"Zapiski Nauchnyh Seminarov  POMI"
   
 VOL.  268
This issue  is entitled  "Numerical Methods and Algorithms.
 Part XIV"
  editors   L. Yu. Kolotilina and  V. N. Simonova
   
   
            
Contents 
-  Vera Nikolaevna Kublanovskaya. Short biography .......5
(.ps.gz)
-       Alpin Yu. A., Ikramov Kh. D. Rational procedures in problem of common
  invariant subspaces of two matrices
.......9
(.ps.gz)
-   Elmroth E.,  Johansson P.,  
 K{\aa}gstr\"{o}m B.  Bounds for the distance between nearby Jordan and 
Kronecker  structures in a closure hierarchy.......24
(.ps.gz)
-  Kolotilina L. Yu. Lower bounds for the Perron root of a sum of
nonnegative matrices  .......49
(.ps.gz)
-  Kolotilina L. Yu.Optimally conditioned block $2\times2$
matrices .......72
(.ps.gz)
-  Kolotilina L. Yu.  The case of equality in the generalized
Wielandt inequality.......86
(.ps.gz)
-  Kublanovskaya V. N. An approach to solving inverse
 eigenvalue problems for  matrices .......95
(.ps.gz)
-  Kublanovskaya V. N. The application of the rank-factorization
method to the  analysis of spectral characteristics of
a polynomial  multiparameter  matrix .......115
(.ps.gz)
-    Mikhailov V. B.  The analytical (spectral) representation of
the  solution of delay  algebraic-differential equations .......145
(.ps.gz)
-  Nikishin A. A., Yeremin A. Yu.
An automatic procedure for updafing  block size in the
block conjugate gradient method for solving linear systems .......159
(.ps.gz)
-  Ruhe A. Rational Krylov for nonlinear eigenvalues .......176
(.ps.gz)
-  Savinov G. V. Two-sided bounds of smallest eigenvalue of
positive-definite matrix in the  presence of restrictions.......181
(.ps.gz)
-  Khazanov V. B. On some properties of the minimal on degree
irreducible factorizations of rational matrix.......185
(.ps.gz)
-  Kharchenko S. A., Yeremin A. Yu.  New GMRES(k) algorithms with
explicit restarts and the analysis of their properties based on
matrix relations in QR form .......190
(.ps.gz)
-   Reviews .......242
(.ps.gz)
- 
    Paging    247 pp.
- 
    Language  Russian
Back to the Petersburg Department of 
 Steklov Institute of Mathematics