"Zapiski Nauchnyh Seminarov  POMI"
   
 VOL.  284
This issue  is entitled  "Numerical Methods and Algorithms.
 Part XV"
  editors   V. N. Kublanovskaya and L. Yu. Kolotilina 
   
   
            
Contents 
-  Al'pin Yu. A., Il'in S. N. Powers of sign  portraits of
real matrices.......5
(.ps.gz)
-    Yeremin A. Yu.,  Nikishin A. A.
Factorized-sparse-appro\-xi\-ma\-te-inverse preconditionings of linear systems
with unsymmetric matrices   .......18 
(.ps.gz)
-  Ikramov  Kh. D. Determinantal inequalities for accretive-dissi\-pa\-ti\-ve 
matrices  .......36
(.ps.gz)
-  Kolotilina L. Yu.  
On Brualdi's theorem .......48
(.ps.gz)
-  Kolotilina L. Yu.  
A class of optimally conditioned block $2\tm2$ matrices .......64
(.ps.gz)
-   Kolotilina L. Yu. Bounds and inequalities for the Perron root
of a nonnegative matrix  .......77 
(.ps.gz)
-  Kublanovskaya V. N. Computing the invariant polynomials of a
polynomial matrix. 1 .......123
(.ps.gz)
-  Kublanovskaya V. N. Computing the invariant polynomials of a
polynomial matrix. 2   .......128 
(.ps.gz)
-  Kublanovskaya V. N.
To solving multiparameter problems of algebra 1. Methods
for computing complete polynomials and their applications  .......143
(.ps.gz)
-  Kublanovskaya V. N., Khazanov V. B.  To the solution of 
 partial eigenproblems for  polynomial matrices .......163
(.ps.gz)
-  Khazanov V. B. On some properties of  polynomial bases of  subspaces
over the field of  rational functions in several variables .......177
(.ps.gz)
-  Kharchenko S. A., Yeremin A. Yu.
Multiplicative correction of a matrix on a sequence of
subspaces. I Basic algorithms and theory for general
unsymmetric matrices   .......192 
(.ps.gz)
-  Yakovlev M. N. Existence of $2^n$ periodic solutions of a
system of $n$ differential equations of first order .......247
(.ps.gz)
-  Yakovlev M. N. Existence of $2^n$ solutions of a system of $n$
nonlinear equations in $n$ unknowns .......263
(.ps.gz)
-   Reviews .......269
(.ps.gz)
- 
    Paging    275 pp.
- 
    Language  Russian
Back to the Petersburg Department of 
 Steklov Institute of Mathematics