Отзыв ведущей организации на диссертационную работу Я.Ю.Коптелова
"Об асимптотике собственных функций абсолютно непрерывного спектра задачи рассеяния нескольких заряженных квантовых частиц", представленную на соискание ученой степени кандидата физико-математических наук по специальности 01.01.03 - "математическая физика"

Диссертационная работа Я.Ю.Коптелова посвящена исследованию координатных асимптотик собственных функций абсолютно непрерывного спектра оператора Шредингера системы нескольких трехмерных заряженных квантовых частиц в рамках так называемого "дифракционного подхода" в задачах рассеяния. Подход был предложен в конце 70-х годов двадцатого века в работах В.С.Буслаева, С.П.Меркурьева и С.П.Саликовой (хотя его элементы использовались и в более ранних работах) и основан на аналогии постановки задачи рассеяния нескольких квантовых частиц и задачи дифракции плоской (искаженной плоской) волны на системе нескольких бесконечных полупрозрачных пересекающихся "экранов" с окрестностями. В этом случае "экраны" представляют из себя геометрическое место точек в конфигурационном пространстве, в которых координаты частиц в парных подсистемах совпадают.

Координатные асимптотики системы нескольких заряженных частиц активно исследовались, начиная с известных работ С.П.Меркурьева, а также А.М.Веселовой в 70-х, 80-х годах двадцатого века. Отметим существенный прогресс, достигнутый в начале-
середине 90-х годов в работах Е.О.Альта и А.Мухамеджанова, описавших структуру старшего члена координатной асимптотики собственных функций абсолютно непрерывного спектра в областях конфигурационного пространства, отвечающих сближениям частиц в парных подсистемах. Тем не менее, полученные формулы не работали в окрестности трехчастичных направлений рассеения вперед и нуждались в уточнении. Уточнения были получены в течение последних 10 лет в работах В.С.Буслаева и С.Б.Левина для случая парных кулоновских потенциалов отталкивания. Отметим также, что, несмотря на значительные достижения, ряд вопросов до работ диссертанта оставался не исследованным. Так, отсутствовало обобщение полученных ранее результатов на случай систем большего числа квантовых частиц и парных потенциалов отталкивания, а также обобщение задачи на случай парных кулоновских потенциалов притяжения. Изучение этих вопросов и является целью диссертации Я.Ю.Коптелова.

Диссертация состоит из двух глав. В первой главе проведено обобщение результатов, полученных ранее при описании координатных асимптотик в рамках "дифракционного подхода" на системы четырех и большего числа одноименно заряженных трехмерных квантовых частиц. Предложен анзац для структуры асимптотики собственных функций абсолютно непрерывного спектра для случая системы п одноименно заряженных квантовых частиц. Доказана теорема о скорости убывания невязки уравнения Шредингера для предложенного анзаца. Показано, что невязка убывает быстрее кулоновского потенциала во всем конфигурационном пространстве с выколотым многочастичным направлением рассеяния вперед. Получена оценка скорости убывания невязки в любой сколь угодно малой угловой окрестности многочастичного направления рассеяния вперед и доказано, что на самом многочастичном направлении рассеяния вперед убывание невязки становится чисто кулоновским.

Во второй главе исследуется координатная асимптотика собственных функций абсолютно непрерывного спектра задачи рассеяния трех заряженных квантовых частиц при наличии парных кулоновских потенциалов притяжения. Методами дифракционного подхода координатная асимптотика собственных функций абсолютно непрерывного спектра строится в областях конфигурационного пространства, отвечающих парным сближениям, в том числе в парах с кулоновским притяжением. В этих областях, отвечающих "почти раздельению переменных", построения ведутся на основе спектрального разложения по собственным функциям оператора Шредингера двухчастичной подсистемы. При этом удается определить совокупный вклад бесконечного кулоновского дискретного спектра парного оператора Шредингера в структуру трехчастичных собственных функций абсолютно непрерывного спектра. Этот результат несомненно является новым и имеющим не только теоретическое, но и прикладное значение.

Представленная диссертация является самостоятельным законченным фундаментальным исследованием и соответствует специальности 01.01.03 - математическая физика. Поставленные задачи полностью решены. Все выносимые на защиту результаты диссертации являются новыми. Результаты диссертации опубликованы в четырех печатных работах. Они являются статьями в реферируемых журналах, входящих в "Перечень ведущих рецензируемых научных журналов и изданий, выпускаемых в РФ, в
которых должны быть опубликованы основные научные результаты диссертаций на соискание ученой степени кандидата наук", утвержденный ВАК РФ. Все четыре статьи индексируются в базах данных Web of Science и Scopus. Результаты диссертации докладывались на крупных международных конференциях и ряда научных семинаров. Автореферат соответствует содержанию диссертации.

Содержащиеся в диссертации результаты могут быть использованы специалистами по математической физике, теории рассеяния, теории дифференциальных уравнений, работающими в Санкт-Петербургском государственном университете, Московском государственном университете им. М.В.Ломоносова, Математическом институте им. В.А.Стеклова РАН, Санкт-Петербургском отделении математического института им. В.А.Стеклова РАН, Институте машиноведения РАН.

Итак, работа Ярослава Юрьевича Коптелова "Об асимптотике собственных функций абсолютно непрерывного спектра задачи рассеяния нескольких заряженных квантовых частей" удовлетворяет всем требованиям ВАК, предъявляемым к кандидатским диссертациям, а ее автор заслуживает присуждения ученой степени кандидата физико-математических наук по специальности 01.01.03 - математическая физика.

Диссертация и отзыв были обсуждены и одобрены на семинаре Лаборатории математических методов механики материалов Института проблем машиноведения РАН.

Заведующий Лабораторией математических методов механики материалов,
доктор физ.-мат. наук, профессор

А.Б. Фрейдин

Федеральное государственное бюджетное учреждение науки
Институт проблем машиноведения Российской академии наук
В.О., Большой проспект. д. 61, Санкт-Петербург, 199178
Тел.: (812)-321-4778; факс: (812)-321-4771; www.ipme.ru