ДЕМЧЕНКО Максим Николаевич

ДИНАМИЧЕСКАЯ ТРЕХМЕРНАЯ ОБРАТНАЯ ЗАДАЧА ДЛЯ СИСТЕМЫ МАКСВЕЛЛА

специальность 01.01.03 — математическая физика

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук

 ${
m Cahkt-} \Pi$ етербург 2011

Работа выполнена в лаборатории математических проблем геофизики Учреждения Российской академии наук Санкт-Петербургского отделения Математического института им. В.А. Стеклова РАН.

Научный руководитель:
доктор физико-математических наук
БЕЛИШЕВ Михаил Игоревич
Официальные оппоненты:
доктор физико-математических наук, доцент БЛАГОВЕЩЕНСКИЙ Александр Сергеевич,
доктор физико-математических наук, доцент
ПЕСТОВ Леонид Николаевич
Ведущая организация:
Санкт-Петербургский государственный университет аэрокосмического
приборостроения
Защита состоится "" 2011 года в часов на
заседании диссертационного совета Д 002.202.01 в Санкт-Петербургском
отделении Математического института им. В.А. Стеклова РАН по ад-
ресу: 191023, Санкт-Петербург, наб. р. Фонтанки, д. 27, к. 311.
С диссертацией можно ознакомиться в библиотеке Санкт-Петербург-
ского отделения Математического института им. В.А. Стеклова РАН.
Автореферат разослан "" 2011 года.
Ученый секретарь диссертационного совета,
доктор физико-математических наук
А.Ю. Зайцев

Общая характеристика работы

Актуальность темы. Тема диссертации – трехмерная обратная задача электродинамики в оптимальной по времени постановке. Задача представляет интерес с теоретической точки зрения, а также имеет ряд важных приложений в геоэлектрике, зондировании атмосферы (см. [1]).

Цель работы. В работе рассматривается система Максвелла на компактном ориентированном гладком римановом 3-многообразии $\overline{\Omega}$ со связным краем (символом Ω обозначается внутренняя часть многообразия). Пусть ε , μ – гладкие положительные в $\overline{\Omega}$ функции, представляющие диэлектрическую и магнитную проницаемости среды. Начальнокраевая задача

$$e_{t} = \varepsilon^{-1} \operatorname{rot} h, \quad h_{t} = -\mu^{-1} \operatorname{rot} e, \quad (x, t) \in \Omega \times (0, T),$$

$$e \mid_{t=0} = h \mid_{t=0} = 0,$$

$$e_{\theta} \mid_{\partial \Omega \times [0, T]} = f \tag{1}$$

 $(T>0,\,(\cdot)_{\theta}$ — касательная составляющая вектора на $\partial\Omega)$ описывает электрическое и магнитное поля (соответственно, e(x,t) и h(x,t)) в Ω , индуцированные *граничным управлением* f, которое представляет собой касательное поле на Γ , зависящее от времени $t\in(0,T)$. При достаточно гладком f задача имеет единственное классическое решение $\{e^f,h^f\}$.

Целью работы является решение обратной задачи для системы Максвелла в двух постановках. В первой постановке предполагается, что $\varepsilon=\mu=1$, и требуется восстановить риманово многообразие $\overline{\Omega}$ с точностью до изометрии. Данными обратной задачи служит *onepamop peak-* uuu

$$R^T: f \mapsto -\nu \times h^f \mid_{\partial \Omega \times [0,T]}$$

 $(\nu$ — единичная внутренняя нормаль к границе), описывающий отклик системы на различные управления. Поскольку электромагнитные волны распространяются с конечной скоростью, речь идет о восстановлении некоторого подмножества $\overline{\Omega}$, зависящего от времени граничных измерений (величина T в задаче (1)). Простые кинематические соображения приводят к тому, что оператор реакции R^{2T} определяется приграничным слоем толщины T. В силу этого естественная (оптимальная по времени) постановка обратной задачи состоит в восстановлении этого слоя по R^{2T} .

Во второй постановке обратной задачи Ω будет заданной областью в \mathbb{R}^3 , а ε , μ – неизвестными функциями. Как и в первом случае, по граничным измерениям можно восстановить коэффициенты в приграничном слое оптической толщины T, при этом оптическая метрика определяется скоростью распространения электромагнитных волн:

$$c = (\varepsilon \mu)^{-1/2}. (2)$$

Методика исследований. Для решения обратной задачи электродинамики в работе используется ВС-метод (Boundary Control Method; М.И. Белишев, 1986 г.), основанный на связи обратных задач с теорией граничного управления. Используются результаты геометрии, асимптотических методов в теории распространения волн, теории управления.

В применении ВС-метода первым шагом является построение модели исследуемой динамической системы по данным обратной задачи. Эта модель включает в себя гильбертово пространство, заменяющее пространство состояний системы, и действующий в этом пространстве оператор, который в нашем случае является унитарно эквивалентным оператору Максвелла.

В случае обратной задачи в области используется следующая схема:

- 1. По данным обратной задачи строится модель динамической системы Максвелла.
- 2. Строятся изображения волн, описывающие внутренние состояния системы.
- 3. По изображениям воли определяется скорость, а затем раздельно коэффициенты ε , μ .

В обратной задаче на многообразии с помощью модели строится метрическое пространство, изометричное (недоступному в обратной задаче) исходному риманову многообразию. Точками этого пространства служат пары (γ, τ) , где $\tau \in \mathbb{R}_+$, γ – точка края многообразия. Построенное пространство снабжается структурой гладкого многообразия с помощью функции расстояния: локальными координатами точки служат расстояния до трех фиксированных точек.

Научная новизна. Представленные в работе результаты получены в 2008–2011 годах; все они являются новыми.

Теоретическая и практическая ценность. Работа носит теоретический характер. Ее результаты могут быть использованы в дальнейшем для численного решения динамической обратной задачи для системы Максвелла.

Апробация работы. Результаты работы докладывались на семинаре по теории дифракции (руководитель В.М. Бабич) в Санкт-Петербургском отделении Математического Института РАН им. В.А. Стеклова, на городском семинаре по математической физике (руководитель Н.Н. Уральцева), а также на конференциях: Дни дифракции (ПОМИ РАН, 2009), Международная конференция по спектральной теории (ММИ им. Эйлера, 2010), Дифференциальные уравнения и смежные вопросы (МГУ, 2011).

Публикации. Основные результаты диссертации опубликованы в статьях [6]–[8].

Структура и объем диссертации. Диссертация состоит из введения, пяти глав, разбитых на разделы, приложения и списка литературы. Объем диссертации – 82 страницы. Список литературы содержит 26 наименований.

Основное содержание диссертации

Введение содержит формулировку главного результата, обзор литературы по теме диссертации, а также общее описание ВС-метода, используемого в работе для решения обратной задачи.

Глава 1. Геометрия и функциональные пространства. В главе 1 даны вводные сведения. Символом $\overline{\Omega}$ обозначается компактное ориентированном гладкое риманово 3-многообразие с краем, Ω – внутренняя часть многообразия. Край $\Gamma:=\partial\Omega$ предполагается связным. В разделе 1.1 определены векторные (поточечные и дифференциальные) операции на многообразии. В разделе 1.2 введен оптический метрический тензор h, связанный с исходным метрическим тензором g на римановом многообразии следующим образом

$$h_{mn} = \frac{1}{c^2} g_{mn}, \quad h^{mn} = c^2 g^{mn}.$$

Расстояние между двумя точками в этой метрике – это время, за которое электромагнитная волна от источника в одной точке дойдет до другой.

Также определен эйконал в $\overline{\Omega}$

$$\tau(x) := \operatorname{dist}_c(x, \Gamma).$$

Имеет место включение $\tau \in \operatorname{Lip}(\overline{\Omega})$, так как τ является функцией расстояния до множества. Эйконал удовлетворяет известному уравнению

$$|\nabla \tau| = \frac{1}{c}.\tag{3}$$

Почти всюду в $\overline{\Omega}$ определено векторное поле

$$\nu := c\nabla \tau,\tag{4}$$

удовлетворяющее равенству $|\nu| = 1$ п.в. в $\overline{\Omega}$ в силу (3).

Введем семейство подмножеств Ω

$$\Omega^s := \{ x \in \Omega \,|\, \tau(x) < s \}$$

и эквидистант границы

$$\Gamma^s := \{ x \in \Omega \,|\, \tau(x) = s \},\,$$

где s > 0. Положим

$$T_* := \max_{\Omega} \tau.$$

Ясно, что при $s>T_*$ множество Ω^s пусто.

Сформулируем предположение, при котором доказывается разрешимость обратной задачи в евклидовой области Ω .

Условие 1. Ограниченная область $\Omega \subset \mathbb{R}^3$ имеет гладкую границу, состоящую из одной компоненты связности. Положительное число T удовлетворяет неравенству $T < T_*$. При n.s. $s \in (0,T)$ выполнено $\partial \Omega^s \in \text{Lip.}$ Кроме того, это условие выполнено для s = T.

Введем полугеодезические координаты в Ω с базой на границе. Пусть l_{γ} – геодезическая (относительно оптической метрики), выпущенная из $\gamma \in \Gamma$ ортогонально границе, а $l_{\gamma}[0,\tau]$ – ее сегмент оптической длины $\tau > 0$ (не превосходящей длины l_{γ}), один из концов которого совпадает с γ . Другой конец $l_{\gamma}[0,\tau]$ мы обозначим $x(\gamma,\tau)$. Здесь величина τ

совпадает со значением эйконала в точке $x(\gamma,\tau)$. Если на Γ определены локальные координаты (γ^1,γ^2) , то набор $(\gamma^1(\gamma),\gamma^2(\gamma),\tau)$ называется полугеодезическими координатами точки x.

Однако, не для каждой точки пара (γ, τ) определена однозначно (неоднозначным может быть выбор γ). Чтобы описать такие точки определим множество раздела ω многообразия $\overline{\Omega}$ относительно Γ следующим образом. Для каждого $\gamma \in \Gamma$ определена критическая величина $\tau_*(\gamma)$, такая что для любого $\tau < \tau_*(\gamma)$ точка γ является единственной ближайшей к $x(\gamma, \tau)$ точкой границы, а при $\tau > \tau_*(\gamma)$ это не выполняется (функция τ_* непрерывна на Γ). Положим по определению

$$\omega := \bigcup_{\gamma \in \Gamma} x(\gamma, \tau_*(\gamma)) \subset \Omega.$$

Множество ω замкнуто и имеет нулевую меру, а отображение

$$x \mapsto (\gamma(x), \tau(x))$$

является гладким диффеоморфизмом, переводящим $\Omega \setminus \omega$ в множество

$$\Theta := \{ (\gamma, \tau) \mid \gamma \in \Gamma, 0 < \tau < \tau_*(\gamma) \} \subset \Gamma \times \mathbb{R}_+, \tag{5}$$

которое называется выкройкой многообразия $\overline{\Omega}$.

Отметим, что эйконал τ и поле ν являются гладкими вне ω . Поверхность $\Gamma^s \setminus \omega$ также является гладкой, будучи поверхностью уровня функции τ . При этом $\nu(x), \, x \in \Omega \setminus \omega$, есть единичная нормаль к $\Gamma^{\tau(x)}$ (в метрике g) в точке x, внешняя по отношению к $\Omega^{\tau(x)}$.

В разделе 1.3 введены пространства векторных полей, необходимые для описания электромагнитного поля и изображений. В работе (за исключением раздела 6.1) рассматриваются вещественные пространства.

Определим семейство подпространств соленоидальных полей $J^s_\eta \subset \vec{L}_{2,\eta}(\Omega^T)$ для $s \in (0,T]$ следующим образом:

$$J^s_{\eta} := \operatorname{clos}_{\vec{L}_{2,\eta}} \{ y \in \vec{C}^{\infty}(\overline{\Omega}) \mid \operatorname{div}(\eta y) = 0, \operatorname{supp} y \subset \Omega^s \cup \Gamma \}.$$

Вводится еще одно семейство подпространств $\vec{L}_{2,\eta}(\Omega^T)$:

$$\mathcal{U}_{\eta}^{s} := \operatorname{clos}_{\vec{L}_{2,n}} \{ \eta^{-1} \operatorname{rot} z \, | \, z \in \vec{C}^{\infty}(\overline{\Omega}), \, \operatorname{supp} z \subset \Omega^{s} \cup \Gamma \}.$$
 (6)

Пространство \mathcal{U}^s_{η} , вообще говоря, у́же пространства J^s_{η} , что связано с возможными топологическими особенностями Ω^s .

Ортогональные проекторы на J^s_{η} , \mathcal{U}^s_{η} и $J^s_{\eta} \ominus \mathcal{U}^s_{\eta}$, действующие в J^T_{η} , обозначаются соответственно P^s_{η} , E^s_{η} и B^s_{η} . Проекторы P^s_{η} и E^s_{η} образуют спектральные семейства, сильно непрерывные слева.

Глава 2. Модель динамической системы Максвелла. В главе 2 обсуждаются свойства системы Максвелла, необходимые нам для решения обратной задачи. В разделе 2.1 сформулированы две теоремы, составляющие главный результат работы.

Теорема 1. Пусть $\overline{\Omega}$ – связное компактное ориентированное гладкое риманово 3-многообразие со связным краем, $\varepsilon = \mu = 1$. Для любого $T \in (0, T_*)$ оператор R^{2T} определяет подобласть $\Omega^T \subset \Omega$ с точностью до изометрии.

Теорема 2. Пусть область $\Omega \subset \mathbb{R}^3$, скорость c и величина T>0 удовлетворяют Условию 1. Тогда данные

$$\{R^{2T}, c\mid_{\Gamma}, \frac{\partial c}{\partial \nu}\mid_{\Gamma}\}$$
 (7)

однозначно определяют функции ε и μ в Ω^T .

Дано описание системы Максвелла с точки зрения теории управления. Через $\vec{\mathcal{L}}_2(\Gamma)$ обозначим пространство квадратично суммируемых касательных полей на Γ . Введем пространство управлений

$$\mathcal{F}^T := L_2([0,T]; \vec{\mathcal{L}}_2(\Gamma))$$

и класс \mathcal{F}_0^T гладких управлений, равных нулю вблизи $\Gamma \times \{t=0\}$. Также определяется класс управлений

$$\mathcal{F}_{+}^{T} := L_{2}([0,T]; \vec{H}^{1}(\Gamma)),$$

где $\vec{H}^1(\Gamma) \subset \vec{\mathcal{L}}_2(\Gamma)$ – векторное пространство Соболева, и *оператор* управления, связанный с системой (1),

$$W^T: f \mapsto e(\cdot, T),$$

действующий из пространства управлений \mathcal{F}^T в пространство $\mathcal{U}^T_{\varepsilon}$. Этот оператор корректно определен в классе \mathcal{F}^T_+ и допускает замыкание. Аналогично определяется магнитный оператор управления

$$W_m^T: f \mapsto h(\cdot, T).$$

Для запаздывающих управлений

$$\mathcal{F}_0^{T,s} := \{ f \in \mathcal{F}_0^T \mid \text{supp } f \subset \Gamma \times (T - s, T] \}.$$

сформулировано свойство приближенной управляемости

$$\operatorname{clos}_{J_{\varepsilon}^{T}}W^{T}\mathcal{F}_{0}^{T,s} = \mathcal{U}_{\varepsilon}^{s}.$$
(8)

С помощью связывающей формы на управлениях

$$c^{T}[f, f'] := (W^{T}f, W^{T}f')_{J_{c}^{T}}$$

и равенства

$$c^{T}[f, f'] = \frac{1}{2} ((S^{T})^{*} R^{2T} S^{T} f, f')_{\mathcal{F}^{T}}$$

 $(S^T$ — оператор нечетного продолжения по времени управлений с интервала [0,T] на интервал [0,2T]) показано, что оператор

$$|W^T| = ((W^T)^* W^T)^{1/2}$$

определяется оператором R^{2T} .

В разделе 2.2 описана модель динамической системы Максвелла,

$$\{\mathcal{U}_{\varepsilon\#}^T, \mathcal{U}_{u\#}^T, |W^T|, |W_m^T|\}, \tag{9}$$

которая может быть построена по данным обратной задачи. Здесь

$$\mathcal{U}_{\varepsilon\#}^T := \mathcal{U}_{\mu\#}^T := \mathcal{F}^T,$$

а $|W^T|$, $|W_m^T|$ — модули операторов W^T и W_m^T , которые могут быть получены по R^{2T} . Мы считаем, что $|W^T|$ и $|W_m^T|$ действуют из \mathcal{F}^T в $\mathcal{U}_{\varepsilon\#}^T$ и в $\mathcal{U}_{u\#}^T$ соответственно.

Введен оператор \mathcal{R}_e^T , действующий из $\mathcal{U}_{\varepsilon}^T$ в \mathcal{U}_{μ}^T как μ^{-1} rot, и антисамосопряженный оператор Максвелла в пространстве $\mathcal{U}_{\varepsilon}^T \oplus \mathcal{U}_{\mu}^T$

$$\mathcal{M}^T := \left(egin{array}{cc} 0 & (\mathcal{R}_e^T)^* \ -\mathcal{R}_e^T & 0 \end{array}
ight).$$

Показано, как с помощью модели (9) построить оператор в пространстве $\mathcal{U}_{\varepsilon\#}^T \oplus \mathcal{U}_{\mu\#}^T$, унитарно эквивалентный \mathcal{M}^T :

$$\mathcal{M}_{\#}^{T} = \begin{pmatrix} 0 & (\mathcal{R}_{e\#}^{T})^{*} \\ -\mathcal{R}_{e\#}^{T} & 0 \end{pmatrix}, \quad \mathcal{R}_{e\#}^{T} = (\Phi_{m}^{T})^{*}\mathcal{R}_{e}^{T}\Phi^{T}.$$

Здесь Φ^T и Φ^T_m – унитарные операторы в следующих полярных разложениях:

$$W^T = \Phi^T |W^T|, \quad W_m^T = \Phi_m^T |W_m^T|.$$

Глава 3. Восстановление риманова многообразия по граничным данным. Глава 3 посвящена решению обратной задачи на римановом многообразии. Для этого используется метод, ранее применявшийся для решения обратной задачи для скалярного волнового уравнения. Этот метод использует приближенную управляемость задачи (1) (соотношение (8)) и геометрию областей влияния для управлений, сосредоточенных на разных частях границы и запаздывающих на разное время.

Управления из класса $\mathcal{F}_0^{T,s}$ порождают поля, сосредоточенные в $\Omega^s \cup \Gamma$. При этом множество таких полей достаточно широкое: натянутое на них подпространство в $\mathcal{U}_{\varepsilon}^T$ совпадает с $\mathcal{U}_{\varepsilon}^s$ (если речь идет об электрических полях). Это и есть содержание свойства приближенной управляемости. Аналогичный факт верен для полей, порожденных управлениями класса

$$\mathcal{F}_0^{T,s}[\sigma] := \{ f \in \mathcal{F}_0^{T,s} \mid \text{supp } f \subset \sigma \times (T - s, T] \},$$

действующимим на некоторой (открытой) части границы $\sigma \subset \Gamma$. Такие поля сосредоточены в

$$\Omega^s[\sigma] := \{ x \in \Omega \mid \mathrm{dist}_c(x,\sigma) < s \},$$

и, более того, в [5] доказано, что подпространство

$$\operatorname{clos}_{\mathcal{U}_{\tau}^{T}}W^{T}\mathcal{F}_{0}^{T,s}[\sigma] \tag{10}$$

содержит все поля из $\mathcal{U}_{\varepsilon}^{T}$, сосредоточенные в $\Omega^{s}[\sigma]$. В ситуации обратной задачи мы не можем получить непосредственно множества Ω^{s} , $\Omega^{s}[\sigma]$, однако, в рамках модели (9) могут быть получены модельные копии пространств $\mathcal{U}_{\varepsilon}^{s}$ и (10):

$$\begin{aligned} &\operatorname{clos}_{\,\mathcal{U}_{\varepsilon\#}^T}|W^T|\,\mathcal{F}_0^{T,s} = (\Phi^T)^*\mathcal{U}_\varepsilon^s,\\ &\operatorname{clos}_{\,\mathcal{U}_{\varepsilon\#}^T}|W^T|\,\mathcal{F}_0^{T,s}[\sigma] = (\Phi^T)^*\operatorname{clos}_{\,\mathcal{U}_\varepsilon^T}W^T\,\mathcal{F}_0^{T,s}[\sigma]. \end{aligned}$$

Используя пространства $\mathcal{U}^s_{\varepsilon}$ и (10), мы можем построить пространство полей, сосредоточенных в сколь угодно малой окрестности заданной

точки (затем мы перейдем к их модельным копиям). Точку x мы параметризуем ее полугеодезическими координатами. Для заданной пары $(\gamma, s) \in \Gamma \times (0, T)$ и $\delta > 0$ вводится пространство

$$\mathcal{U}_{\varepsilon}(\gamma, s, \delta) := (\mathcal{U}_{\varepsilon}^{s} \ominus \mathcal{U}_{\varepsilon}^{s-\delta}) \bigcap \operatorname{clos}_{J_{\varepsilon}^{T}} W^{T} \mathcal{F}_{0}^{T, s}[\sigma_{\delta}(\gamma)],$$

где $\sigma_{\delta}(\gamma)$ – δ -окрестность точки γ на Γ . В [5] доказывается, что поля из $\mathcal{U}_{\varepsilon}(\gamma,s,\delta)$ сосредоточены в замыкании множества

$$a_{\gamma}^{s,\delta} := \Omega^s[\sigma_{\delta}(\gamma)] \setminus \overline{\Omega^{s-\delta}}.$$

Искомое многообразие строится из точек выкройки Θ^T (а точнее, из некоторого пополнения Θ^T). Для этого сначала нужно по данным обратной задачи определить форму выкройки, то есть график функции τ_* на Γ (определение (5)). С этой целью устанавливается, что неравенство $s \leq \tau_*(\gamma)$ имеет место, если и только если для всех (сколь угодно малых) δ множество $a_\gamma^{s,\delta}$ непусто или

$$\mathcal{U}_{\varepsilon}(\gamma, s, \delta) \neq \{0\}. \tag{11}$$

Действуя в рамках модели (9), вместо условия (11) следует проверять равносильное ему

$$\mathcal{U}_{\varepsilon\#}(\gamma, s, \delta) := (\Phi^T)^* \mathcal{U}_{\varepsilon}(\gamma, s, \delta) \neq \{0\},$$

в котором пространства $\mathcal{U}_{\varepsilon\#}(\gamma,s,\delta)$ могут быть получены по формуле

$$\mathcal{U}_{\varepsilon\#}(\gamma, s, \delta) = (\mathcal{U}_{\varepsilon\#}^s \ominus \mathcal{U}_{\varepsilon\#}^{s-\delta}) \bigcap \operatorname{clos}_{\mathcal{U}_{\varepsilon\#}^T} |W^T| \, \mathcal{F}_0^{T,s}[\sigma_\delta(\gamma)].$$

Далее пространства $\mathcal{U}_{\varepsilon}(\gamma, s, \delta)$ и $\mathcal{U}_{\varepsilon\#}(\gamma, s, \delta)$ используются для определения функции расстояния. Пусть $(\gamma, s) \in \Theta^T$. Рассмотрим следующую задачу на функции E(t), H(t) на интервале [0, T] со значениями соответственно в $\mathcal{U}_{\varepsilon}^T$, \mathcal{U}_{μ}^T :

$$\begin{pmatrix} E_t \\ H_t \end{pmatrix} - \mathcal{M}^T \begin{pmatrix} E \\ H \end{pmatrix} = \begin{pmatrix} K \\ 0 \end{pmatrix},$$

$$E \mid_{t=0} = H \mid_{t=0} = 0,$$
(12)

где $K \in L_2([0,T];\mathcal{U}_{\varepsilon}(\gamma,s,\delta))$. Введем оператор управления для системы (12)

$$W_{\mathrm{vol}}^T: K \mapsto E(T)$$

и применим его к "запаздывающей" на время T-r функции K. Мы получим пространство

$$\mathcal{U}_{\varepsilon}^{r}(\gamma, s, \delta) := \operatorname{clos}_{\mathcal{U}_{\varepsilon}^{T}} \{ W_{\operatorname{vol}}^{T} K \mid K \in L_{2}([0, T]; \mathcal{U}_{\varepsilon}(\gamma, s, \delta)), \sup_{supp} K(\cdot) \subset [T - r, T] \},$$

элементы которого сосредоточены в r-окрестности множества $a_{\gamma}^{s,\delta}$, если r достаточно мало (но не зависит от δ); это следует из конечности скорости распространения волн, описываемых системой (12). С помощью пространств $\mathcal{U}_{\varepsilon}^{r}(\gamma,s,\delta)$ можно для заданных $(\gamma,s),(\gamma',s')\in\Theta^{T}$ определить оптическое расстояние между точками $x=x(\gamma,s)$ и $x'=x(\gamma',s')$, при условии, что они достаточно близки. Для этого достаточно проверять условие: для всех (малых) δ выполнено

$$\mathcal{U}_{\varepsilon}(\gamma', s', \delta) \bigcap \mathcal{U}_{\varepsilon}^{r}(\gamma, s, \delta) \neq \{0\}.$$
 (13)

Это условие выполняется, если $\operatorname{dist}_c(x,x') < r$, и не выполняется, если $\operatorname{dist}_c(x,x') > r$. Причем (13), как и (11), можно заменить на эквивалентное условие для модельных пространств

$$\mathcal{U}_{\varepsilon\#}(\gamma', s', \delta) \bigcap \mathcal{U}_{\varepsilon\#}^r(\gamma, s, \delta) \neq \{0\},$$

где пространство $\mathcal{U}^r_{\varepsilon\#}(\gamma,s,\delta):=(\Phi^T)^*\mathcal{U}^r_{\varepsilon}(\gamma,s,\delta)$ в модели может быть представлено как

$$\mathcal{U}_{\varepsilon\#}^{r}(\gamma, s, \delta) = \operatorname{clos}_{\mathcal{U}_{\varepsilon\#}^{T}} \{ W_{\operatorname{vol}\#}^{T} K \mid K \in L_{2}([0, T]; \mathcal{U}_{\varepsilon\#}(\gamma, s, \delta)), \sup_{s \in \mathcal{U}_{\varepsilon\#}} K(\cdot) \subset [T - r, T] \},$$

а оператор $W_{\mathrm{vol}\#}^T$ может быть построен как оператор управления для задачи, аналогичной (12), с заменой \mathcal{M}^T на $\mathcal{M}_\#^T$.

Таким образом, выкройка Θ^T превращается в метрическое пространство, изометричное $\Omega^T \setminus \omega$. Затем, пополнение по метрике приводит к изометрической копии многообразия Ω^T , что заершает доказательство Теоремы 1.

Глава 4. Преобразование M^T . В главе 4 описан оператор M^T , необходимый для решения обратной задачи в евклидовой области. В этой главе предполагается, что Ω — ограниченная область в \mathbb{R}^3 с гладкой связной границей, причем выполнено Условие 1. Буквой η обозначен гладкий положительный вес в $\overline{\Omega}$.

В разделе 4.1 определен ограниченный самосопряженный оператор $K_{\eta}^{s}: \vec{L}_{2,\eta}(\Omega^{T}) \to \vec{L}_{2,\eta}(\Omega^{T}), s \in (0,T]$ через его билинейную форму:

$$(\eta K_{\eta}^{s} z, w) = \int_{0}^{s} d\xi \, (\eta \, (X^{\xi} - E_{\eta}^{\xi}) z, w), \quad z, w \in \vec{L}_{2, \eta}(\Omega^{T}). \tag{14}$$

Здесь X^{ξ} – операция умножения на характеристическую функцию множества Ω^{ξ} . Показано, что можно расширить по непрерывности оператор $K^T_{\eta}\eta^{-1}$ rot с гладких полей $\vec{C}^{\infty}(\overline{\Omega^T})$ на все $\vec{L}_{2,\,\eta}(\Omega^T)$. Из этого (переходя к сопряженному оператору) извлекается

Следствие 3. Для любого поля $z \in \vec{L}_{2,\eta}(\Omega^T)$ выполнено ${\rm rot}\, K_\eta^T z \in \vec{L}_{2,\eta}(\Omega^T)$, причем

$$\|\operatorname{rot} K_{\eta}^{T} z\|_{\vec{L}_{2,\eta}(\Omega^{T})} \le C \|z\|_{\vec{L}_{2,\eta}(\Omega^{T})}.$$
 (15)

В разделе 4.2 введен оператор M_{η}^T в $\vec{L}_{2,\,\eta}(\Omega^T)$:

$$M_{\eta}^{T} := \Pi - cN \operatorname{rot} K_{\eta}^{T}. \tag{16}$$

Здесь Π , N – поточечные операторы

$$Nz := \nu \times z, \quad \Pi := -N^2.$$

Последний действует на вектор как ортогональный проектор на плоскость, касательную к $\Gamma^{\tau(x)}$ в точке x. В силу (15) оператор M_{η}^{T} ограничен.

Выделим в $\vec{L}_{2,\eta}(\Omega^T)$ подпространство поперечных полей $\vec{\mathcal{L}}_{2,\eta}(\Omega^T)$, состоящее из полей v, для которых выполнено $\langle v(x), \nu(x) \rangle = 0$ при п.в. $x \in \Omega^T$. Для оператора M_η^T установлены включения:

$$\operatorname{Ran} M_{\eta}^T \subset \vec{\mathcal{L}}_{2,\eta}(\Omega^T), \quad \operatorname{Ran} (M_{\eta}^T)^* \subset \mathcal{U}_{\eta}^T,$$

которые дают повод перейти к сужению оператора M^T на подпространство \mathcal{U}_{η}^T :

$$M_{\eta}^T: \mathcal{U}_{\eta}^T \to \vec{\mathcal{L}}_{2,\eta}(\Omega^T).$$

Это сужение обозначается тем же символом. Далее получен следующий результат.

Теорема 3. Оператор M_{η}^T частично изометрический, причем

$$\operatorname{Ran} M_{\eta}^T = \vec{\mathcal{L}}_{2,\eta}(\Omega^T).$$

Установлено также сплетающее свойство оператора $M_{\eta}^T.$

Теорема 4. Для любого $s \in (0,T]$ выполнены (эквивалентные) равенства

$$M_{\eta}^{T} E_{\eta}^{s} = X^{s} M_{\eta}^{T}, \quad E_{\eta}^{s} (M_{\eta}^{T})^{*} = (M_{\eta}^{T})^{*} X^{s}.$$

Получен следующий результат о ядре оператора M_{η}^{T} .

Теорема 5. Пусть $E_{\eta, \, {\rm sing}}^s$ — сингулярная составляющая спектрального семейства E_{η}^s . Верно следующее включение

$$E_{\eta, \operatorname{sing}}^T \mathcal{U}_{\eta}^T \subset \operatorname{Ker} M_{\eta}^T.$$

Используя этот факт, можно построить пример, когда оператор M_{η}^{T} имеет ядро бесконечной размерности.

В разделе 4.3 получена формула, показывающая согласованность введенного определения M_{η}^T с определением, данным в работах [2]-[4]. Эта формула необходима для использования оператора M_{η}^T в решении обратной задачи.

Теорема 6. Пусть $y \in \vec{C}^{\infty}(\overline{\Omega^T}) \cap \mathcal{U}_{\eta}^T$. Тогда при почти всех $s \in (0,T]$ выполнено равенство

$$M_{\eta}^T y \mid_{\Gamma^s} = E_{\eta}^s y \mid_{\Gamma^{s-0}}. \tag{17}$$

В работах [2]-[4] формула (17) была взята за определение оператора M_{η}^T , поскольку в обратной задаче он возникает именно в таком виде. Однако, корректность этого определения очевидна только в случае, если в Ω^T регулярны полугеодезические координаты (это т.н. регулярная зона), тогда как для произвольных T становится нетривиальным даже тот факт, что поле $M_{\eta}^T y$, определенное с помощью (17), квадратично суммируемо. Причиной тому является негладкость эквидистант Γ^s (а также их нерегулярная зависимость от s), от которых зависит поведение проекторов E_{η}^s . Именно поэтому в работах [2], [3] обратная задача решалась в регулярной зоне. Имея цель снять это ограничение, мы используем представление (16), которое позволяет корректно определить M_{η}^T как ограниченный линейный оператор для произвольного $T \in (0, T_*]$, а также установить его частичную изометричность и полноту образа. Заметим, что свойство унитарности M_{η}^T , доказанное в [3],

[4] для регулярной зоны, не переносится на общий случай, поскольку, как отмечалось выше, M_{η}^{T} может иметь нетривиальное ядро.

В разделе 4.4 описывается оператор

$$M_{\mu}^{T} \mu^{-1} \operatorname{rot} (M_{\varepsilon}^{T})^{*} : \vec{\mathcal{L}}_{2,\varepsilon}(\Omega^{T}) \to \vec{\mathcal{L}}_{2,\mu}(\Omega^{T}).$$

Показана корректность определения этого оператора на гладких финитных в $\Omega^T \setminus \omega$ поперечных полях. Для формулировки главного результата раздела 4.4 введем семейство операторов $\{Q^s_\eta\}$, действующих по следующему правилу. Пусть ψ – ограниченная функция в $\overline{\Omega^T}$, гладкая вне любой окрестности множества ω , а для $s \in (0,T]$ выполнено $\partial \Omega^s \in \text{Lip.}$ Тогда существует единственное решение $p^s \in H^1(\Omega^s)$ краевой задачи в Ω^s :

$$\operatorname{div}(\eta \nabla p^{s}) = 0, \quad p^{s} \mid_{\Gamma} = 0, \quad \frac{\partial p^{s}}{\partial \nu} \mid_{\Gamma^{s}} = \psi \mid_{\Gamma^{s}}. \tag{18}$$

Оператор Q^s_η сопоставляет функции ψ функцию в Ω^s следующим образом

$$Q^s_{\eta}\psi := p^s.$$

В работе получено следующее соотношение

$$M_{\mu}^{T} \mu^{-1} \operatorname{rot} (M_{\varepsilon}^{T})^{*} u \mid_{\Gamma^{s}} = (\prod \mu^{-1} \operatorname{rot} v) \mid_{\Gamma^{s}} + \left[-c^{-1} \mu^{-1} N \nabla Q_{\varepsilon}^{s} (c \varepsilon^{-1} \operatorname{div} (\varepsilon v)) + \prod \nabla Q_{\mu}^{s} (c \mu^{-1} \operatorname{div} (c^{-1} N v)) \right] \mid_{\Gamma^{s-0}} - \left[c^{-1} \mu^{-1} N B_{\varepsilon}^{s} \varepsilon^{-1} \operatorname{rot} (\varepsilon c N v) + B_{\mu}^{s} \mu^{-1} \operatorname{rot} v \right] \mid_{\Gamma^{s-0}}$$

$$(19)$$

(равенство выполняется при п.в. $s \in (0,T]$ п.в. на Γ^s). Отсюда видно, что рассмотренный оператор имеет следующую особенность: в отличие от μ^{-1} rot он не является локальным, что видно из (19). Свойство локальности нарушается из-за присутствия Q^s и B^s . Формула (19) обобщает представление, полученное в работе [2] для регулярной зоны, на случай произвольного $T \in (0, T_*]$.

Глава 5. Обратная задача в области. В главе 5, как и в главе 4, предполагается, что Ω – ограниченная область в \mathbb{R}^3 с гладкой связной границей.

В разделе 5.1 вводятся изображения волн. Изображениями служат элементы подпространства $\vec{\mathcal{L}}_2(\Theta^T) \subset \mathcal{F}^T$, состоящего из полей, сосредоточенных на выкройке:

$$\vec{\mathcal{L}}_2(\Theta^T) := \{ f \in \mathcal{F}^T \mid \text{supp } f \subset \overline{\Theta^T} \}.$$

Определена операция π^s как преобразование касательных полей на $\Gamma^s \setminus \omega$ в касательные поля на Γ , действующее поточечно: $(\pi^s u)(\gamma)$ есть результат параллельного переноса в оптической метрике вектора $u(x(\gamma,s))$ из точки $x(\gamma,s)$ в точку γ вдоль соединяющей их геодезической. Также определена операция π , действующая на поперечные векторные поля в Ω^T по правилу:

$$(\pi u)(\gamma, s) := (\pi^s(u \mid_{\Gamma^s}))(\gamma), \quad (\gamma, s) \in \Theta^T.$$

Для $u \in \vec{\mathcal{L}}_2(\Omega^T)$ образ πu принадлежит $\vec{\mathcal{L}}_2(\Theta^T)$.

Введен оператор изображения I_{η}^{T} , действующий из \mathcal{U}_{η}^{T} в $\vec{\mathcal{L}}_{2}(\Theta^{T})$:

$$I_{\eta}^T := \pi \varkappa_{\eta} M_{\eta}^T,$$

где \varkappa_{η} – некоторая гладкая положительная функция в $\Omega \setminus \omega$.

Из Теоремы 3 вытекает, что I_{η}^{T} – частично изометрический оператор, причем

$$\operatorname{Ran} I_{\eta}^{T} = \vec{\mathcal{L}}_{2}(\Theta^{T}).$$

Далее в этом же разделе описано, как можно в условиях обратной задачи получить модельные операторы изображения $I_{\varepsilon\#}^T, I_{\mu\#}^T$:

$$I_{\varepsilon\#}^T := I_{\varepsilon}^T \Phi^T : \mathcal{U}_{\varepsilon\#}^T \to \mathcal{F}^T, \quad I_{\mu\#}^T := I_{\mu}^T \Phi_m^T : \mathcal{U}_{\mu\#}^T \to \mathcal{F}^T.$$

В разделе 5.2 рассматривается следующий оператор в $\vec{\mathcal{L}}_2(\Theta^T)$

$$\widetilde{\mathcal{R}}_e^T := I_u^T \mathcal{R}_e^T (I_\varepsilon^T)^*.$$

Показано, что $\widetilde{\mathcal{R}}_e^T$ корректно определен на гладких финитных полях на выкройке. Установлено равенство

$$\widetilde{\mathcal{R}}_e^T = I_{\mu\#}^T \, \mathcal{R}_{e\#}^T (I_{\varepsilon\#}^T)^*,$$

позволяющее получить $\widetilde{\mathcal{R}}_e^T$ по данным обратной задачи. Далее выясняется структура этого оператора. В Лемме 12 для п.в. $s \in (0,T)$ устанволено равенство

$$(\widetilde{\mathcal{R}}_e^T v)(\cdot, s) = N \frac{\partial v}{\partial s}(\cdot, s) + A(s) v(\cdot, s),$$

в котором A(s) – семейство псевдодифференциальных операторов на касательных полях на Γ (а точнее, на подмножествах границы $\{\tau_* > s\}$). Лемма 13 устанавливает связь между главным символом

$$a^{\alpha}_{\beta}(s; \gamma^1, \gamma^2, k), \quad \alpha, \beta = 1, 2, k \in \mathbb{R}^2$$

оператора A(s) и компонентами оптического метрического тензора h:

$$\det a(s; \gamma^1, \gamma^2, k) = -\sum_{\alpha, \beta} h^{\alpha\beta}(\gamma^1, \gamma^2, s) k_{\alpha} k_{\beta} \cdot (1 + o(1)), \quad k \to \infty.$$

Значений $h^{\alpha\beta}$ достаточно для того, чтобы определить пересаженный на выкройку тензор h, поскольку для произвольных локальных координат (γ^1,γ^2) на Γ запись тензора h в соответствующих полугеодезических координатах (γ^1,γ^2,τ) имеет вид

$$h^{mn} = \begin{pmatrix} h^{\alpha\beta} & 0 \\ 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \alpha, \beta = 1, 2. \tag{20}$$

После восстановления h устанавливается соответствие между точками выкройки и точками области $\Omega^T \setminus \omega$ и определяется скорость c в Ω^T .

В разделе 5.3 исследуется поведение ортогональных проекторов на подпространство ε -соленоидальных полей, локализованных в шаре оптического радиуса r с центром в фиксированной точке $x \in \Omega$, при $r \to 0$. Если обозначить такой проектор через $E^r(x)$, то для $y \in \vec{C}^{\infty}(\Omega) \cap \mathcal{U}_{\varepsilon}\langle \Omega \rangle$ справедливо

$$(E_{\varepsilon}\langle\Omega^{r}[x_{0}]\rangle y, y)_{\mathcal{U}_{\varepsilon}\langle\Omega\rangle} = \frac{2\pi}{15} \varepsilon(x_{0}) |\operatorname{rot} y(x_{0})|^{2} (c(x_{0}) r)^{5} + O(r^{6})$$
 при $r \to 0$. (21)

В разделе 5.4 решается задача раздельного восстановления ε , μ . Сначала определяется касательная часть градиента $\Pi \nabla \ln \varepsilon$ в $\Omega^T \setminus \omega$, которая извлекается из главного символа псевдодифференциального оператора, являющегося модификацией $\widetilde{\mathcal{R}}_e^T$. Далее с использованием формулы (21) определяется нормальная составляющая $\langle \nabla \ln \varepsilon, \nu \rangle$, чего достаточно для определения ε , а затем и $\mu = \frac{1}{\varepsilon c^2}$ в Ω^T .

Список литературы

- [1] Романов В.Г., Кабанихин С.И. Обратные задачи геоэлектрики. Наука, М. 1991.
- [2] М.И. Белишев, В.М. Исаков, Л.Н. Пестов, В.А. Шарафутдинов, К реконструкции метрики по внешним электромагнитным измерениям, Докл. РАН, 2000, 372(3), 298–300.

- [3] М.И. Белишев, А.К. Гласман, Динамическая обратная задача для системы Максвелла: восстановление скорости в регулярной зоне (ВСметод), Алгебра и анализ, 2000, 12(2), 279–316.
- [4] М.И. Белишев, Об унитарном преобразовании в пространстве $L_2(\Omega; \mathbb{R}^3)$, связанном с разложением Вейля, Зап. научн. семин. ПО-МИ, 2001, 275, 25–40.
- [5] M.I.Belishev, Recent progress in the boundary control method, Inverse Problems, 2007, 23(5), R1–R67.
- [6] М.Н. Демченко, О частично изометрическом преобразовании соленоидальных векторных полей, Зап. научн. семин. ПОМИ, 2009, 370, 22–43.
- [7] M.I. Belishev, M.N. Demchenko, *Time-optimal reconstruction of Riemannian manifold via boundary electromagnetic measurements*, J. Inv. Ill-Posed Problems, 2011, 19, 167–188.
- [8] М.Н. Демченко, Динамическая трехмерная обратная задача для системы Максвелла, Алгебра и анализ, 2011, 23(6), 31–78.