, B, C \) удовлетворяют (5.183).

Таким образом наша цель в том, чтобы доказать (5.181). Это будет сделано в два шага. На первом шаге выполняется некоторая замена переменных, которая позволяет убрать матрицы \(B \) и \(C \) из (5.181), что ведёт к интегральному соотношению эквивалентному операторному тождеству (5.177). На втором шаге доказывается (5.177).
Рассмотрим интеграл в правой части (5.181)
\[
\int d^4k d^4p \frac{(p \cdot A k)^m e^{i p \cdot [x+\alpha B(x-y)]} e^{-i \cdot (k \cdot [y+\beta C(y-x)])}}{k^{2a} p^{2c}} =
\]
\[
= (\partial_{w_1} A \partial_{w_2})^m \int d^4k d^4p \frac{e^{i p \cdot [x+w_1+\alpha B(x-y)]} e^{-i \cdot (k \cdot [y+w_2+\beta C(y-x)])}}{k^{2a} p^{2c}}
\]
осуществим преобразование Фурье (здесь \(a' \equiv 2-a, \ b' \equiv 2-b, \ c' \equiv 2-c\))
\[
= 4^{a'+c'} \pi^4 \frac{\Gamma(a') \Gamma(c')}{\Gamma(a) \Gamma(c)} \langle \partial_{w_1} A \partial_{w_2} \rangle^m \frac{1}{[x+w_1+\alpha B(x-y)]^{2a'} [y+w_2+\beta C(y-x)]^{2c'}}
\]
и выполним дифференцирование
\[
= 4^{a'+c'+m} \pi^4 \frac{\Gamma(a' + m) \Gamma(c' + m)}{\Gamma(a) \Gamma(c)} \langle \partial_{w_1} A \partial_{w_2} \rangle^m \frac{(XAY)^m}{[x+\alpha B(x-y)]^{2(a'+m)} [y+\beta C(y-x)]^{2(a'+m)}}.
\]
Далее введём новые переменные, чтобы поглотить матрицы \(B\) and \(C\)
\[
X \equiv x + \alpha B(x-y); \ Y \equiv y + \beta C(y-x).
\]
(5.184)
Таким образом \(X - Y = S \cdot (x-y)\), где
\[
S = 1 + \alpha B + \beta C.
\]
(5.185)
Используя свойства (5.183) легко проверить, что
\[
S \cdot S^T = \lambda \cdot 1; \ \lambda = 1 + 2\alpha \text{tr} B + 2\beta \text{tr} C + 2\alpha\beta \text{tr} BC,
\]
(5.186)
следовательно
\[
(X - Y)^2 = \lambda \cdot (x-y)^2,
\]
и правая часть (5.181) принимает вид
\[
4^{b'} \pi^4 \lambda^b \frac{\Gamma(a' + m) \Gamma(c' + m)}{\Gamma(a) \Gamma(c)} \frac{(XAY)^m}{X^{2(a'+m)}(X-Y)^{2b}Y^{2(a'+m)}}.
\]
(5.187)
Далее обратимся к левой части (5.181), где сдвинем переменные интегрирования
\[
\int d^4z d^4k \frac{\langle (z-x+y) A z \rangle^m e^{-i \cdot (k \cdot [z+y+\alpha B z+\beta C(z-x+y)])}}{(x-y-z)^{2a} k^{2b} z^{2c}} =
\]
и выполним преобразование Фурье
\[
= 4^{b'} \pi^2 \Gamma(b') \frac{\Gamma(b)}{\Gamma(b)} \int d^4z \frac{\langle (z-x+y) A z \rangle^m}{(x-y-z)^{2a} \langle z+y+\alpha B z+\beta C(z-x+y)^{2b} z^{2c}}.
\]
236
Далее заменим переменные интегрирования \(Z = S \cdot z \) (5.185) в предыдущем интеграле и введём переменные \(X \) и \(Y \) (5.184) вместо \(x \) и \(y \). Отметим, что \(X - Y + Z = S \cdot (x - y + z) \), поэтому виду (5.186)

\[
Z^2 = \lambda \cdot z^2 \ ; \ (X - Y - Z)^2 = \lambda \cdot (x - y - z)^2.
\]

Из (5.186) следует, что Якобиан линейной замены равен \(|\det S| = \lambda^2 \). При помощи свойств матрицы \(A, B, C \) (5.183) легко проверить, что \(S \cdot A \cdot S^T = \lambda \cdot A \), и следовательно

\[
(z - x + y) A z = (Z - X + Y) S^{-1T} A S^{-1} Z = \frac{1}{\lambda} \cdot (Z - X + Y) A Z.
\]

В итоге левая часть (5.181) принимает вид

\[
4^b \pi^2 \frac{\Gamma(b'/2)}{\Gamma(b)} \lambda^{a+b-2-m} \int d^4 Z \frac{\langle (Z - X + Y) A Z \rangle^m}{(X - Y - Z)^{2a}(Z + Y)^{2b} Z^{2c}}.
\]

Окончательно приравнивая преобразованные левые и правые части (5.187) и (5.188), выполняя сдвиг переменных интегрирования в (5.188) и воспользовавшись соотношением уникальности (5.182), получаем, что (5.181) эквивалентно

\[
\int d^4 Z \frac{\langle (Z - X) A (Z - Y) \rangle^m}{(X - Z)^{2a} Z^{2b}(Z - Y)^{2c}} = \pi^2 \frac{\Gamma(a' + m) \Gamma(b') \Gamma(c' + m)}{\Gamma(a) \Gamma(b') \Gamma(c)} \frac{(X A Y)^m}{X^{2(c' + m)}(X - Y)^{2b} Y^{2(a' + m)}},
\]

где \(a + c - b = 2 + m \).

Соотношение (5.189) является интегральной формой операторного тождества (5.177), точно так же как тождество (5.161) служит интегральной формой скалярного операторного соотношения звезда-треугольник (5.160).

Теперь установим справедливость соотношения (5.189). Для начала вычислим интеграл

\[
I(x, y) \equiv \int d^4 z \frac{\langle (z - x) A z \rangle^m}{(x - z)^{2a}(z - y)^{2b} z^{2c}}.
\]

При помощи преобразования инверсии как внешних переменных, так и переменных интегрирования,

\[
x \rightarrow \frac{x}{x^2} \ ; \ y \rightarrow \frac{y}{y^2} \ ; \ z \rightarrow \frac{z}{z^2} \ ; \ d^4 z \rightarrow d^4 z \frac{dz^2}{x^2} \ ; \ (x - z)^2 \rightarrow \frac{(x - z)^2}{x^2 z^2} \ ; \ (z - y)^2 \rightarrow \frac{(z - y)^2}{z^2 y^2}
\]

\[
\langle (z - x) A z \rangle \rightarrow \langle \left(\frac{z}{z^2} - \frac{x}{x^2} \right) A \frac{x}{x^2} \rangle = \left(\frac{x A(x - z)}{x^2 z^2} \right).
\]

Выполняя эти преобразования, учили свойства матрицы \(A \) (5.183). Благодаря условию уникальности (5.182) преобразованный интеграл принимает вид

\[
I \left(\frac{x}{x^2}, \frac{y}{y^2} \right) = x^{2a} y^{2b} \int d^4 z \frac{\langle \left(\frac{z}{z^2} - \frac{x}{x^2} \right) A (x - z) \rangle^m}{(x - z)^{2a} (z - y)^{2b}}.
\]

237
Чтобы вычислить предыдущий интеграл, воспользуемся формулой для свёртки двух скалярных пропагаторов

\[\int \mathrm{d}^4z \frac{1}{(x - w - z)^{2(a - m)}(z - y)^{2b'}} = \pi^2 \frac{\Gamma(a' + m) \Gamma(b) \Gamma(c')}{\Gamma(a - m) \Gamma(b') \Gamma(c)} \frac{1}{(x - y - w)^{2c'}} \]

и применим к ней операцию \(\left\langle \frac{x}{x^2} A \partial_w^m \right\rangle \bigg|_{w=0} \). Таким образом вычислим интеграл

\[I \left(\frac{x}{x^2}, \frac{y}{y^2} \right) = \pi^2 \frac{\Gamma(a' + m) \Gamma(b) \Gamma(c' + m)}{\Gamma(a) \Gamma(b') \Gamma(c)} x^{2a} y^{2b} \frac{\left(\frac{x}{x^2} A (x - y) \right)^m}{(x - y)^{2(c' + m)}}. \]

(5.190)

Теперь чтобы получить \(I(x, y) \), выполним вновь преобразование инверсии внешних переменных

\[x \rightarrow \frac{x}{x^2} ; \quad y \rightarrow \frac{y}{y^2} ; \quad (x - y)^2 \rightarrow \frac{(x - y)^2}{x^2 y^2} ; \quad \left(\frac{x}{x^2} A (x - y) \right) \rightarrow \left(\frac{y}{y^2} A (y - x) \right) \]

в ответе для интеграла (5.190)

\[I(x, y) = \pi^2 \frac{\Gamma(a' + m) \Gamma(b) \Gamma(c' + m)}{\Gamma(a) \Gamma(b') \Gamma(c)} \frac{\left(y - x \right) A y^m}{\left(y - x \right)^{2(c' + m)} x^{2b} y^{2(c' + m)}}. \]

(5.191)

Для завершения доказательства заметим, что (5.189) совпадает с (5.191) после замены \(x \rightarrow X - Y \), \(y \rightarrow -Y \).

5.6. Заключение

В качестве заключения к этой и предыдущей главам перечислим открытые проблемы и упомянем возможные пути их решения. Следуя аналогии с конструкцией \(R \)-оператора для алгебр ранга один, удалось построить общий \(R \)-оператор для конформной алгебры в случае произвольной размерности пространства \(n \) для представлений на скалярных полях и в случае 4-мерного Евклидова пространства для представлений на тензорных полях произвольного ранга. Естественным образом возникает вопрос, возможно ли для произвольной размерности пространства \(n \) построить общий \(R \)-оператор для представлений с нетривиальной спиновой частью? На эту же проблему можно взглянуть под другим углом, находясь на уровне \(L \)-оператора. Предложенный \(L \)-оператор для конформной алгебры, который удовлетворяет RLL-соотношению со спинорной \(R \)-матрицей, соответствует тем же типам представлений, т.е. скалярные в \(n \)-мерии и с нетривиальной спиновой частью в 4-мерии. Таким образом естественно ожидать, что можно достигнуть общего, только разрешив проблему как на уровне \(L \), так и \(R \)-оператора.
Что касается L-оператора, то, как показано в главе 4, он служит нетривиальным представлением введенного в главе 5 Янгиана для ортогональных алгебр Ли, т.е. квадратичной алгебры, заданной спинорной R-матрицей. Таким образом задача найти обобщение конформного L-оператора для представлений на тензорных полях в n-мерии равносильна поиску новых представлений Янгиана. Отсюда следует, что L-оператор для таких представлений уже не будет линейным по генераторам алгебры в квантовом пространстве и не будет аддитивно зависеть от спектрального параметра, а будет содержать квадратичные и старшие комбинации генераторов и нелинейную зависимость от спектрального параметра. Вычисления показывают, что модификация L-оператора за счёт введения квадратичных комбинаций генераторов и квадратичной зависимости от спектрального параметра вновь приводит к условию на генераторы в квантовом пространстве, что соответствует ограничению на представление. Возможно, что избавиться от таких ограничений получится лишь при учёте бесконечного числа степеней генераторов.

Первое техническое препятствие для обобщения предложенной конструкции R-оператора на произвольные представления выражается в том, чтобы найти билокальный сплетатель S^2. Сплетающие операторы эквивалентных представлений хорошо известны для всех случаях; их ядра совпадают с двухточечным коррелятором конформной теории поля. В описанных в этой главе случаях сплетатель S^2 удалось найти благодаря преобразованию дуальности над локальным сплетающим оператором, что возможно лишь при поэлементном коммутировании матриц из спиновых генераторов S и S̅, что верно лишь для n = 4 и соответствует расщеплению so(6, C) = so(3, C) + so(3, C). Однако, даже если бы удалось найти оператор S^2, априори не очевидно, что будет выполнено соотношение звезда-треугольник (или уравнение Янга–Бакстера). Пытаясь искать обобщения, кажется естественным стараться с соотношения звезда-треугольник. Известно, что в n-мерии, помимо скалярного соотношения, справедливо соотношение звезда-треугольник для Дираковских полей, что два из трёх пропагаторов содержат в числите свертку протекающего через них импульса с гамма-матрицами Дирака. Было бы интересно проверить, порождает ли это интегральное тождество новую интегрируемую систему. Возможно, что для такого обобщения не обойтись приёмами, разработанными для алгебр ранга один, а нужно выполнять систематическое построение, работая с главной серией представлений ортогональной группы, и использовать конструкцию индуцированных представлений, как в случае группы SL(N, C) [56].
Ещё одно замечание связано с выбором некомпактных форм алгебры. В этой главе ограничились конформной алгеброй Евклидова пространства, чтобы избежать проблемы с нулевыми модами сплетающих операторов. Перенос полученных результатов относительно R-оператора на пространство Мinkовского требует дополнительного исследования.

Помимо конформного L-оператора, заданного на неприводимом представлении, в этой главе также появился L-оператор для ортогональной алгебры Ли, который является приводимым и содержит набор неприводимых представлений. Такой L-оператор весьма схож с L-оператором в представлении Йордана-Швингера для алгебры $sl(N)$, для которого R-оператор имеет чрезвычайно простой вид [138]. Было бы интересно найти такой R-оператор и для ортогональных алгебр Ли.

Следующий важный шаг в исследовании интегрируемой системы состоит в построении Q-операторов Бакстера. Это видимо не сложно сделать для 4-мерного пространства, используя известную конструкцию Q-операторов для $SL(4, \mathbb{C})$ и изоморфизм с конформной группой, однако при этом не все шаги конструкции Лоренц-ковариантны, что кажется сильным недостатком. Было бы естественно попытаться построить Q-операторы Лоренц-ковариантным образом для представлений на скалярных полях. Можно попытаться повторить вывод уравнения Бакстера при помощи диагонального преобразования из главы 1, однако на этом пути возникает техническое препятствие, связанное с тем, что возникают не верхнетреугольные, а блочно верхнетреугольные матрицы с операторными блоками на диагонали. Из такого соотношения не следует напрямую уравнение Бакстера как в случае алгебр ранга один, однако размерность задачи понижается на две единицы. Учитывая отмеченную в этой главе рекуррентную по размерности структуру конформного L-оператора, а также рекуррентное решение спиновой цепочки при помощи иерархического анзатца Бете для ортогональных алгебр [57], есть надежда, что указанный путь может привести к уравнению Бакстера.

Ещё одно возможное направление развития связано с переносом конструкции L-оператора и R-оператора на симплектическую серию алгебр Ли.
Приложение А

Специальные функции для тригонометрической и эллиптической деформаций

В Приложении собраны определения и необходимые свойства специальных функций, использованных в основной части.

Основной функцией при описании тригонометрической деформации служит стандартное q-произведение, параметризованное комплексным числом q ($|q| < 1$),

$$(x; q^2) = \prod_{i=0}^{\infty} (1 - x q^{2i}) , \quad (x; q^2)_k = \prod_{i=0}^{k-1} (1 - x q^{2i}). \quad (A.1)$$

q-биноимальная формула для бесконечного произведения при $|z| < 1$

$$\sum_{n\geq0} \frac{(a; q^2)_n}{(q^2; q^2)_n} z^n = \frac{(a z; q^2)}{(z; q^2)} \quad (A.2)$$

приводит к разложениям в ряд

$$(x; q^2) = \sum_{k\geq0} \frac{(-1)^k q^{k(k-1)}}{(q^2; q^2)_k} x^k , \quad (x; q^2)^{-1} = \sum_{k\geq0} \frac{x^k}{(q^2; q^2)_k}. \quad (A.3)$$

Если операторы u и v образуют пару Вейля: $u v = q^2 v u$, то имеет место формула Шютценбергера и соотношение пентагона $[103, 139, 140]$

$$(u; q^2) (v; q^2) = (u + v; q^2), \quad (A.4)$$

$$(v; q^2) (u; q^2) = (u; q^2) (-v u; q^2) (v; q^2). \quad (A.5)$$

При работе с модулярным дублем используем обозначения

$$q = e^{i\pi \tau} \quad ; \quad \bar{q} = e^{i\pi/\tau} \quad ; \quad \tau = \frac{\omega'}{\omega} \quad ; \quad \omega = \omega' + \frac{1}{4} \quad ; \quad \omega'' = \omega + \omega' \quad ; \quad \beta = \frac{\pi}{12} \left(\frac{\omega'}{\omega} + \frac{\omega}{\omega'} \right).$$

Некомпактный квантовый дилогарифм $\gamma(x)$ можно представить в интегральной форме (3.6) при произвольном параметре q, а при $|q| < 1$ он принимает вид бесконечного произведения

$$\gamma(z) = \left(\frac{e^{-\frac{i\pi}{4}(z-\omega'')} \cdot e^{2\pi i \omega'/\omega}}{e^{-\frac{i\pi}{4}(z+\omega'')} \cdot e^{-2\pi i \omega'/\omega'}} \right). \quad (A.6)$$

Эта функция удовлетворяет паре конечно-разностных уравнений

$$\frac{\gamma(z + \omega')}{\gamma(z - \omega')} = 1 + e^{-i\pi z} \quad ; \quad \frac{\gamma(z + \omega)}{\gamma(z - \omega)} = 1 + e^{-i\pi z}, \quad (A.7)$$

241
и для него имеет место формула отражения

$$
\gamma(z) \gamma(-z) = e^{i\pi \beta} e^{i\pi z^2}.
$$

(А.8)

Преобразование Фурье квантового дилогарифма выражается через него же,

$$
\int_{-\infty}^{+\infty} dt \frac{e^{-2\pi i tz}}{\gamma(\omega'' - t)} = c \cdot \gamma(z - \omega''), \quad c = e^{i\beta + \frac{\pi i}{2}}.
$$

(А.9)

Функция $D_a(z) = e^{-2\pi i a z} \frac{\gamma(z+a)}{\gamma(z-a)}$ (3.7) чётна ввиду формулы отражения (А.8)

$$
D_a(z) = D_a(-z) ; \quad D_a(z) D_{-a}(z) = 1
$$

(А.10)

и удовлетворяет паре конечно-разностных уравнений

$$
\frac{D_a(z - \omega')}{D_a(z + \omega')} = \frac{\cos \frac{\pi}{2\omega'}(z - a)}{\cos \frac{\pi}{2\omega'}(z + a)} ; \quad \frac{D_a(z - \omega)}{D_a(z + \omega')} = \frac{\cos \frac{\pi}{2\omega}(z - a)}{\cos \frac{\pi}{2\omega}(z + a)}.
$$

(А.11)

Преобразование Фурье этой функции опять же выражается через неё,

$$
A(a + \omega'') \int_{-\infty}^{+\infty} dt e^{2\pi i tz} D_a(t) = D_{-\omega'' - a}(z) ; \quad A(a) = \gamma(\omega'' - 2a) e^{-\frac{\pi i}{2}(2a - \omega'')^2 - \frac{\pi i}{2} \beta}.
$$

(А.12)

Свёртка двух функций D,

$$
A(a) A(b) \int_{-\infty}^{+\infty} dt D_a(z - t) D_b(t - w) = \delta(z - w) \quad \text{при} \quad a + b = -2\omega''.
$$

(А.13)

Интегральное соотношение звездо-треугольник служит источником для всех других явных ответов для интегралов от произведения квантовых дилогарифмов,

$$
A(a) A(b) A(c) \int_{-\infty}^{+\infty} D_a(z - z_1) D_b(z - z_2) D_c(z - z_3) =

= D_{-\omega'' - a}(z_2 - z_3) D_{-\omega'' - b}(z_3 - z_1) D_{-\omega'' - c}(z_1 - z_2) \quad \text{при} \quad a + b + c = -2\omega''.
$$

(А.14)

Описание эллиптической деформации основано на свойствах тета-функций. В работе использованы стандартные определения тета-функции Якоби $\theta_n(z|\tau)$ ($n = 1, \ldots, 4$) (см. [84, 141]) и введены сокращённые обозначения $\theta_1(z) = \theta_1(z|\tau)$, $\theta_4(z) = \theta_4(z|\tau)$ для тета-функций с квази-периодом τ, а также сокращённые обозначения $(z)_3 = \theta_3(z|\frac{\tau}{2})$, $(z)_4 = \theta_4(z|\frac{\tau}{2})$ для тета-функций с квази-периодом $\frac{\tau}{2}$. Напомним, что первая тета-функция нечётна на $\theta_1(z) = -\theta_1(z)$, тогда как оставшиеся три тета-функции чётны. Нам понадобятся формулы для сдвига тета-функций с квази-периодом $\frac{\tau}{2}$,

$$
(z \pm \frac{\tau}{2})_3 = e^{-\frac{\pi i}{2} + 2\pi i z}(z)_3,
$$

$$
(z \pm \frac{\tau}{2})_4 = -e^{-\frac{\pi i}{2} + 2\pi i z}(z)_4.
$$

(А.15)
Все тета-функции Якоби связаны сдвигами аргумента. К примеру

\[\theta_1(z + \frac{\tau}{2}) = ie^{-\pi iz}e^{-\pi i\theta_1} \theta_4(z). \]

Тета-функции с квази-периодами \(\tau \) и \(\frac{\tau}{2} \) связаны билинейными соотношениями

\[2 \theta_1(x \mp y) = (x)_{4(y)3} - (y)_{4(x)3}, \tag{A.16} \]
\[2 \theta_4(x \mp y) = (x)_{4(y)3} + (y)_{4(x)3}, \]
где введено обозначение \(\theta_a(x \mp y) = \theta_a(x + y) \theta_a(x - y) \). Из (A.16) автоматически следует полезная формула

\[(y), \theta_1(x \mp z) - (x), \theta_1(y \mp z) = (z), \theta_1(x \mp y) \quad \text{при} \quad i = 3, 4. \tag{A.17} \]

Из (A.16) немедленно следуют обратные им формулы, позволяющие перейти к тета-функциям с удвоенным периодом,

\[(x)_3 (y)_{4} = \theta_4(x \pm y) - \theta_1(x \pm y), \tag{A.18} \]
\[(x)_{4(y)3} = \theta_4(x \pm y) + \theta_1(x \pm y). \]

Также имеют место аналогичные формулы для прочих комбинаций тета-функций,

\[(x)_{4(y)3} = \theta_3(x \pm y) - \theta_2(x \pm y), \tag{A.19} \]
\[(x)_{3(y)3} = \theta_3(x \pm y) + \theta_2(x \pm y). \]

Эллиптическая гамма-функция определена в виде двойного бесконечного произведения [45, 142, 143]

\[\Gamma(z|\tau, 2\eta) = \prod_{n,m=0}^{\infty} \frac{1 - e^{2\pi i(\tau(n+1) + 2\eta(m+1) - z)}}{1 - e^{2\pi i(\tau n + 2\eta m + z)}} \tag{A.20} \]

при \(\text{Im} \tau > 0, \text{Im} \eta > 0 \). Она обладает многими примечательными свойствами. Нам потребуется лишь её трансформационные свойства при сдвигах аргумента на один из квази-периодов

\[\Gamma(z + 2\eta) = R(\tau) e^{\pi i z} \theta_1(z) \Gamma(z), \tag{A.21} \]

где \(R(\tau) = -i e^{-\pi \tau} (e^{2\pi i \tau}; e^{2\pi i \tau})^{-1} \) постоянная. Ввиду симметричности квази-периодов \(2\eta \) и \(\tau \) в определении (A.20) ясно, что имеет место аналогичная формула для сдвига аргумента на \(\tau \). Непосредственно из определения (A.20) следует формула отражения

\[\Gamma(z) \Gamma(-z + 2\eta + \tau) = 1. \tag{A.22} \]
1. Е.К. Склянин, Л.А. Тащаджян, Л.Д. Фаддеев, Квантовый метод обратной задачи. I, Теор. Мат. Физ. 40 (1979), 194–220

3. Р.И. Баксерт, Partition function of the eight-vertex lattice model, Ann. Phys. 70 (1972), 193–228

4. Е.К. Склянин, О некоторых алгебраических структурах, связанных с уравнением Янга–Бакстера, Функц. анализ и его прил. 16 (1982), 27–34

10. Д. Чичерин, С. Деркачев, А.П. Исаев, Conformal algebra: R-matrix and star-triangle relation, JHEP 1304 (2013), 020

11. В.О. Тарасов, Л.А. Тащаджян, Л.Д. Фаддеев, Локальные гамильтонианы для интегрируемых квантовых моделей на решетке, Теор. Мат. Физ. 57 (1983), 163–181

244

15. V.V. Bazhanov, Yu.G. Stroganov, *Chiral Potts model as a descendant of the six vertex model*, J. Statist. Phys. 59 (1990), 799–817

245

42. С.Э. Деркачёв, В.П. Спиридонов, *Уравнение Янга–Бакстера, перестановки параметров и эллиптический бета-интеграл*, УМН **68** (2013), 59–106

45. В.П. Спиридонов, *Очерки теории эллиптических гипергеометрических функций*, УМН **63** (2008), no. 3, 3–72

50. A. Rej, F. Spill, *The Yangian of sl(n|m) and the universal R-matrix*, JHEP **1105** (2011), 012

56. С.Э. Деркачёв, А.Н. Манашов, \textit{Общее решение уравнения Янга–Бакстера с группой симметрии SL(n,C)}, Альгебра и Анализ 21 (2009), no. 4, 1–94

65. П.П. Кулиш, Н.Ю. Решетихин, \textit{О GL(3)-инвариантных решениях уравнения Янга–Бакстера и ассоциированных квантовых системах}, Зап. Научн. Сем. ЛОМИ 120 (1982), 92–121

67. I.M. Gel’fand, M.A. Naimark, "Unitary representations of classical groups", Tr. MIAN SSSR 36, Izd. AN SSSR, M.-L., 1950, 3–288

77. J.M. Drummond, J. Henn, V.A. Smirnov, E. Sokatchev, "Magic identities for conformal four-point integrals", JHEP 0701 (2007), 064

249

81. А.Н. Васильев, Ю.М. Письмак, Ю.Р. Хонконен, 1/𝑛-Разложение: расчет индексов η и ν в порядке 1/𝑛² для произвольной размерности, Теор. Мат. Физ. **47** (1981), 291–306

89. В. П. Спиридонов, *Дерево Бэйли для интегралов*, Теор. Мат. Физ. **139** (2004), 104–111

92. В.П. Спиридонов, *Непрерывная биортогональность эллиптической гипергеометрической функции*, Алгебра и Анализ **20** (2008), no. 5, 155–185

250
93. А.Э. Ковалевский, Г.П. Пронько, Q-операторы Бакстера для интегрируемой DST-цепочки, Теор. Мат. Физ. 142 (2005), no. 2, 259–269

94. В.О. Тарасов, O строении квантовых L-операторов для R-матрицы XXZ-модели, Теор. Мат. Физ. 61 (1984), no. 2, 163—173

95. В.О. Тарасов, Неприводимые матрицы монодромии для R-матрицы XXZ-модели и решеточные локальные квантовые гамильтонианы, Теор. Мат. Физ. 63 (1985), no. 2, 175—196

97. А.В. Забродин, Уравнение Хироты и анзац Бете, Теор. Мат. Физ. 116 (1998), 54–100

99. Л.В. Авдеев, А.А. Владимиров, Об исключительных решениях уравнений анзаца Бете, Теор. Мат. Физ. 69 (1986), 163–174

100. Л.Д. Фаддеев, Дискретная серия представлений для модулярного дубля квантовой группы U(q)(sl(2,R)), Функц. анализ и его прил. 42 (2008), 98–104

102. L.D. Faddeev, Current-like variables in massive and massless integrable models, Varenna 1994, Quantum groups and their applications in physics, 117–135

104. А.Ю. Волков, Л.Д. Фаддеев, Квантовый метод обратной задачи на дискретном пространстве-времени, Теор. Мат. Физ. 92 (1992), 207–214

110. Ал.Б. Замоло дчик ов, *Факторизованное рассеяние в асимптотически свободных двухмерных моделях квантовой теории поля*, кандидатская диссертация, Дубна, 1979

111. Н.Ю. Р ешетихин, *Интегрируемые модели квантовых одномерных магнетиков с O(n)- и Sp(2k)-симметрией*, Теор. Мат. Физ. **63** (1985), 347–366

115. А.Н. Васильев, *Функциональные методы в квантовой теории поля и статистике*, Изд-во ЛГУ, Л., 1976

116. А.Н. Васильев, *Квантовополевая ренормгруппа в теории критического поведения и стохастической динамике*, Изд-во ПИЯФ, СПб, 1998

117. А.А. Славиов, Л.Д. Фаддеев, *Введение в квантовую теорию калибровочных полей*, Наука, М., 1988

141. Г. Бейтмен, А. Эрдэйи, *Высшие транцендентные функции: эллиптические и автоморфные функции. Функции Ламе и Матье*, Наука, М., 1967
