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ABSTRACT
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is described.
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1. Introduction

The topological study of textile structures was started in [8]. By some ide-

alization, textile structures can be considered as specific knots or links. In this

way their study can be reduced to the study of double periodic links in R3, i.e.

one-dimensional submanifolds in R3 invariant under the action of some sublattice

Z2 ⊂ R3. Up to some specialization (the choice of a linear identification of the

quotient space R2/Z2 with a standard torus T2) it coincides with the study of links

in T2×R1. For example, the single jersey structure can be represented

by the knot in a fundamental domain of this action. For a review of fabric

types, see e.g. [5] and [16]; these types provide a wealth of natural examples of

knots in this manifold. In the present article, we demonstrate how the finite type

invariants (of degree up to 2) separate these structures, and elaborate some methods

of reducing the related calculations. We believe that this gives us the first examples

of practical calculations of finite type invariants of sufficiently complicated knots in

non-trivial (in particular, non-orientable) manifolds. Here we restrict ourselves only

on the case of doubly periodic knots, i.e. one-component links; they occur mainly

as knitted (i.e. jersey-like) fabrics.

Different invariants of knots in non-trivial manifolds have been studied in many

works. In particular, some Kauffman-type polynomial invariants of knots in mani-
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folds of type M2×R1 (M2 an orientable surface) are known, see [12] and references

in therein, and also [8]. Many of these invariants yield also finite type invariants

by using the Birman–Lin construction [4]. In particular, the invariant of [8] sep-

arates many textile structures, however, there are many structures, well-known in

the textile practice, that have one and the same value of this invariant. Theory of

knots in manifolds M2 × R1 is closely related to the virtual knot theory of [10].

In the framework of this theory, the Khovanov homology theory was generalized

to the knots in manifolds of type M2 × R1, see [13], [14]. This invariant is more

powerful than the analog of the Kauffman polynomial, but its explicit calculation

is very complicated.

The general theory of finite type invariants for links in arbitrary 3-dimensional

manifolds was developed in [9] and [19]; the special case of 3-manifolds of the form

M2 × R1 (M2 orientable) was studied in [6], [7], [1], [2] and many other works.

However, only few explicit examples of such invariants are known. In §2 we re-

call some such examples and introduce several new invariants. In particular, in

subsection 2.2 we describe an infinite series of invariants of all degrees, whose first

representatives are the degree 1 Fiedler’s invariants [6], [7]. These invariants are

characterized by the condition that their principal parts take zero value on all chord

diagrams with crossing chords. In §3 we apply these and other invariants to distin-

guish classical knitted and knotted structures. Namely, we compare the following

well-known structures (represented by their diagrams in the standard rectangular

chart of T2 = R2/Z2, see [8]).

The unknit (1.1)

Plain knit (single jersey) (1.2)

Plain knit with closed loops (1.3)

Wire netting (1.4)

Weaver’s knot (1.5)

Fake weaver’s knot (1.6)

Tricot with open loops (1.7)
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Tricot with closed loops (1.8)

1+1 rib with open loops (1.9)

1+1 rib with closed loops (1.10)

1+1 wire netting (1.11)

The mirror images of all these structures obtained by replacing all overcrossings

with undercrossings and vice versa will be considered as well. We shall denote the

mirror image of the structure (x) by (x). It is quite obvious that the structure (1.9)

is equivalent to (1.9), (1.10) to (1.10), and (1.11) to (1.11).

We shall assume that three orientations are always fixed: 1) the canonical (coun-

terclockwise) orientation of the standard torus, 2) the additional orientation “to-

wards the observer” of the line R1 orthogonal to the torus (and hence of the entire

space T2 ×R1), and 3) an orientation of the knot. Two knot diagrams are consid-

ered equivalent if they can be reduced to one another by an orientation-preserving

diffeomorphism of T2.

Theorem 1. The structures (1.1)—(1.11) and their mirror images are divided by

the first degree invariants into five groups so that elements of any group are not

separated from one another, but are separated from all elements of other groups:

• (1.1), (1.6), (1.6), (1.7), (1.7), (1.8), (1.8), (1.9), (1.10), (1.11);

• (1.2), (1.3);

• (1.2), (1.3);

• (1.4), (1.5);

• (1.4), (1.5).

Namely, let
1
∼ be the 1-equivalence relation that identifies structures not sepa-

rated by degree 1 invariants. The following relations are proved: (1.1) 6
1
∼ (1.2) 6

1
∼

(1.2) 6
1
∼ (1.1) in §3.1; (1.2)

1
∼ (1.3) and (1.2)

1
∼ (1.3) in §3.2; non-equivalence of (1.4)

and (1.4) to each other and to either of (1.1), (1.2), (1.2), (1.3) and (1.3) in §3.3;

(1.5)
1
∼ (1.4) and (1.5)

1
∼ (1.4) in §3.4; the equivalence (1.6)

1
∼ (1.1)

1
∼ (1.6) in §3.5;

(1.7)
1
∼ (1.1)

1
∼ (1.7) in §3.6; (1.8)

1
∼ (1.7) and (1.8)

1
∼ (1.7) in §3.7; (1.9)

1
∼ (1.1) in

§3.8; (1.10)
1
∼ (1.1) in §3.9; and (1.11)

1
∼ (1.1) in §3.10.
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Remark 1. We do not claim here that (1.6) and (1.6) (respectively, (1.7) and (1.7),

respectively, (1.8) and (1.8)) are non-equivalent to one another.

Theorem 2. The second degree invariants separate all the structures (1.1), (1.6),

(1.7), (1.8), (1.9), (1.10), (1.11) from each other, with the unique exception that

they cannot separate (1.7) from (1.8). Also, they separate the structure (1.2) from

(1.3), (1.2) from (1.3), (1.4) from (1.5), and (1.4) from (1.5).

Namely, in §§3.5, 3.6, 3.7, 3.8, 3.9 and 3.10 we calculate the values that basic

second degree invariants take on structures (1.6), (1.7), (1.8), (1.9), (1.10) and (1.11)

respectively. The comparison of these values proves that all these structures are not

2-equivalent to each other except for the pair (1.7) and (1.8).

Also, we prove in §3.2 that (1.3) is not 2-equivalent to (1.2), and (1.3) is not

2-equivalent to (1.2); in §3.4 we prove that (1.4) is not 2-equivalent to (1.5) and

(1.4) is not 2-equivalent to (1.5); in §3.7 we prove that (1.8) is 2-equivalent to (1.7).

Second degree invariants do not separate a knot and its mirror image that are

not separated by first degree invariants; therefore we obtain also the following fact.

Corollary 1. Any of structures (1.1), (1.6), (1.6), (1.7), (1.7), (1.8), (1.8), (1.9),

(1.10), (1.11) is 2-separated from all other structures of this list, with only the

following exceptions: four structures (1.7), (1.8), (1.7) and (1.8) are not 2-separated

from each other, and (1.6) is not 2-separated from (1.6).

Nevertheless, the structures (1.7) and (1.8), (1.7) and (1.8) can be separated even

by degree one invariants, if we consider them up to a more refined classification.

Indeed, the tricot fabric, whose elementary cell is represented by (1.7), has an

additional symmetry to the group of parallel shifts of the lattice Z2. In the picture

(1.7) this additional symmetry is represented by the vertical shift by half the height

of the cell, and simultaneous reflection with respect to a vertical line. The quotient of

R3 by the entire group of symmetries generated by Z2 and this additional symmetry

is equal to K2 × R1, where K2 is the Klein bottle. This additional factorization

reduces the cell (1.7) to the picture

(1.12)

Note that the boundary of the obtained rectangular cell is subject to the fol-

lowing identification: the vertical margins are joined together preserving the height

in the page, while top and bottom boundaries are identified in such a way that the

first, the second and the third from the left endpoints of our knot in the top bound-

ary are identified respectively with the first, the third and the second endpoints in

the bottom boundary. The similar picture for (1.8) is

(1.13)

The isotopy problem of these two knots in K2 × R1 is exactly the problem on
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the equivalence of the knots (1.7), (1.8) up to isotopies in T2 × R1 preserving the

additional symmetry.

Theory of finite type invariants in non-oriented manifolds was developed in [19].

Using it, we obtain the following result.

Theorem 3. All knots (1.12), (1.13), (1.12), and (1.13) in K2 ×R1 are separated

from each other and from the unknit (i.e. from a knot with non-crossed projection to

K2) by invariants of degree 1, with only two exceptions that (1.12) is not separated

by these invariants from (1.13), and (1.13) from (1.12).

We plan to prove in a future work that the last two pairs of knots can be

separated by a degree 2 invariant of knots in K2 × R1.

2. Invariants of knots in M2 × R1

In this section, we recollect briefly the main facts on finite degree invariants of

knots in arbitrary 3-dimensional manifolds (and especially in the manifolds of type

M2 × R1, M2 an orientable surface), and describe several such invariants.

The complete invariant of degree zero of knots in M3 is the homotopy class of the

knot in the loop space of all continuous mappings S1 → M3, i.e., the corresponding

conjugacy class in the group π1(M
3). In the case M3 = T2 × R1 these conjugacy

classes coincide with elements of H1(T
2) and are described by two integer numbers:

the rotation indices along the horizontal and the vertical (in our pictures) generators

of the torus. These numbers are equal to (1, 0) for structures (1.1), (1.2), (1.3), (1.9),

and (1.10); (1,−1) for (1.4), (1.5) and (1.6); (0, 1) for (1.7) and (1.8); and (2,−1)

for (1.11). All these classes can be reduced to one another by appropriate linear

(i.e. induced by SL(2,Z)-transformations R2 → R2) diffeomorphisms of T2. In

particular, the transformations reducing these elements to the vector (1, 0) move

the pictures (1.4), (1.5), (1.6) and (1.11) to the forms

; ; and (2.1)

respectively. The similar forms for (1.7) and (1.8) can be obtained by the clockwise

rotation of the initial pictures by π/2.

In general, two double periodic structures in R3 are equivalent if the correspond-

ing knots in T2 × R1 can be reduced to one another by compositions of smooth

isotopies and linear diffeomorphisms of T2 × R1 induced by appropriate SL(2,Z)-

transformations of T2.

2.1. Finite type invariants in orientable 3-manifolds

In this subsection we recollect necessary facts about finite type invariants in

arbitrary orientable 3-dimensional manifolds, see [11], [9], [19]. These invariants

can be defined in exactly the same way as for knots in R3, see [17], [4].
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Fig. 1. Resolutions of a transverse self-intersection
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Fig. 2. Examples of chord diagrams

A self-intersection point f(x) = f(y), x 6= y, of a smooth map f : S1 → M3 is

called transverse if the derivatives of f at x and y are not collinear in Tf(x)M
3. Any

transverse self-intersection of a map f : S1 → M3 can be resolved in two essentially

different ways by small local moves of f , see Fig. 1. These two local resolutions

cannot be connected by a short local path in the space of embeddings S1 → M3:

they are separated in a neighborhood of f by a piece of the discriminant subvariety in

C∞(S1,M3) consisting of maps with self-intersections. This subvariety is a singular

hypersurface; its smooth points are exactly the maps with unique transverse self-

intersection. If M3 is oriented, then there is an invariant way to call one of these

two resolutions as positive, and the other as negative; for the canonical orientation

in R3 this discrimination is indicated by indices + and − in Fig. 1. Indeed,

if we fix an affine chart in M3 close to the self-intersection point f(x) = f(y),

and a parameterization of S1, then the determinant of the triplet of vectors f ′(x),

f ′(y), and f(y) − f(x) is a well-defined function in a neighborhood of the point

f in the space C∞(S1,M3). The derivative of this function defines an invariant

transversal orientation of the discriminant variety at the point f , and hence the

desired difference between two possible resolutions of f .

Given a numerical invariant I of knots in M3 (i.e. of smooth embeddings S1 →

M3) and an arbitrary map f : S1 → M3 with k transverse self-intersection points

f(xi) = f(yi), f ′(xi) 6‖ f ′(yi), i = 1, . . . , k, which does not have any other self-

intersections or singular points, we can eliminate all these singularities in 2k different

ways, replacing any self-intersection point as it is shown in the left- or right-hand

part of Fig. 1. The residue of the invariant I on the singular knot f is defined as

the alternated sum of values of I on all these 2k non-singular knots obtained from

f ; the value of I on such a desingularization should be taken with the coefficient 1

or −1 depending on the parity of the number of negative local resolutions defining

this desingularization.

By definition, a knot invariant is of degree ≤ k if its residue at any singular

knot with more than k transverse self-intersections is equal to 0. An invariant is of
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degree k if it is of degree ≤ k but not of degree ≤ k − 1.

Definition 1. A chord diagram of degree k (or simply a k-chord diagram) is an

arbitrary collection of 2k distinct points in S1 matched in pairs. (For examples

of such diagrams, see Fig. 2, where the matched points are connected by thin

chords). A smooth map f : S1 → M3 respects some chord diagram if it joins

together the points of any of its pair. Two k-chord diagrams are equivalent if they

can be transformed into one another by orientation-preserving diffeomorphisms of

S1. Given an equivalence class A of k-chord diagrams, we say that two maps

f1, f2 : S1 → M3 belong to one and the same A-route of degree k, if they both

respect some k-chord diagrams Ā1, Ā2 of class A, and can be reduced to one another

by the composition of 1) a homotopy in the class of maps S1 → M3 respecting Ā1,

and 2) an orientation-preserving reparameterization of S1 moving Ā1 to Ā2. Thus,

the A-routes in M3 are the equivalence classes of singular maps S1 → M3 under

this equivalence relation.

It is easy to see that any knot invariant of degree k defines equal residues at all

singular knots with k transverse self-intersections, belonging to one and the same

A-route of degree k.

The function, defined thus by a knot invariant of degree k on the set of all

possible A-routes of degree k, is called the principal part of this invariant. Principal

parts of all degree k invariants satisfy two standard conditions. The simplest of

them, called 1T-relation, claims that any such principal part takes zero value on

any A-route of degree k such that

1) any chord diagram of class A contains a chord, whose endpoints xi, yi are

not separated in S1 by the endpoints of other chords of this diagram (i.e. one of

segments [xi, yi] or [yi, xi] ⊂ S1 does not contain points xj or yj , j 6= i, as in pictures

11, 21, 31, 32, 33 of Fig. 2), and

2) the loop f : [xi, yi] → M3 or f : [yi, xi] → M3, defined by the image of this

segment under a map f from our A-route, is contractible in M3.

The second series of restrictions (2.2), called 4T-relations, is more complicated;

it can be derived from the consideration of singular maps with k−2 self-intersections

and one triple point. Let us consider any such generic map, i.e. a map f : S1 → M3

with k − 2 transverse double self-intersections, one triple self-intersection such that

three derivatives of f at this point are linearly independent in T∗M
3, and having

no other self-intersection or singular points. The triple point of this map can be

resolved in six different ways, splitting it into two double self-intersection points,

see Fig. 3, so that f splits in six different ways into singular knots with k self-

intersections. Let I be a degree k invariant, and I(m), m = 1, . . . , 6 be the value

of its principal part on the singular knots obtained from f as indicated in Fig. 3 in

the sector labelled by m. Then

I(1) − I(4) = I(2) − I(5) = I(3) − I(6). (2.2)

In general, these necessary conditions are not sufficient: it can happen that 1T-
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Fig. 3. Resolutions of a triple point

and 4T-relations are satisfied for a function on the set of all A-routes of degree k

in M3, but there is no degree k knot invariant with the principal part equal to this

function; see [19]. In the case of M3 = M2 × R1 the situation is much better.

Proposition 1 (see [2], [1]). Suppose that M3 = M2 × R1, M2 an orientable

surface (maybe with boundary), and Ik is a R-valued function on the set of all A-

routes of degree k in M3. If Ik satisfies 1T- and 4T-relations, then there exists a

R-valued degree k invariant of knots in M3, whose principal part coincides with this

function Ik. 2

2.1.1. Example: invariants of degree 0 and 1

Now we recall the construction of all first degree invariants of knots in a closed

orientable 3-manifold M3, see [19]. In the special case of M3 = M2 × R1, they

constitute a minor extension of the Fiedler’s invariants defined in [6], and coincide

with them in the most interesting for us case of M2 = T2.

By definition, an invariant of degree 0 should take equal values on all knots

in M3 that are homotopic to one another as maps S1 → M3. Therefore such

invariants can be identified with functions on the group π1(M
3) taking equal values

on conjugate elements: I(a) = I(b) if a = s−1bs for some s ∈ π1(M
3). Below we

compare by invariants of positive degrees only the knots that are not separated by

degree 0 invariants, i.e. represent one and the same such homotopy class.
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Let a be an arbitrary element of the group π1(M
3) and ā the corresponding

homotopy class of maps S1 → M3, i.e. the conjugacy class of a in π1(M
3). Let us

denote the space of smooth maps S1 → M3 representing this class ā as Ωā(M3).

The discriminant variety Σ ⊂ Ωā(M3) consists of all maps in this space having self-

intersections or singular points. Irreducible components of Σ are in the one-to-one

correspondence with decompositions of the element a into the product a = b · c

considered up to simultaneous conjugacy: (b, c) ∼ (b′, c′) if there is s ∈ π1(M
3)

such that b′ = s−1 · b · s, c′ = s−1 · c · s. In the special case when the group π1(M
3)

is Abelian, these components are counted by the (unordered) decompositions of the

class a into the sums of two elements a = b + c.

Every such irreducible component defines a subvariety of codimension 1 in

Ωā(M3). This subvariety is a cycle (i.e. has no boundary) if and only if none

of b and c is the unit element of π1(M
3). The intersection indices of such cycles

with 1-homology classes in Ωā(M3) are well-defined: we represent any such class by

a generic smooth closed curve (i.e. by a family of maps S1 → M3 parameterized by

the points of a circle) and count the intersection points of this curve with Σ, taken

with their signs, depending on the orientation of the intersection, see Fig. 1.

If (and only if) this intersection index is equal to zero for all 1-homology classes in

Ωā(M3), then the linking numbers with our component of Σ define a knot invariant

in M3. Namely, we fix a sample knot K0 in M3, postulate that all our invariants

take zero value on this knot, and define the value of the invariant on any other

knot as the intersection number of our component of Σ with any path connecting

the sample knot K0 with the knot in question. It follows immediately from the

definitions, that any invariant obtained in this way is of degree 1, and, conversely,

all degree 1 invariants of knots in Ωā(M3), taking zero value on the sample knot,

are linear combinations of invariants defined in this way.

The above homological condition (zero intersection indices with all 1-homology

classes in C∞(S1,M3)) is not satisfied if M3 is sufficiently complicated, e. g. for

M3 = S2 ×S1, see [19]. However, if M3 = M2 ×R1, then all cycles of codimension

1 in Ωā(M3), defined by irreducible components of Σ, are cohomologous to zero

in this sense. This follows formally from Proposition 1, but can also be proved

immediately, because the loop space of M3 in this case is very simple, cf. the proof

of Lemma 2 in §4. Therefore the following statement holds.

Proposition 2. For any connected orientable surface M2, the group of first degree

Z-valued invariants of knots in M2 × R1 is free Abelian with canonical generators

labelled by pairs of non-unit elements b, c of π1(M
2) considered up to simultaneous

conjugacies: (b, c) ≡ (s−1bs, s−1cs) for any s ∈ π1(M
2). 2

Certainly, any such equivalence class of pairs (b, c) defines correctly an unordered

pair of elements (b̄, c̄) ≡ (c̄, b̄) in H1(M
2), b̄ 6= 0 6= c̄. This pair of homology classes is

called the passport of our component of the discriminant. The Fiedler’s invariants

of [6] are exactly the sums of all invariants from Proposition 2 corresponding to

conjugacy classes {(b, c)} defining one and the same pair of homology classes (b̄, c̄).



Recognizing textile structures by finite type knot invariants 10

If π1(M
2) is Abelian, then any such sum consists of only one summand.

2.2. Higher degree invariants with non-crossed chord diagrams

Every unordered collection of k + 1 non-zero elements of the group H1(M
2)

defines well a degree k invariant of knots in M2 × R1, generalizing the Fiedler’s

degree 1 invariant from the previous subsection.

Given such a collection Γ of elements γ0, . . . , γk ∈ H1(M
3) \ 0 for an arbitrary

orientable 3-manifold M3, the corresponding function IΓ on the space of all A-routes

of degree k in M3 is defined as follows. If the k-chord diagram A has at least one

pair of crossing chords (i.e. chords whose four endpoints alternate in S1, as e.g.

in diagrams 22, 33, 34, 35 of Fig. 2), then the value of IΓ on any A-route is equal

to 0. If A has no such crossing chords, then for any immersion f : S1 → M3,

respecting this chord diagram and having no other self-intersections, the variety

f(S1) defines naturally k + 1 elements of H1(M
3); to obtain these elements, we

smooth any self-intersection of f(S1) by the rule ���@@I I�=⇒ and take the classes

of k + 1 separate circles, into which this smoothing splits our curve. The value

of the desired function IΓ on an A-route is equal to 1 (respectively, to 0) if the

obtained unordered collection of elements of H1(M
3) coincides (respectively, does

not coincide) with the given collection (γ0, . . . , γk).

Theorem 4. For any collection Γ of non-zero elements γ0, . . . , γk of H1(M
3), this

function IΓ on the space of A-routes satisfies the 1T- and 4T-relations. In partic-

ular, if M3 = M2 ×R1, M2 orientable, then by Proposition 1 this function IΓ can

be extended to a well-defined degree k invariant of knots in M2 × R1.

Proof. Consider a generic singular knot f : S1 → M3 with one triple point and

k − 2 double points, see Fig. 3. If one of its six decompositions into singular knots

with k double points defines a chord diagram without crossing chords, then exactly

two other decompositions also have diagrams with this property; in Fig. 3 they are

decompositions 4, 5 and 6. The collections of k+1 homology classes, corresponding

to these three decompositions, also coincide, therefore our function satisfies the 4T-

relation. The 1T-relation follows now from the condition that none of elements γi

is trivial. 2

Remark 2. A majority of degree 2 invariants of this series coincides (modulo de-

gree 1 invariants) with certain invariants IK
3 (a, b) from Theorem 2.10 of [7]. Namely,

for any fixed homology class [K] of considered knots, [K] ∈ H1(M
2), any our

weight system I(γ0,γ1,γ2) with γ0 6= γ1 6= γ2 6= γ0 and γ0 + γ1 + γ2 = [K] coincides

(maybe up to a sign) with principal parts of six Fiedler’s invariants: IK
3 (γ1+γ0, γ0),

IK
3 (γ2+γ0, γ0), IK

3 (γ0+γ1, γ1), IK
3 (γ2+γ1, γ1), IK

3 (γ0+γ2, γ2), and IK
3 (γ1+γ2, γ2),

which, therefore, can be reduced to one another by adding invariants of degree 1

(at least in the case of orientable M2).

If however some two of our classes γi coincide (say, γ0 = γ2 6= γ1), then the

corresponding weight system I(γ0,γ1,γ2) coincides with the principal parts of only two
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Fiedler’s invariants IK
3 (γ1 + γ0, γ0) and IK

3 (γ1 + γ2, γ2). Thus the only our degree

2 weight systems I(γ0,γ1,γ2) not covered by the Fiedler’s invariants correspond to a

quite useless case γ0 = γ1 = γ2 6= 0 (implying that [K] is divisible by 3).

It is worth noting also that the Fiedler’s invariants IK
3 (a, b) are applicable to

knots in non-orientable manifolds of the form M2 × R1, in contrast to the above-

defined weight systems IΓ.

Any A-route in M3 with the non-crossed 2-chord diagram can be represented

by the oriented singular knot

�



�
	embedded somehow into M3.

Definition 2. The passport of an embedded singular knot with two self-intersec-

tions and non-crossed chord diagram is the triplet of classes (α, β, γ) of elements

of H1(M
3), β being represented by the image of the middle cycle of

�



�
	

and α and γ by images of two other cycles; the passports (α, β, γ) and (γ, β, α) are

considered as identical.

2.3. Degree 2 invariants defined by crossed diagrams

Any manifold of the form M2 × R1, M2 orientable, can be embedded into S3.

Therefore any finite degree invariant of knots in S3 induces an invariant (of the same

degree) of knots in M2 ×R1. Generally, this invariant depends on the embedding.

Therefore, in order to compare our knots in M2 × R1, we need to fix such an

embedding.

In the case M2 = T2 we identify T2 ×R1 with the complement of the Hopf link

(i.e. two unknotted linked circles) C1 t C2 ⊂ S3 in such a way that

1) any line x×R1, x ∈ T2, tends to C1 (respectively, to C2) when the parameter

in R1 tends to +∞ (i.e., “to the reader” in our pictures) (respectively, to −∞);

2) the horizontal (respectively, vertical) generator of H1(T
2) ∼ Z2 in our pic-

tures generates the kernel of the induced homomorphism H1(T
2) → H1(S

3 \ C2)

(respectively, H1(T
2) → H1(S

3 \ C1)).

Also, we shall assume that the class in H1(T
2 × R1) of all our knots is equal

to the horizontal generator of this group, oriented from the left to the right. In

particular, we consider the knots (1.4), (1.5), (1.6) and (1.11) in the form (2.1),

and knots (1.7) and (1.8) in the form obtained from the original pictures by the

clockwise rotation by π/2. Immediate calculations give us the following result.

Theorem 5. The canonical embedding T2 ×R1 → S3 transforms the knots (1.2)–

(1.11) (of which (1.4), (1.5), (1.6) and (1.11) are in the form (2.1), and (1.7) and

(1.8) are rotated by π/2) and their mirror images into the knots of following types:

(1.2), (1.3) and (1.4) to the unknot;

(1.2), (1.9), (1.6), (1.7), (1.7), (1.8) and (1.8) to III1#III1;

(1.3) and (1.10) to V I1;

(1.4) and (1.11) to III1;

(1.5) and (1.6) to V III20;

(1.5) to V I3. 2
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Of course, the non-equivalence of types of knots in S3 obtained from some knots

in M3 by one and the same embedding M3 → S3 implies the non-equivalence

of these knots in M3. Unfortunately, for M3 = T2 × R1 it generally does not

imply the difference of textile structures defined by these knots: indeed, one of

these knots can be transformed to a knot equivalent to the other by a non-trivial

diffeomorphism T2 → T2. Therefore, separating textile structures, we usually need

to prove something additionally: e.g. that an invariant separating the embedded

knots in S3 takes equal values on all knots obtained from one another by such

diffeomorphisms of T2 × R1. Let us give the first example.

Denote by I⊕ the basic degree 2 invariant of knots in S3, defined by the chord

diagram ⊕, and also the invariant of knots in T2 × R1 induced from it by our

inclusion.

Proposition 3. Suppose that the knot K : S1 → T2 × R1

1) maps the fundamental class of S1 to the homology class (1, 0) ∈ H1(T
1,Z)

(i.e. to the class of the horizontal line in our pictures, oriented to the right);

2) is not separated from the unknit (1.1) by any invariants of degree 0 or 1.

Then the invariant I⊕ takes one and the same value on K and on all knots

obtained from K by all diffeomorphisms of T2 × R1 preserving the direct product

structure, orientations of T2 and R1, and the homology class of K (i.e. such that

the corresponding operator in H1(T
2) is equal to

(

10
q1

)

, q ∈ Z).

Proof. Let us join K and the unknit (1.1) by a generic path in C∞(S1,T2 ×

R1). Since K is 1-equivalent to the unknit, this path crosses any irreducible closed

component of Σ (see §2.1.1) an even number of times, in such a way that positive

crossings can be matched with negative ones. Let us connect any two matched

crossings by a generic path inside this component of Σ. This path crosses several

times the self-intersection locus of the discriminant. This self-intersection locus

consists of maps S1 → T2 × R1 with two self-intersections, and splits naturally

into two pieces depending on the 2-chord diagrams defined by the configuration

of preimages of these self-intersection points. The value I⊕(K) − I⊕(the unknit)

is equal to the number of all such crossings (in all our paths) corresponding to

the crossed chord diagram ⊕ and taken with appropriate signs. Let K1 be a knot

obtained from K by some diffeomorphism A : T2 × R1 → T2 × R1 of the form
(

10
q1

)

× Id. Then K1 also satisfies conditions 1) and 2) of our Proposition, and

the diffeomorphism A moves the unknit to itself, all these paths into similar paths,

and their intersection points with the self-intersection locus of the discriminant into

intersection points of the same sign. Therefore I⊕(K) = I⊕(K1). 2

Corollary 2. I⊕ is a well-defined invariant of textile structures defined by a single

string in T2 × R1, such that

1) its homology class is not equal to a non-zero element of H1(T
2×R1) multiplied

by some a ≥ 2,
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2) it cannot be separated from the unknit in the same homology class by invari-

ants of degree 1. 2

Remark 3. If π1(M
2) 6= 0 then the invariant I⊕, similarly to other invariants of

this origin, can be split into sums of many more specific invariants, in correspon-

dence with the splitting of the set of
⊕

-routes into some equivalence classes. The

corresponding equivalence relation is spanned by the following elementary relations:

two
⊕

-routes are equivalent if one can approach one and the same singular knot

with a generic triple point (see Fig. 3) along both these routes. For example, if

the homology class of our knots in M3 is equal to 0, and rank H1(M
3,Z) ≥ 2,

then the area of an oriented triangle in H1(M
3,Z) spanned by homology classes of

three (cyclically ordered) loops of any singular knot with a triple point, obtained by

such an approach, is an invariant of this equivalence and separates infinitely many

equivalence classes.

2.4. The case of non-orientable M2

The general theory of finite type knot invariants in non-orientable 3-manifolds

was developed in [19]. Here we describe only the first degree invariants of knots in

M2 × R1, where M2 is a non-oriented surface.

In the same way as in the orientable case, irreducible components of the dis-

criminant Σ in the space of maps S1 → M3 are in one-to-one correspondence with

pairs (b, c) of elements of the group π1(M
3), considered up to simultaneous con-

jugation: (b, c) ∼ (s−1bs, s−1cs) for any s ∈ π1(M
3). Such a component defines

a mod 2 cycle (and has no boundary) if and only if both b and c are not equal

to the unit element. To define an integral cycle, such a component should have a

global transversal orientation at its regular points, i.e. at the points corresponding

to maps f : S1 → M3 with transverse self-intersections only. Any local branch of

this component in a neighborhood of a self-intersection point of the discriminant,

i.e. a point corresponding to a map f with two self-intersection points, should be

transversally oriented.

Proposition 4 (see [19]). An irreducible component of Σ, defined by the pair of

elements b, c of π1(M
3), does not have a global transversal orientation in C∞(S1,M3)

if and only if there exists an element s ∈ π1(M
3) violating the orientation of M3

and such that either b = s−1bs, c = s−1cs, or b = s−1cs, c = s−1bs. 2

If such an element s does not exist, then our component {(b, c)}, b 6= 1 6= c,

of the discriminant variety defines an integral 1-cohomology class in the space of

smooth maps S1 → M3. If (and only if) this cohomology class is trivial, then this

component defines well a degree 1 invariant of knots in M3.

3. Proof of Theorems 1 and 2

According to §2.1.1, any basic first degree (Fiedler) invariant of knots in T2×R1,

corresponding to an irreducible component of the discriminant, can be described by
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its passport, i.e. an unordered pair of pairs of integers,

((m1, n1)(m2, n2)) ∼= ((m2, n2)(m1, n1)), (3.1)

m2
1 +n2

1 6= 0, m2
2 +n2

2 6= 0. Here (m1, n1) and (m2, n2) are elements of Z2 ≡ H1(T
2)

represented by two loops into which the intersection point splits any generic singular

knot corresponding to a point at this component of the discriminant.

The invariant (3.1) takes non-trivial values only on the knots representing the

homology class (m1+m2, n1+n2). For any such homology class we choose a sample

knot representing it, and postulate that all our invariants take zero value on this

knot; everywhere below this is a knot with the non-crossed diagram. The value of

our invariant (3.1) on any different knot is equal to the intersection number of our

component of Σ with the path in C∞(S1,M3) connecting the sample knot with the

knot in question. For all knots (1.1)–(1.11) their homology classes are not multiples

of other elements in H1(T
2), therefore all sample knots can (and will) be chosen

as knots whose diagrams have no crossing points in T2; all these sample knots are

SL(2,Z)-equivalent to each other and to the knot (1.1).

3.1. Non-triviality of the single jersey and its mirror image

Single jersey (1.2) can be transformed into the trivial (1, 0)-structure by the

sequence of two surgeries:

→ → → → ≡ (3.2)

Passports of the first and the second surgeries in this path are equal to

((0, 1)(1,−1)) and ((0,−1)(1, 1)) (3.3)

respectively, in particular they define different Fiedler invariants. The signs of these

surgeries are equal to + and −, respectively.

On the other hand, structure (1.2) can be transformed into the trivial one by a

similar chain of surgeries consisting of mirror images of corresponding elements of

(3.2). The passports of these surgeries are respectively the same, but the signs are

opposite. Therefore we get

Proposition 5. Three structures (1.1), (1.2) and (1.2) can be separated from one

another by either of two first degree invariants defined by the passports (3.3). 2

3.2. Plain knit with closed loops is 1-separated from the unknit and

2-separated from the plain knit with open loops

Let us transform the knot in question (1.3) into the unknit by the sequence of

two surgeries

→ → → → → (3.4)
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The signs of these surgeries are equal to − and + respectively; their passports are

((0, 1)(1,−1)) and ((0,−1)(1, 1)). (3.5)

Considering additionally the sequence consisting of knots which are mirror op-

posite to elements of (3.4), and comparing formulae (3.5) and (3.3), we obtain the

following fact.

Proposition 6. The plain knit with closed loops (1.3) is separated from its mirror

opposite (1.3) and the unknit by either of two first degree invariants defined by

passports (3.5). On the other hand, this structure (1.3) cannot be separated by first

degree invariants from (1.2), and (1.3) from (1.2). 2

Now, let us try to separate the latter two pairs of structures by the second degree

invariants. A homotopy connecting the structures (1.2) and (1.3) can be chosen in

the following way:

→ → ≡ → → (3.6)

It contains two surgeries with signs equal to − and + and passports equal to

((0, 1)(1,−1)); this proves once more that these two structures cannot be separated

by first degree invariants.

To calculate the difference of values of a degree 2 invariant on the knots (1.2)

and (1.3), we consider the same sequence (3.6). However, now these two surgeries

should be taken not only with (the same) signs − and +, but also with certain

weights determined by our second degree invariant. Only the difference of these

two weights is important for our calculation; this difference can be found as follows.

Let us join these two surgeries by a generic path inside the discriminant as follows:

→ → ≡ → → ≡

≡ → → ≡ → →

(3.7)

This path contains several surgeries of second order, representing some A-routes

of degree 2. The desired difference of weights is equal to the sum of values of

the principal part of our invariant on these A-routes, taken with signs + or −

depending on the directions of intersection. In our case, the second and the fourth

surgeries of (3.7) have crossed diagrams and signs equal to −. The first and the

third surgery have non-crossed diagrams, signs equal to +, and passports equal to

((0, 1)(1, 0)(0,−1)) and ((0, 1)(0, 0)(1,−1)) respectively. Therefore we obtain the

following fact.

Proposition 7. The first and the last structures of the sequence (3.6) are separated

by both the invariant I⊕ corresponding to the crossed 2-diagram (see subsection 2.3)

and by the second degree invariant with the non-crossed chord diagram and passport

((0, 1)(1, 0)(0,−1)). 2
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3.3. Wire netting and its mirror image are 1-separated from the unknit,

single jersey, and single jersey with closed loops

The sequence

→ → ≡ (3.8)

links the wire netting (1.4) with the unknit and experiences exactly one crossing

of the discriminant, with passport equal to ((0,−1)(1, 0)) and the sign +. The

mirror image (1.4) of the wire netting can be linked to the unknit by a similar

surgery with the same passport and the different sign. Therefore all these three

knots are separated from each other by the invariant of degree 1 corresponding to

this passport.

Moreover, we see that the structures (1.4) and (1.4) are separated from the

unknit by only one basic invariant of degree 1, while any of structures (1.2), (1.2),

(1.3) and (1.3) is separated from the unknit by two such basic invariants. These

properties do not depend on the choice of the rectangular chart in T2, and we get

the following proposition.

Proposition 8. The structures (1.4) and (1.4) are separated from one another and

from the structures (1.1), (1.2), (1.2), (1.3) and (1.3) by degree 1 invariants. 2

3.4. Weaver’s knot is 1-nontrivial; weaver’s knot is 1-equivalent but not

2-equivalent to the wire netting

This knot (1.5) can be linked to the trivial one by the surgery

→ → ≡ (3.9)

The passport of this surgery is equal to ((0,−1)(1, 0)), and its sign is +. Therefore

the corresponding Fiedler’s invariant separates the weaver’s knot (1.5) from the

unknit. This invariant does not separate the knot (1.5) from the wire netting (1.4),

see §3.3, but fixes the rectangular chart (1.5) as the unique chart in which this knot

is 1-equivalent to the wire netting given by the picture (1.4): indeed, any non-trivial

SL(2,Z)-transformation does not preserve the invariant ((0,−1)(1, 0)).

Let us try to separate (1.5) and (1.4) by second degree invariants. For the path

connecting these two structures we take the composition of the path (3.9) and the

path (3.8) passed in the opposite direction. This path contains two surgeries. To

calculate the difference of their weights in the calculation of degree 2 invariants, we

connect them by a generic path inside the discriminant:

→ → → → ≡ (3.10)
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This path contains two second degree surgeries, the first of them with non-

crossed chord diagram and passport ((0,−1)(0, 0)(1, 0)), and the second with the

crossed chord diagram and sign +. Therefore we have the following

Proposition 9. The weaver’s knot (1.5) and the wire netting (1.4) are not sep-

arated by degree 1 invariants. They are separated by the invariant I⊕, see §2.3.

2

The mirror images of all these transformations yield the same statement con-

cerning the comparison of (1.5) and (1.4).

3.5. Fake weaver’s knot is 1-equivalent but not 2-equivalent to the unknit

The degree 0 invariant of the structure (1.6) (i.e. the class of the corresponding

oriented knot in the group H1(T
2)) is equal to (1,−1). Therefore we need to compare

this structure with the standard unknit in the same class. This unknit is indicated in

the right-hand part of the following expression (3.11), representing a path between

the structure (1.6) and the trivial knot:

→ → → → ≡ (3.11)

Passports of two surgeries in (3.11) are both equal to ((0,−1)(1, 0)), their signs

are equal to − and + respectively. Therefore the fake weaver’s knot (1.6) and the

unknit (1.1) cannot be separated by invariants of first degree.

Now, let us prove that they can be separated by an invariant of degree 2. To

do this, let us connect two singular knots occurring in (3.11) as surgery points, by

a generic path inside the discriminant:

→ → → → ≡ →

→ → ≡ → → ≡

(3.12)

The first and the last surgeries have crossed chord diagrams with signs −. Two

other surgeries have non-crossed 2-chord diagrams, both with passports equal to

((1, 0)(0, 0)(0,−1)). In the same way as in §3.2, this implies the following statement.

Proposition 10. The invariant I⊕ considered in §2.3 takes value +2 on the fake

weaver’s knot (1.6). All basic degree two invariants with the non-crossed chord

diagrams (see §2.2) take zero value on this knot. 2
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3.6. Tricot with open loops is 1-equivalent to the unknit but not 2-

equivalent to the unknit and to fake weaver’s knot

The degree zero invariant of structure (1.7) is equal to (0, 1) ∈ H1(T
2), thus

it is necessary to distinguish this structure from the sample knot within the same

homology class; this knot is shown on the right-hand side of the next sequence.

→ → → → ≡ (3.13)

This sequence consists of two surgeries connecting the structure (1.7) with the

basic unknit. Passports of these two surgeries are both equal to ((−1, 1)(1, 0)); their

signs are equal to − and + respectively. Therefore tricot (1.7) cannot be separated

from the unknit by the first degree invariants.

Now, let us prove that these two knots can be separated by a degree 2 invariant.

To do this, we connect two singular knots, occurring in (3.13) at surgery points, by

a generic path inside the discriminant:

→ → → → ≡

≡ → → → →

(3.14)

The first and third surgeries have crossed chord diagrams, the second and the

fourth surgeries have non-crossed chord diagrams with passports

((1, 1)(0,−1)(−1, 1)) and ((1, 0)(0, 1)(−1, 0)) (3.15)

respectively. The signs of all these four surgeries are equal to −, +, −, and +.

Therefore we get the following statement.

Proposition 11. Tricot with open loops (1.7) is 1-equivalent to the unknit (1.1).

Both degree two invariants corresponding to non-crossed chord diagrams and pass-

ports (3.15) take value −1 on the knot (1.7), while no other basic invariants with

non-crossed 2-chord diagrams take non-zero values on this knot. The invariant I⊕
(see subsection 2.3) takes value +2 on this knot. In particular, (1.7) is separated

from the unknit by any of these three invariants, and from the fake weaver’s knot

(1.6) by any of two invariants with non-crossed chord diagrams and passports (3.15).

2
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3.7. Tricot with closed loops is 2-equivalent to tricot with open loops

Tricot with closed loops can be transformed into the unknit by two surgeries:

→ → → → ≡ (3.16)

Passports of these two moves are both equal to ((−1, 1)(1, 0)), their signs are equal

to − and + respectively. Therefore the structure (1.8) cannot be separated from

the unknit by invariants of degree 1. To separate them by degree 2 invariants, let

us connect two singular knots, occurring in (3.16) at surgery points, by a generic

path inside the discriminant:

→ → → → ≡

≡ → → → →

(3.17)

These four surgeries of second order are as follows. The first and the third surgery

have crossed chord diagrams, while the other two have non-crossed diagrams. The

passports of the second and the fourth surgeries are equal to (1, 0)(0, 1)(−1, 0) and

(1, 1)(0,−1)(−1, 1) respectively. The signs of these four surgeries are equal to −,

+, −, and +. Therefore we obtain the following proposition.

Proposition 12. Tricot with closed loops (1.8) is 1-equivalent to the unknit (1.1).

Both degree two invariants corresponding to non-crossed chord diagrams and pass-

ports (3.15) take value −1 on the knot (1.8), while no other basic invariants with

non-crossed 2-chord diagrams take non-zero values on this knot. The invariant I⊕
(see subsection 2.3) takes value +2 on this knot (1.8). In particular, (1.8) is sepa-

rated from the unknit by any of these three invariants, and from the fake weaver’s

knot (1.6) by any of these two invariants with non-crossed chord diagrams and pass-

ports (3.15). 2

Comparing (3.14) and (3.17), we obtain

Proposition 13. Tricot with open loops and tricot with closed loops are not sepa-

rated by the first and second degree invariants.

Proof. The assertion concerning first degree invariants follows from the first state-

ments of propositions 11 and 12. Further, there is a one-to-one correspondence

between the surgeries in (3.14) and (3.17) that preserves both the homotopy types
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of the corresponding immersed loops with two self-intersections in T2 ×R1 and the

signs of these surgeries. Therefore the principal parts of all second degree invariants

take equal values on these surgeries corresponding to each other, and provide equal

contributions to the values of these invariants at the knots (1.7) and (1.8). 2

3.8. Second degree invariants for 1+1 rib with open loops

We can connect this knot with the unknit by the path

→ → → →

→ → → → → ≡

(3.18)

Passports of these moves are equal to

((0,−1)(1, 1)), ((0, 1)(1,−1)), ((0, 1)(1,−1)), and ((0,−1)(1, 1)) (3.19)

respectively; their signs are equal to +,+,−, and −. Therefore 1+1 rib cannot

be distinguished from the unknit shown at the end of (3.18) by invariants of first

degree. This gives us the following statement.

Proposition 14. 1+1 rib is 1-equivalent to the unknit, and is not 1-equivalent to

the horizontally doubled plain knit

; (3.20)

the latter non-equivalence can be recognized by first degree invariants.

The last assertion of this proposition follows from the calculation of §3.1 re-

peated twice; this calculation shows us that the values of degree 1 invariants with

passports (0, 1)(1,−1)) and ((0,−1)(1, 1)) on the knot (3.20) are equal to 2 and −2,

respectively. 2

Now, let us calculate the values of second degree invariants on 1+1 rib knot. To

do this, we connect the second surgery in (3.18) with the third one, and the first

with the fourth one by generic paths inside the discriminant, see sequences (3.21)

and (3.22), respectively.

→ → → → (3.21)

The first surgery of (3.21) has the non-crossed chord diagram, sign − and passport

((0, 1)(1,−2)(0, 1)). The second surgery has the crossed chord diagram and sign +.

→ → → →

→ → → → →

(3.22)
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The first and the last surgeries in (3.22) have non-crossed chord diagrams, passports

equal to ((0,−1)(1, 0)(0, 1)), but different signs (equal to + and − respectively).

The second surgery also has a non-crossed chord diagram; its passport is equal to

((0,−1)(1, 2)(0,−1)) and the sign is equal to −. The third surgery has a crossed

chord diagram and sign +. Thus, in total we have in (3.21) and (3.22) six singular

knots with two self-intersections. Considering all corresponding surgeries, we arrive

at the following statement.

Proposition 15. Both degree two invariants defined by non-crossed chord diagrams

and passports ((0, 1)(1,−2)(0, 1)) and ((0,−1)(1, 2)(0,−1)) take on the knot (1.9)

values equal to −1. All other basic invariants with non-crossed 2-chord diagrams

take zero value on this knot. The invariant I⊕ takes value +2 on the same knot. 2

Corollary 3. Any of three invariants indicated in Proposition 15 separates the knot

(1.9) from the unknit (1.1). Both invariants of degree 2, corresponding to non-

crossed 2-chord diagrams, indicated in the same proposition, separate (1.9) from the

fake weaver’s knot (1.6) and from tricots (1.7) and (1.8).

Proof. The assertions concerning separation of (1.9) from (1.1) and (1.6) are ob-

vious, because all these invariants take zero value on the unknit, and all degree 2

invariants with non-crossed chord diagrams take zero value on the fake weaver’s

knot. To prove the separation of (1.9) from (1.7), we need to compare the lists of

all basic invariants with non-crossed 2-chord diagrams, taking value −1 on the

knots (1.9) and (1.7). Namely, these lists consist of invariants with passports

((0, 1)(1,−2)(0, 1)) and ((0,−1)(1, 2)(0,−1)) in one case, and invariants with pass-

ports ((1, 1)(0,−1)(−1, 1)) and ((1, 0)(0, 1)(−1, 0)) in the other. Since the sample

knots (1.7) and (1.9) were considered in the charts where they have homology classes

(0, 1) and (1, 0) respectively, we need to prove the following statement.

Lemma 1. There does not exist an element of the group SL2(Z) that

a) moves vector (0, 1) to (1, 0) and

b) either moves the non-ordered triplet ((1, 1)(0,−1)(−1, 1)) of elements of Z2

to ((0, 1)(1,−2)(0, 1)) and ((1, 0)(0, 1)(−1, 0)) to ((0,−1)(1, 2)(0,−1)), or moves

the triplet ((1, 1)(0,−1)(−1, 1)) to ((0,−1)(1, 2)(0,−1)) and ((1, 0)(0, 1)(−1, 0)) to

((0, 1)(1,−2)(0, 1)).

This lemma follows easily from the fact that both target triplets do contain

coinciding elements, and the source triplets do not. 2

Finally, the last assertion of Corollary 3, concerning non-equivalence of (1.9)

and (1.8), follows from the 2-equivalence of (1.7) and (1.8), see Proposition 13. 2
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3.9. Second degree invariants for 1+1 rib with closed loops

Let us connect this structure with the unknit by the path

→ → ≡ →

→ → ≡ →

→ → → → .

(3.23)

The signs of these four surgeries are equal to − , + , + and − respectively; their

passports are equal to

((0, 1)(1,−1)); ((0, 1)(1,−1)); ((0,−1)(1, 1)) and ((0,−1)(1, 1)). (3.24)

Therefore 1+1 rib with closed loops cannot be distinguished from the unknit by

invariants of degree 1.

Now, let us connect the third surgery in (3.23) with the fourth one (see (3.25)),

and the first with the second one (3.26).

→ → → →
(3.25)

This path contains two surgeries of second order. The first of them has the non-

crossed 2-chord diagram, the passport equal to (0,−1)(1, 2)(0,−1)), and the sign

equal to −; the second surgery has the crossed chord diagram and sign equal to +.

→ → → → →

→ → → → → → →

→ → ≡ → →

(3.26)

This path contains seven surgeries. Three of them, namely, the third, the fifth,

and the sixth, correspond to crossed 2-chord diagrams, the signs of all of them are

equal to +. The first, the second, the fourth, and the seventh surgeries have non-

crossed chord diagrams; their passports are equal respectively to ((0, 1)(1,−2)(1, 0)),

((0, 1)(1, 0)(1,−1)), ((1, 0)(0, 0)(1,−1)), and ((0,−1)(1, 0)(0, 1)); their signs are

equal to +, −, −, and −. Considering all nine surgeries of (3.25) and (3.26) gives

us the following result.

Proposition 16. 1+1 rib knot with closed loops (1.10) cannot be distinguished from

the unknit by invariants of degree 1. The invariants of degree 2 defined by non-

crossed chord diagrams and passports ((0, 1)(1, 0)(0,−1), ((0,−1)(1, 2)(0,−1)), and

((0, 1)(1,−2)(0, 1)) take on this knot values equal to 2, −1 and −1 respectively. All

other basic invariants of degree 2 with non-crossed chord diagrams take zero value

on this knot. The invariant I⊕, defined by the crossed chord diagram, takes value

−2 on the same knot. 2
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Corollary 4. The 1+1 rib structure with closed loops (1.10) is not 2-equivalent to

any of the knots (1.1), (1.6), (1.7), (1.8), and (1.9).

This statement follows immediately from the comparison of values of second

degree invariants on all these knots. 2

3.10. Second degree invariants for 1+1 wire netting

It will be convenient for us to consider the 1+1 wire netting structure in the

chart in T2, in which it will have the form shown in (2.1) on the right. Consider

the following path connecting this structure with the unknit:

→ → ≡ → →
(3.27)

This path intersects the discriminant twice with signs + and − respectively; pass-

ports of both intersections are equal to ((0,−1)(1, 1)). Therefore 1+1 wire netting

is 1-equivalent to the unknit (1.1). Further, let us join the corresponding singular

knots by a path inside the discriminant:

→ → → →
(3.28)

This path traverses twice the self-intersection locus of the discriminant. The first

traversing point has the crossed chord diagram
⊕

and sign +; the second one

has the non-crossed 2-chord diagram, passport ((0,−1)(1, 2)(0,−1)), and sign −.

Therefore we have the following statement.

Proposition 17. The 1+1 wire netting (1.11) is 1-equivalent to the unknit (1.1).

The invariant I⊕ takes value +1 on (1.11). The degree 2 invariant with non-crossed

chord diagram and passport ((0,−1)(1, 2)(0,−1)) takes value −1 on (1.11). All other

basic degree 2 invariants with non-crossed chord diagram take zero value on (1.11).

In particular, the invariant I⊕ separates this structure (1.11) from any of knots

(1.1), (1.6)—(1.10) and their mirror images. 2

4. Proof of Theorem 3

The group π1(K
2) is generated by two elements a, b with unique basic relation

a = bab, in particular any of its elements can be reduced to the normal form apbq,

where p and q are integers. An element of this group, represented by a word in

the letters a, b, a−1 and b−1, violates the orientation of K2 if and only if the total

number of letters a and a−1 in the word is odd. In our pictures (1.12), (1.13) and all

pictures of the present section, we choose the left-hand bottom corner of the picture

frame for the basepoint; generators a and b of π1(K
2) are represented by the vertical

and horizontal boundary segments originating from this corner and oriented up and

to the right, respectively. The group H1(K
2,Z) is equal to Z ⊕ Z2, its free part is

generated by the class {a} of the loop a.
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Let us connect the structure (1.12) in K2 ×R1 with the unknit by the sequence

→ → ≡ → → (4.1)

This sequence contains two surgeries; their passports are equal to

(ba−1, aba) and (ab−1, b) (4.2)

Their homology classes are different; in particular, they define different irreducible

components of the discriminant variety.

It follows from Proposition 4, that both of these discriminant components have

global transversal orientations. Indeed, the simultaneous conjugation with any

element of π1(K
2) violating the orientation of K2 cannot preserve the passport

(ab−1, b), because the conjugation with a word in letters a, b, a−1, b−1 sends b to

(−1)kb, where k is the total number of letters a and a−1 in this word, and this

total number should be odd. Also, the simultaneous conjugation with such a word

cannot permute the words ab−1 and b because it should preserve the corresponding

homology classes in H1(K
2). The proof for the passport (ba−1, aba) is the same.

Further, we need to prove the homological condition that the 1-cohomology

classes in C∞(S1,K2 × R1), defined by intersection indices with these (arbitrarily

oriented) components of the discriminant are equal to 0, see §2.4. This condition

follows immediately from the following lemma. For any h ∈ π1(M
3), let Ωh(M3)

be the connected component of C∞(S1,M3) consisting of maps sending the funda-

mental cycle of S1 to a loop homotopic to h.

Lemma 2. Any element of H1(Ωa(K2 × R1)) can be represented by a 1-cycle not

meeting the discriminant subvariety.

Proof. Let S1
1 and S1

2 be two circles with coordinates x and λ ∈ R/2πZ. Any

1-homology class in Ωa(M3), M3 = K2 ×R1, can be represented by a smooth map

Θ : S1
1×S1

2 → M3 considered as a family of maps θλ : S1
1 → M3 depending smoothly

on the parameter λ ∈ S1
2 , where Θ(0, 0) is the basepoint in M3, and the homotopy

class of the loop Θ(·, 0) : S1
1 → M3 in π1(M

3) is equal to a. We can assume

that this loop is a smooth knot in M3. The class of the loop Θ(0, ·) : S1
2 → M3

in π1(M
3) should commute with the element a. It is easy to calculate that it is

possible only if this class is equal to ak for some integer k. There is an obvious map

Θ : S1
1 × S1

2 → M3 with such homotopy classes of restrictions on coordinate circles

S1
1 , S1

2 : it is the family of maps θλ obtained from one another by sliding along the

source circle: θλ(x) ≡ θ0(x− kλ). On the other hand, all maps S1 ×S1 → K2 ×R1

with homotopic restrictions on the coordinate cross (S1×0)∪(0×S1) are homotopic

to one another since π2(K
2) = 0. 2

Therefore both components of the discriminant with passports (4.2) define dual

knot invariants of degree 1. These invariants separate the structure (1.12) from the

trivial knot shown on the left of (4.1), and also from the mirror image (1.12) of this

structure.
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In a similar way, we connect the structure (1.13) with the trivial one by the path

→ → ≡ → → (4.3)

These two surgeries have the same passports (4.2) as the surgeries of (4.1), hence

the structure (1.13) is separated from the trivial knot and from (1.13) by the same

two independent degree 1 knot invariants.

It is easy to see that the first (respectively, the second) surgeries in (4.1) and

(4.3) cross these components of Σ in different directions, therefore the correspond-

ing invariants separate also (1.12) from (1.13) and (1.12) from (1.13), but do not

separate (1.12) from (1.13) or (1.12) from (1.13).
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