"Записки научных семинаров ПОМИ"
 Том  463, стр. 94-111
   
  
Детерминантный образ произведений матриц
 
      А.  Э.  Гутерман,  Г. Соареш
   
  
 Московский государственный университет 
 им. М. В. Ломоносова,   
Ленинские горы, д. 1, Москва, Россия, 119991, ГСП-1
 
 
 
  
 guterman@list.ru
 
   
 Университет  Трас-ос-Монте и Алто Доуро, Школа науки и технологии,  %Центр математики,  
   5000-801, Португалия
 
 
 gsoares@utad.pt
 
      
-  Аннотация:  
   
  Пусть $\alpha_1,\ldots,\alpha_n$ и $\gamma_1,\ldots,\gamma_n$ --- собственные
числа матриц $A$ и $C\in M_n$ соответственно. Множество $D_C(A) =
\{\det(A-UCU^*):\, U \in M_n ,\, U^*U=I_n \}$
в комплексной плоскости называется $C$-{\it де\-те\-рми\-нан\-т\-ным образом матрицы} $A$.
В статье  исследуются различные условия, при которых $D_C(R\,S)=D_C(S\,R)$.
   
   
   Библ. -- 25   назв.   
 
-  Ключевые слова:$C$-детерминантный образ, числовой образ, матричные произведения
   [$C-$determinantal range, numerical range, matrix products] 
 
 Полный текст(.pdf)