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INVARIANTS OF KNOTS, PLANE ARRANGEMENTS,
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V. A. VASSILIEV

Abstract. We describe several objects and problems of homo-
logical combinatorics, arising naturally in the theory of discrimi-
nants and plane arrangements, in particular the homology groups
of complexes of connected and two-connected graphs and hyper-
graphs. Knot-theoretical motivations and applications are indi-
cated, as well as first results of related calculations of homology
groups of spaces of knots and generic plane curves. Unsolved prob-
lems are discussed.

Introduction

The topological study of discriminants, i.e. of spaces of singular
geometrical objects, was started by V. Arnold about 1968, see [2], [3].
It is closely related to the investigation of complementary spaces of
nonsingular objects.

Later ([40], [38]) it became clear that a main tool in calculating
homology groups of such objects are the simplicial (or, more generally,
conical, see [39]) resolutions of discriminant spaces.

Below we discuss combinatorial structures, arising naturally in this
study, in particular complexes of connected and two-connected graphs
(which appear in the calculation of homology groups of spaces of knots
and links, [41]) and more general complexes of connected k-hypergraphs,
which appear in the study of spaces of k-fold points free generic maps
M → Rn, see [44].

Another issue of these objects is the homological theory of plane
arrangements (also founded by Arnold, see [1]), in which simplicial
resolutions also are extremely effective.

In § 3.5 we present the first nontrivial positive-dimensional cohomol-
ogy classes of spaces of knots in Rn, obtained by these techniques. In § 5
we formulate main nonsolved problems of the theory: 1) the homotopy
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splitting conjecture (which states a far extension of the Kontsevich re-
alization theorem for knot invariants), 2) the calculation of equivariant
homology groups of our complexes, and 3) the realization of new co-
homology classes of knot spaces (which are by now calculated in quite
implicit terms).

1. Combinatorial theory

1.1. Complexes of connected graphs. Let 〈k〉 be a set of cardinal-
ity k, say the set of natural numbers 1, 2, . . . , k. Consider the simplex
∆(k) with

(
k
2

)
vertices, which are in one-to-one correspondence with all

two-element subsets of 〈k〉. Any face of this simplex can be depicted
by a graph with k nodes corresponding to elements of 〈k〉: this graph
contains the segment ab, connecting two elements a, b ∈ 〈k〉, if and
only if the vertex, corresponding to the set {a, b}, belongs to our face.
Below we consider only the graphs which can be obtained in this way,
i.e. having no loops and no multiple edges, but maybe with isolated
nodes.

The set of all faces of the simplex ∆(k) forms an acyclic simplicial
complex, which also will be denoted by ∆(k). Canonical generators of
this complex are graphs with ordered edges, while permuting the edges
we send such a generator to ± itself depending on the parity of the
permutation. We will always choose the generator, corresponding to
the lexicographic order of edges induced by some fixed order of initial
k nodes. The boundary of a graph is the formal sum of all graphs
obtained from it by removing one of its edges, taken with coefficients
1 or −1.

A graph is called connected if any two points of 〈k〉 can be joined by
a chain of its segments.

Denote by M(k) the set of all faces in ∆(k) corresponding to all
nonconnected graphs. Obviously, it spans a subcomplex of the acyclic
complex ∆(k).

Definition. The complex of connected graphs associated with the
set 〈k〉 is the quotient complex ∆(k)/M(k); this quotient complex is
denoted by ∆1(k).

Example 1. Suppose that k = 3 so that the possible nodes of
graphs are numbered by 1, 2 and 3. The simplex ∆(3) is a triangle,
whose vertices are called (1, 2), (1, 3) and (2, 3). Among its 7 faces only
four correspond to connected graphs, namely, all faces of dimension 1
or 2. In particular, the homology group Hi(∆

1(3)) is trivial if i 6= 1
and is isomorphic to Z2 if i = 1.
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Theorem 1. a) For any k, the group Hi(∆
1(k)) is trivial for all

i 6= k − 2, and Hk−2(∆
1(k)) ' Z(k−1)!.

b) A basis in the group Hk−2(∆
1(k)) consists of all snake-wise (home-

omorphic to a segment) connected trees, one of whose endpoints is fixed.

Statement a) of this theorem is a corollary of a general theorem of
Folkman [22] on homology of geometric lattices, see e.g. [13]. A proof of
b) and another proof of a), based on the Goresky–MacPherson formula
for the homology of plane arrangements, is given in [43], see also § 2.1
below.

The number (k − 1)! from this theorem is well-known to specialists
in the theory of hyperplane arrangements. Consider the space Ck with
complex coordinates x1, . . . , xk, and the subset Σ ⊂ Ck which is the
union of all complex hyperplanes distinguished by equations xi = xj,
1 ≤ i < j ≤ k. The cohomology ring of its complement Ck\Σ was
calculated by Arnold and Fuchs about 1968 (see the work [1], in which
the topological study of plane arrangements was essentially started).

Theorem 2 (see [1]). The cohomology ring of the space Ck\Σ is
isomorphic to that of the product space

(1) S1 × ∨2S
1 × · · · × ∨k−1S

1,

where ∨mS1 is the wedge of m circles. In particular the Poincaré poly-
nomial of this space is equal to (1+ t)(1+2t) · · · (1+ (k− 1)t), and the
upper non-trivial homology group of our space, Hk−1(Ck\Σ), is equal
to Z(k−1)!.

We will see a little later that (k−1)! from this statement and (k−1)!
from Theorem 1 are one and the same (k − 1)!.

1.2. Homology of 2-connected graphs. Definition. A graph
with k nodes is l-connected if it is connected, and removing from it
any j nodes, j < l, together with all incident edges, we obtain also a
connected graph (with k−j nodes). Again, the set of all not l-connected
graphs is a subcomplex of ∆(k).

The complex ∆l(k) of l-connected graphs is the quotient complex of
∆(k), generated by all faces, corresponding to l-connected graphs. Its
homology group is obviously isomorphic to the Borel–Moore homology

3



1
2 3

4 4
32

1−�
� @

@
1
2 3

4 4
32

1−@
@�
�

�
�@
@

1
2 3

4 4
32

1−�
�
@

@
@

@�
�

Figure 1. Basic chains for two-connected graphs with 4 vertices

group1 of the simplex ∆(k) (considered as a topological space) with all
not l-connected faces removed.

In what follows we will consider only the complexes of connected
(=1-connected) and 2-connected graphs. Many interesting results con-
cerning the cases of greater l, and also their relations with classical
problems of combinatorics, are given in the work [8].

Theorem 3. For any k, the group Hi(∆
2(k)) is trivial if i 6= 2k− 4

and is isomorphic to Z(k−2)! if i = 2k − 4.

This theorem was proved independently and in different ways by
E. Babson, A. Björner, S. Linusson, J. Shareshian, and V. Welker, on
one hand, and almost simultaneously (only a day later) by V. Turchin
on the other, see [8], [36].

Example 2. The unique face of ∆(3), corresponding to a two-
connected graph, is the triangle itself. Thus Hi(∆

2(3)) is trivial if
i 6= 2 and is isomorphic to Z if i = 2.

The simplex ∆(4) has
(
4
2

)
= 6 vertices. The corresponding com-

plex of two-connected graphs consists of the simplex itself, all 6 its
faces of dimension 4, and 3 faces of dimension 3, corresponding to all
cyclic graphs of length 4. It is easy to calculate that Hi(∆

2(4)) = 0
for i 6= 4 and H4(∆

2(4)) ' Z2. Namely, this homology group is gen-
erated by three 4-chains, any of which is the difference of two graphs
with 5 edges, obtained from the complete graph by removing edges,
connecting complementary pairs of points, see fig. 1. Such basic chains
are numbered by unordered partitions of four points into two pairs and
satisfy one relation: the sum of all three chains is equal to the boundary
of the complete graph.

1.3. Complexes of connected hypergraphs. Consider the same k-
element set 〈k〉 as in § 1.1. For any m < k denote by ∆m(k) the simplex
with

(
k
m

)
vertices, corresponding to all m-point subsets of 〈k〉. Faces

of this simplex, i.e. collections of m-element subsets, are called the

1i.e. the homology group of the complex of locally finite singular chains, or, iso-
morphically, the homology group of the one-point compactification reduced modulo
the added point. (Recall that the one-point compactification of a compact space is
this space with a separated additional point.)
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m-hypergraphs with given k vertices; in particular the 2-hypergraphs
are just the usual graphs.

A face of ∆m(k) is connected if any two points of 〈k〉 can be joined
by a chain of points, any two neighbors in which belong to a m-element
subset corresponding to some vertex of this face.

Again, the union of all non-connected faces forms a subcomplex of
the (acyclic) simplicial complex formed by all faces of the simplex
∆m(k). The complex ∆1

m(k) of connected m-hypergraphs is defined as
the corresponding quotient complex.

Example 3. ∆1
2(k) ≡ ∆1(k), see § 1.1.

The simplex ∆3(4) is a tetrahedron; all its nonconnected faces are
just its vertices, therefore the group H∗(∆

1
3(4)) is isomorphic to Z3 in

dimension 1 and trivial in all other dimensions.
The simplex ∆3(5) has

(
5
3

)
= 10 vertices. All its non-connected faces

are: 0) all 10 vertices; 1) 15 segments; 2) 20 triangles; 3) 5 tetrahedra.

These complexes were studied [17] in connection with the topologi-
cal study of spaces of generic plane curves and complements of plane
arrangements, see § 2 below; another motivation comes from the com-
plexity theory, see [16], [14].

In particular, the following facts were proved.

Theorem 4 (see [17]). The simplex ∆m(k) reduced modulo the union
of non-connected faces is homotopy equivalent to a wedge of spheres, in
particular all homology groups Hd(∆

1
m(k)) are torsion-free. Moreover,

these groups can be nontrivial only for d equal to k− (m− 2)t− 2, 1 ≤
t ≤ k/m. The rank of these groups always is a multiple of

(
k−1
m−1

)
, and

in the higher possible dimension d = k −m the rank of Hk−m(∆1
m(k))

is equal to
(

k−1
m−1

)
.

A general formula for these ranks also is given in [17] (see Theorem
4.5 there), but it is much more complicated.

A. Merkov [27] calculated some similar homology groups for com-
plexes of (hyper)graphs with colored nodes, which appear in problems
like the homotopy classification of links or ornaments, where only (mul-
tiple) intersections of different components are forbidden, cf. [20], [21],
[44].

Certainly, similar problems on the homology groups of complexes
∆l

m(k) of l-connected m-hypergraphs with arbitrary l also can be con-
sidered.
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2. Topology of plane arrangements and simplicial
resolutions

2.1. Goresky-MacPherson formula and a proof of Theorem 1.
Theorem 2 is the first result of the topological theory of (complements
of) plane arrangements; for some further results see [18] and [30]. One
of final results here is the general formula by Goresky and MacPher-
son [23], expressing the cohomology group of the complement of an
arbitrary collection of planes in Rm.

Let {Vj}, j ∈ J, be any finite set of affine planes (of arbitrary dimen-
sions) in Rm, V = ∪j∈JVj, and we are interested in the cohomology
group of Rm\V . First of all, by the Alexander duality this group is
isomorphic to the Borel–Moore homology group of the set V :

(2) H̃ i(Rm\V ) ' H̄m−i−1(V ),

where H̃∗ is the cohomology group reduced modulo a point. For any
subset I ⊂ J denote by VI the plane ∩j∈IVj.

Theorem 5. There is splitting formula

(3) H̄r(V ) '
⊕
L=VI

H̄r−dim L(K(L)),

where summation is taken over all geometrically distinct planes L of
the form VI , I ⊂ J, and the space K(L) is defined as follows.

For any plane L = VI , consider the simplex ∆(L), whose vertices
correspond formally to all indices j ∈ J such that Vj ⊃ L. To any face
of this simplex there corresponds a plane, also containing L, namely
the intersection of all planes Vj corresponding to all vertices of this
face. This face is called marginal if this intersection plane is strictly
greater than L. Certainly, all marginal faces constitute a subcomplex
of ∆(L). The space K(L) is defined as the simplex ∆(L) from which
all the marginal faces are removed.

Remark. The Euler characteristic of this complex, χ(K(L)), is
nothing other than the Möbius function of the plane L, well-known to
the combinatorialists.

Theorem 5 (with the complex K(L) replaced by a different but ho-
mologous complex K̃(L), defined in terms of the order complex of the
plane arrangement V ) is a version of Theorem A from § III.1.3 of [23].

Corollary 1. The cohomology group of the complement of an
arbitrary affine plane arrangement V depends only on its combinatorial
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data, i.e. on dimensions of all spaces VI (and the information which
of them are empty).

Example 4. Suppose that m = 2k, so that Rm ∼ Ck, and V is the
arrangement of complex hyperplanes studied in Theorem 2. Consider
the smallest stratum L = VI of this arrangement, i.e. the (complex one-
dimensional) intersection of all planes {xi = xj}. The corresponding
simplex ∆(L) can be naturally identified with the simplex ∆(k) from
Theorem 1: its vertex corresponding to the plane {xi = xj} corresponds
also to the edge ij of the complete graph. It is easy to see that the
marginal faces of this simplex are exactly the ones corresponding to
nonconnected graphs.

Now we have everything to prove part a) of Theorem 1. Indeed, if
i < k − 2, then Hi(∆

1(k)) = 0, because there are no connected graphs
with k nodes and < (k − 1) edges. To prove the same for i > k − 2
consider the space Rk and the real hyperplane arrangement V in it given
by the same (real) equations xi = xj. By the formula (3), applied to
the smallest stratum VI ∼ R1 of this arrangement, the i-dimensional
homology group of the complex ∆1(k) is the direct summand in the
(i + 1)-dimensional homology group of the (k− 1)-dimensional variety
V̄ , hence it is trivial for i > k− 2. So, we have proved that the unique
non-trivial homology group of the complex ∆1(k) is Hk−2. Moreover,
this is true for any coefficient group, thus by the formula of universal
coefficients there is no torsion in this group. To calculate its rank, it
remains to count the Euler characteristic of the complex of connected
(or, equivalently, nonconnected) graphs, which is easy and terminates
the proof of Theorem 1a).

Also Theorem 4 concerning complexes of connected hypergraphs has
an arrangement-theoretical application. Consider the “m-equal” vari-
ety in Ck or Rk, i.e. the union of all

(
k
m

)
planes given by equations

xi1 = xi2 = · · · = xim

for some 1 ≤ i1 < · · · < im ≤ k, see [17]. Then the complex K(L) from
the formula (3), corresponding to the smallest stratum L = {x1 = x2 =
· · · = xk}, coincides with the complex ∆1

m(k).

2.2. Homotopical version of the Goresky-MacPherson formula.
In fact, the formula (3) has a homotopical version, expressing the ho-
motopy type of the one-point compactification V̄ of V in the same
terms.
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Theorem 6 (see [43], [49]). There is a homotopy equivalence

(4) V̄ ∼
∨

L=VI

Σdim L
(
K(L)

)
,

where Σi is the i-fold suspension, and K(L) is the one-point compact-
ification of K(L) or, which is the same, the quotient space of ∆(L) by
the union of the marginal faces.

This theorem implies in particular, that in the statement of Corollary
1 the words “the cohomology group” can be replaced by “the stable ho-
motopy type”, in particular by “any extraordinary cohomology group”.

2.3. Geometrical resolutions of plane arrangements. Theorem
6 (especially its proof from [43]) is a model application of a general
method of computing homology groups of complements of discriminant
spaces. It is based on the techniques of simplicial resolutions, which is
just a continuous analog of the combinatorial formula of inclusions and
exclusions. All the above combinatorial and graph-theoretical notions,
like the complexes of connected and 2-connected (hyper)graphs and
marginal faces appear naturally in this method.

For two arrangements of 3-lines, shown in the left-hand part of fig. 2,
these resolutions are given in the right-hand part of the same picture.

The general construction is as follows. First, we embed all our planes
Vj separately and generically into the space RN of a very large dimen-
sion. For any point x ∈ V we take all its images under all these
embeddings (the number of them is equal to the number of planes Vj

containing x) and denote by ∆(x) the convex hull in RN of all these im-
ages, see fig. 2. If N is sufficiently large and the planes Vj are embedded
generically, then for any x this convex hull is a simplex, whose vertices
correspond to all these images, and such simplices corresponding to dif-
ferent points x do not meet in RN . The resolution space Ṽ is defined
as the union of all such simplices. The topological type of this space
does not depend on the choice of generic embeddings Vj → RN . There

is natural map Ṽ → V : any simplex ∆(x) is mapped into the point
x. This map is proper and defines a homotopy equivalence Ṽ ∼ V ;
moreover it can be extended by continuity to the map of one-point

compactifications Ṽ → V̄ , which also is a homotopy equivalence. The
space Ṽ is called the simplicial resolution of V. It turns out that often
it is much easier to study the topology of Ṽ than that of V .

2.4. Proper pre-image and filtration in the resolution space.
The next useful notion here is the proper pre-image of a plane VI ⊂ V.
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Figure 2. Simplicial resolutions

Consider all generic points of VI , i.e. the points which do not belong
to strictly smaller planes VJ ⊂ VI , and take the union of complete pre-
images in Ṽ of these generic points. The proper pre-image ṼI of the
plane VI is the closure of this union. It is easy to see that this proper
pre-image is naturally homeomorphic to the direct product VI ×∆(VI)
(where the simplex ∆(VI) is defined after Theorem 5). E.g. in the
upper (respectively, lower) row of fig. 2 the complete pre-image of any
line of V is the corresponding line in Ṽ together with two segments
joining it to other lines (respectively, with the central triangle). How-
ever the corresponding proper pre-images in both cases consist only on
the corresponding lines in Ṽ .

The space Ṽ (and hence also its compactification Ṽ ) admits a useful
filtration. Namely, its term Fi(Ṽ ), i = 1, . . . ,m, is the union of all
proper pre-images of planes VI ⊂ V, whose codimensions m − dim VI

do not exceed i. In the case of the compactified space Ṽ we add to all
these terms the added point (which is the term F 0 of the corresponding
filtration {F j}).

Now we can explain the notion of the marginal face. Indeed, the
term Fi\Fi−1 of our filtration is the union of proper pre-images

(5) ṼI ∼ VI ×∆(VI) ∼ Rm−i ×∆(VI)
9



of all planes VI of codimension exactly i, from which their intersections
with all smaller terms of the filtration are removed. It is easy to under-
stand that for any VI this intersection corresponds in the right-hand
part of (5) to the direct product Rm−i× (the union of marginal faces
of ∆(VI)).

The splitting formula (3) can be now interpreted in the following
way. Consider the spectral sequence Er

p,q → H̄p+q(Ṽ ) ' H̄p+q(V ). By

definition, its first term E1
p,q is isomorphic to H̄p+q(Fp(Ṽ )\Fp−1(Ṽ )).

Then this spectral sequence degenerates in the first term: E∞
p,q ≡ E1

p,q.

The homotopical extension (4) of this formula means that our spec-

tral sequence (and the filtered space Ṽ ) splits in much stronger homo-
topical sense:

(6) Ṽ ∼ F 1 ∨ (F 2/F 1) ∨ . . . ∨ (Fm/Fm−1).

Remark. The method of simplicial resolutions is a continuous ver-
sion of the combinatorial inclusion-exclusion formula. Indeed, suppose
we have a finite union of finite sets, A = ∪Ai. To calculate the car-
dinality of this union, we construct the simplicial resolution of A, i.e.
first take all sets Ai separately; further, if some point x ∈ A belongs
to two different sets Ai, Aj, then we join the corresponding points of
the separated sets Ai, Aj by a segment; if x ∈ Ai ∩ Aj ∩ Ak then after
this step we get three segments, which should be filled in by a trian-
gle, etc. The resulting complex Ã is obviously homotopy equivalent to
the initial space A : from any point x ∈ A we obtain a simplex of a
certain dimension. In particular the Euler characteristics of both sets
coincide. But the Euler characteristic of the discrete set A is just its
cardinality, and that of Ã is the total number of points in all separated
sets Ai, minus the number of segments, plus the number of triangles
etc. The similar construction, generalizing both this discrete situation
and the above-described case of plane arrangements, can be applied
to the calculation of homology groups of an arbitrary “tame” union
of topological sets: say, it is sufficient to demand that this union is
a CW-complex, and all (multiple) intersections of subsets Vi are its
subcomplexes.

Remark. However, our choice of the filtration in the resolved plane
arrangement is not so standard. Indeed, there is a canonical filtration
in the simplicial resolution of an union V =

⋃
Vi: its term Fi consists

of all inserted simplices of dimensions ≤ i − 1. The corresponding
spectral sequence is called the Mayer-Vietoris spectral sequence. It
turns out that in the case of plane arrangements this filtration is not
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perfect: the Mayer-Vietoris spectral sequence degenerates very slowly,
and its intermediate terms are horrible, unlike the case of the filtration
described earlier.

Remark. Another simplicial resolution (which leads to the genuine
Goresky-MacPherson formula and the version of Theorem 6 obtained
in [49]) is based on the notion of the order complex κ(V ) of our plane
arrangement V and all its planes VI ordered by inclusions. (For the
notion of the order complex of a partially ordered set, see e.g. [23].)
Namely, this resolution can be constructed as a subset of the direct
product κ(V ) × Rm : to any plane VI ⊂ V we associate the subcom-
plex κ(VI) ⊂ κ(V ) subordinate to this plane, and define the simplicial
resolution V̌ as the union of direct products κ(VI) × VI over all such
planes.

I often prefer to use the former order complex, because its con-
struction is more local. Indeed, the following two “arrangements”

aaa
!!!

aaa
!!!�coincide close to the most complicated point, but their

resolutions based on the notion of the order complex do not. Certainly,
the second “arrangement” does not exist. However, the theory of plane
arrangements is just a nice tool for debugging general topological meth-
ods of algebraic geometry. Therefore we need to think always, which of
our constructions can be generalized immediately, and which use too
much the features of the linear algebra.

3. Applications to the knot theory

3.1. “Alexander duality”. Let us recall the “discriminant-theoretical”
approach to the construction of knot invariants (and, more generally, to
the calculation of cohomology groups of spaces of knots in Rn, n ≥ 3.)

Consider the functional space K of all C∞-smooth maps S1 → Rn.
Let Σ ⊂ K be the discriminant set of all maps which are not smooth
embeddings, i.e. have either self-intersections or singular points. The
numerical invariants of knots in R3 are nothing but the elements of the
group H0(K\Σ).

To investigate this group (as well as the similar higher-dimensional
cohomology groups, in particular in the case n > 3) we use a sort of
the Alexander duality2

(7) H̃∗(K\Σ) ∼ H̄dimK−∗−1(Σ).

2In the similar finite-dimensional case (when the functional space K is the space
of polynomials of a given degree in one variable, and Σ is the set of polynomials
with multiple roots) this reduction was used first by Arnold in his work [2], in which
the topological study of complements of generalized discriminants was initiated, see
also [3].
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Of course, in our infinite-dimensional situation the formula (7) is sense-
less, however the method of simplicial resolutions allows us to supply
it with some sense in the following way. We consider sufficiently large
finite-dimensional approximating subspaces Kd ⊂ K (say, given by
Fourier polynomials of restricted degree), so that the groups H∗(Kd\Σ)
weakly converge to H∗(K\Σ), and make the similar reduction

(8) H̃∗(Kd\Σ) ∼ H̄dimKd−∗−1(Σ ∩ Kd)

in any of them. Then we consider the simplicial resolution of the cor-
responding set Σ ∩ Kd (see the next subsection), and calculate the
groups H̄i(Σ ∩ Kd) of small codimension dimK − i by means of the
corresponding spectral sequence. It turns out that these spectral se-
quences (more precisely, the Alexander dual cohomological spectral
sequences converging to groups H∗(Kd\Σ) and given by the formal
inversion Ep,q

r (Kd) ≡ Er
−p,dimKd−q−1

(Kd)) stabilize when the approxi-
mations get better and better. The stable spectral sequence converges
to some subgroup of the left-hand side of (7) (moreover, if n > 3 then
to entire this group). Therefore we can work with the space K and its
subset Σ as with spaces of very large but finite dimensions.

3.2. Simplicial resolution. Keeping all this in mind, let us describe
the simplicial resolution of the discriminant set Σ.

First, we consider the tautological normalization of Σ (which is the
direct analog of the first step “to embed all spaces Vi separately” in the
construction from § 2.3). It is defined by eliminating the quantifiers.
Indeed, the space Σ is defined by the formula
(9)
Σ =

{
f ∈ K|∃x, y ∈ S1 : ((x 6= y)&(f(x) = f(y)) or ((x = y)&(f ′(x) = 0)))

}
.

Its normalization σ1 is defined as the set of pairs (f ; (x, y)) satisfying
the same conditions, namely by the formula
(10)
σ1 = {(f ; (x, y))| ((x 6= y)&(f(x) = f(y)) or ((x = y)&(f ′(x) = 0))} .

By definition it is a subset of the direct product K × B(S1, 2), where

B(S1, 2) is the space of all unordered pairs of points in X (may be
coinciding); this space is diffeomorphic to the closed Möbius band.

More precisely, σ1 is the space of a vector bundle with base B(S1, 2),
whose fibers are vector subspaces of codimension n in K. This bundle
(respectively, entire manifold σ1) is orientable if and only if n is even
(respectively, odd). There is natural epimorphic map σ1 → Σ induced

by the obvious projection of the product K × B(S1, 2) onto the first
12



factor. Its pre-image over any point f ∈ Σ consists of all pairs (x, y) ⊂
S1 such that f(x) = f(y) (x 6= y) or x = y and f ′(x) = 0.

Exactly as in the case of plane arrangements, for any such point
f we consider the simplex δ(f) whose vertices correspond to all such
pairs (x, y) respected by f . (Using only generic finite-dimensional ap-
proximations Kd ⊂ K we can avoid the points f for which the number
of such pairs is infinite.) The simplicial resolution σ is defined as the
union of all such simplices:

(11) σ =
⋃
f∈Σ

f × δ(f).

The obvious projection π : σ → Σ induces an isomorphism of Borel–
Moore homology groups,

H̄∗(σ ∩ π−1(Kd)) ' H̄∗(Σ ∩ K),

for any approximating space Kd.

3.3. Filtration. The space σ admits a useful filtration (by the com-
plexities of underlying maps f ∈ Σ) which allows us to calculate these
homology groups. Namely, given a map f ∈ Σ, its complexity c(f) is
the number of independent conditions as in the right-hand part of (9)
or (10), satisfied by f .

Example 5. If f has p different double points and no other singu-
larities, then c(f) = p. If f has exactly one self-intersection point of
multiplicity k then c(f) = k − 1. In these two cases the corresponding
simplices δ(f) have respectively p and

(
k
2

)
vertices.

Now, we define the term Fc of our filtration in σ as the closure of
the union of all simplices f × δ(f) over all f ∈ Σ of complexity ≤ c.

In particular the manifold σ1 coincides with the first term F1 of this
filtration.

This filtration is motivated by the fact that for any c the difference
Fc\Fc−1 is the space of a (dimK−nc)-dimensional vector bundle over a
tame finite-dimensional base, consisting of finitely many smooth strata
corresponding to all combinatorial types of singularities of complexity
c. So we kill the infinite-dimensionality of our problem.

Example 6. If f has exactly p different double points, and no
other singularities, then for any c δ(f) ∩ Fc is the union of all (< c)-
dimensional faces of the (p− 1)-dimensional simplex δ(f).

If f has exactly one self-intersection point of multiplicity k, then the
corresponding simplex f × δ(f) lies in Fk−1 and is naturally identified
with the simplex ∆(k) of graphs, whose k nodes correspond to all k
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points of S1 glued together by the map f . Its intersection with the
smaller term of filtration, δ(f) ∩ Fk−2, is exactly the union of all faces
corresponding to nonconnected graphs. The stratum of σ (respectively,
of σ\Fk−2), corresponding to such singular points, is the fiber bundle,
whose base is the configuration space B(S1, k) of all k-subsets in S1,
and the fiber over such a configuration is the product of the simplex
∆(k) (respectively, the complex ∆1(k)) and the subspace of codimen-
sion n(k − 1) in K (consisting of all maps S1 → Rn gluing together all
points of this k-subset).

The study of more complex strata (corresponding to finitely many
multiple points) can be reduced to this one: the corresponding simplices
δ(f) are the joins of smaller simplices corresponding to all multiple
points of f , and their subsets lying in the highest possible term of the
filtration are the joins of similar subsets for these smaller simplices.

E.g. the part of Fp\Fp−1, corresponding to the singularity type “p
double points” is the space of a fiber bundle, whose base is the space
of all chord diagrams (i.e. of collections of 2p points in S1 partitioned
into pairs), and the fiber is the product of an open (p− 1)-dimensional
simplex and a vector space of codimension np in K. Almost all of these
(p−1)-dimensional simplices are the interior parts of simplices f×δ(f)
for maps f having exactly p different double points, but not all: say, if
f has p′ > p double points, then all (p − 1)-dimensional open faces of
the corresponding (p′−1)-dimensional simplex also belong to this part
of Fp\Fp−1.

Theorem 1 implies in particular the following corollary: calculating
the knot invariants we may ignore the singular maps with intersections
of multiplicity > 3 (and maps with 3-fold intersections can provide only
relations, and not generators in the space of invariants.) Similarly, if
we calculate the 1-dimensional cohomology group of the space of knots
in R3, then only maps with intersections of multiplicity 2, 3 and at
most one point of multiplicity 4 should be taken into account.

3.4. Auxiliary filtrations and two-connected graphs. Kontsevich
proved that in the case of coefficients in C our stable spectral sequence
degenerates at the first term: E∞ ≡ E1. In the case n = 3 for the
diagonal terms E−i,i, responsible for the knot invariants, this follows
from his integral representation, see [25], [10]. However, the complexity
of calculation of this first term (i.e., of Borel–Moore homology groups
of terms Fp\Fp−1) grows exponentially with p. Even the modern com-
puters was able to calculate the terms E−i,i only for i ≤ 9, see [9],
and the calculation of terms Ep,q with p + q > 0, responsible for the
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(p+q)-dimensional cohomology of the space of knots is even much more
complicated.

To accomplish these calculations, we use auxiliary filtrations in the
terms Fp\Fp−1 of the main filtration generating this spectral sequence
(or, equivalently, in the bases of corresponding (dimK−np)-dimensional
vector bundles, see § 3.3). There are two competing auxiliary filtra-
tions, both defined in terms of the numbers of points in S1 involved in
the definition of corresponding strata; sometimes one of them is more
convenient and sometimes the other.

Example 7. Let p = 2. The term F2\F1 of the main filtration
consists of strata of 4 main types, corresponding to maps with the fol-
lowing singularities: S4) two double points (there are two connected
strata of this type depending on the two possible dispositions of two

pairs of points in S1: ���
and���

��@@ ); S31) one triple point; S32) one
double point and one singular point (at which f ′ = 0) not coinciding
with points meeting at this double point; S21) two singular points; S22)
a pair of points x, y such that f(x) = f(y) and f ′(x) = 0. The corre-
sponding direct auxiliary filtration φ2 ⊂ φ3 ⊂ φ4 = F2\F1 is defined as
follows: φ2 is the union of strata S21 and S22; adding strata S31 and
S32 we get the term φ3, and adding strata of type S4 we get the entire
space F2\F1.

For arbitrary p, the similar filtration in Fp\Fp−1 consists of terms

φ[(p−1)/2]+1 ⊂ · · · ⊂ φ2p.

The standard calculations of finite-order knot invariants of any order p
are based on this filtration: the components of its top term φ2p\φ2p−1

are in a obvious one-to-one correspondence with “p-chord diagrams”,
and the components of φ2p−1\φ2p−2 generate the “4-term” and “trivial”
relations among them.

The reversed auxiliary filtration in Fp\Fp−1 is defined by decreasing
the number of involved points, see [47], [39]. E.g. in the case p = 2
there are exactly two terms: Φ0 = (the closure of the union of strata
of type S4) (this closure covers also sets of types S32, S21 and S22)
and Φ1 = F2\F1 obtained from it by adding the remaining part of the
stratum of type S31.

Consider especially the strata of types S4 and S31. They both are
spaces of dimK − 2n-dimensional vector bundles over the 5-dimensional
bases s4, s31. Namely, s4 is a fiber bundle, whose 4-dimensional base
consists of all distinct pairs of distinct points of S1, and the fiber over
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such a configuration is the segment δ(f) for any generic map f respect-
ing this configuration, see § 3.2. Endpoints of these segments belong
to the smaller term F1 of the main filtration. Similarly, s31 is the fiber
bundle, whose 3-dimensional base is the configuration space B(S1, 3)
of all triples of different points, and the fiber over such a triple (a, b, c)
is the triangle ∆(a, b, c) ∼ ∆(3), whose vertices are called ab, ac and
bc. These vertices also belong to the term F1 of the main filtration:
indeed, they correspond to non-connected faces of the triangle ∆(3).
Thus, the calculation of the homology group of F2\F1 by means of the
direct auxiliary filtration involves the calculation of the Borel–Moore
homology group of the fiber bundle over B(S1, 3), whose fiber is the
complex ∆1(3) of connected graphs with 3 nodes.

Further, the sides of such a triangle belong to the closure of the stra-
tum s4, and hence to the term Φ0 of the reversed auxiliary filtration.
Therefore, calculating the same homology group by means of this fil-
tration we need to consider the homology of a similar fiber bundle with
the same base and the open triangle ∆(3)\∂∆(3) ≡ ∆2(3) for a fiber.
The entire this calculation is more economical by the following rea-
sons. Previously, the sides of these triangles divided the piece S4 into
two strata, which we needed thus to count separately, as well as the
strata S32, S21 and S22. In the new approach, these sides are added to
the union of these strata, which constitutes a single connected manifold
with a simple topology: it is a fiber bundle over the configuration space
B(M̄, 2), M̄=the closed Möbius band. The remaining part Φ1\Φ0 is
even simpler. The result of the corresponding calculation is presented
in Theorem 8 below.

In a similar way, for any p the term Fp\Fp−1 of the main filtration
consists of p terms of the reversed filtration, Φ0 ⊂ Φ1 ⊂ · · · ⊂ Φp−1. Its
term Φi is the closure of the union of strata Sjα, in whose definition
only configurations of j points, 2p− i ≤ j ≤ 2p, are involved.

The highest term Φp−1\Φp−2 of this filtration is smooth and is covered
by simplices ∆(p + 1) of graphs, whose vertices correspond to some
configurations of p + 1 points of S1, see § 1. Its faces, corresponding
to nonconnected graphs, belong to the smaller term Fp−1 of the main
filtration, and faces corresponding to not 2-connected graphs belong to
the smaller term Φp−2 of the reversed auxiliary filtration, so that our
term Φp−1\Φp−2 is fibered into complexes ∆2(p + 1).

The following two properties of this reversed filtration probably prove
that it is natural and essential.

16



3.4.1. Multiplicativity. Our (double) filtration is multiplicative: if two
knot invariants of finite orders a (respectively, b) have in Fa\Fa−1 (re-
spectively, in Fb\Fb−1) auxiliary filtrations α and β (i.e. they can
be realized as linking numbers with cycles, whose intersections with
Fa\Fa−1 and Fb\Fb−1 lie in terms Φα and Φβ), then their product is of
order ≤ a + b (this was proved in [25]) and, moreover, its filtration in
Fa+b\Fa+b−1 is ≤ α + β.

3.4.2. Higher indices of knot invariants. In the standard theory of
finite-order knot invariants (see e.g. [11], [5], [10]), one considers the
indices of singular knots with p transverse selfintersection points: they
are defined as alternated sums of values of the invariant at 2p neigh-
boring nonsingular knots. In fact, we can define similar indices for
arbitrary singular knots with selfintersection points of arbitrary finite
multiplicities.

E.g. if a map f : S1 → R3 has exactly one generic selfintersec-
tion point of multiplicity k, then this index takes value in the group
H̄2k−4(∆

2(k)) (which is, by Theorem 3, isomorphic to Z(k−2)!). More-
over, if our knot invariant is of order ≤ k − 1, then similar index is
well-defined also for f with nongeneric k-fold points, see [47], [39].

3.5. First results of calculations. Here we present the first calcu-
lations of higher-dimensional cohomology classes of spaces of knots in
Rn, obtained by means of the above-described techniques.

3.5.1. Compact knots. First we consider the space of compact knots,
i.e. of all smooth embeddings S1 → Rn, n ≥ 3. It is well-known that
there are no first order invariants of knots in R3, i.e. 0-dimensional
cohomology classes of the space K \Σ defined as linking numbers with
(dimK−1)-dimensional cycles lying in the first term of the canonical fil-
tration of the resolved discriminant. However the positive-dimensional
cohomology classes of order 1 (defined as linking numbers with cycles
of greater codimensions) exist; the simplest of them proves that the
space of unknots in R3 is not simply-connected.

Theorem 7 (see [47]). A. For any n ≥ 3, the subgroup F ∗
1,Z2

⊂
H∗(K\Σ, Z2) of first-order cohomology classes of the space of knots in
Rn consists of exactly two non-trivial homogeneous components F n−2

1,Z2
∼

F n−1
1,Z2

∼ Z2.
B. If n is even, then both these cohomology classes give rise to integer

cohomology classes, i.e. F n−2
1,Z ∼ F n−1

1,Z ∼ Z, and there are no other

non-trivial integer cohomology groups F d
1,Z, d 6= n− 2, n− 1.
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Figure 3. Non-trivial 1-cycle in the space of unknots

C. If n is odd, then the generator of the group F n−1
1,Z2

is equal to the

first Steenrod operation applied to the generator of F n−2
1,Z2

.

D. The generator of the group F n−2
1,Z2

can be defined as the linking
number with the Z2-fundamental cycle of the variety Γ ⊂ Σ, formed
by all maps φ : S1 → Rn, gluing together some two opposite points
of S1. The generator of the group F n−1

1,Z2
is the linking number with

the Z2-fundamental cycle of the subvariety in Γ, formed by all maps,
gluing together some two fixed opposite points, say, the points 0 and
π. Moreover, if n is even, then these two varieties are orientable, and
the groups F n−2

1,Z , F n−1
1,Z are generated by the linking numbers with the

corresponding Z-fundamental cycles.
E. If n = 3, then the cycles, generating the groups F 1

1,Z2
and F 2

1,Z2
,

are non-trivial already in the restriction to the component of the unknot
in R3.

Let us demonstrate the nontrivial 1-cycle in the space of unknots in
R3. Set K = C∞(S1, R3). Consider the loop Λ : S1 → K\Σ, some
whose eight points are shown in fig. 3. Note that any two (un)knots of
this family, placed in this picture one over the other, have the same pro-
jection to the “blackboard” R2. Let us connect any such two unknots
by a segment in K, along which the projection to R2 also is preserved.
The union of these segments is a disc in K, spanning the loop Λ; it is
obvious that the Z2-intersection number of this disc with the variety Γ
is equal to 1, in particular the class {Γ} ∈ H1(K\Σ, Z2) is non-trivial.

On the other hand, it is easy to see that this loop Λ is homotopic to
the loop Λ′, consisting of knots, obtained from the standard embedding
φ : S1 → R2 ⊂ R3 by rotations by all angles α ∈ [0, 2π] around any
diagonal of φ(S1), and also to the loop Λ′′, consisting of all knots φτ ,
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τ ∈ [0, 2π], having the same image as φ and given by the formula
φτ (α) = φ(α + τ).

Theorem 8 (see [47]). For any n ≥ 3 all additional integer-valued
cohomology groups F i

2,Z/F i
1,Z of order 2 of the space of compact knots

in Rn are trivial in all dimensions i other than 2n − 6 and 2n − 3. If
n > 3, then both these groups in these two dimensions are isomorphic
to Z. If n = 3, then the first of them (the 0-dimensional one) also is
equal to Z (and is generated by the well-known knot invariant), and the
second (3-dimensional) is cyclic (maybe infinite and maybe trivial).

3.5.2. Calculations for long knots. Almost all cohomology classes de-
scribed in the previous subsubsection exist because the circle itself has
nontrivial topology. To avoid this influence, let us consider the space
of long (or noncompact) knots in Rn, i.e. of embeddings R1 → Rn

coinciding with a fixed linear embedding outside a compact subset in
R1.

Then there are no cohomology classes of order 1, and exactly one
(2n− 6)-dimensional class of order 2.

Further, there is exactly two more classes of order 3: they have
dimensions 3n− 9 and 3n− 8.

If n = 3, then the first of them also is a well-known knot invariant,
and the second was discovered in a computer calculation by D. M. Teiblum
and V. E. Turchin (based on the cellular decomposition of spaces
Fp\Fp−1 introduced in [41]). In fact, all these calculations are 2-periodic
on n, thus they discovered also all these (3n−8)-dimensional classes for
all odd n. Using the technology of two-connected graphs, I was able to
repeat this result “by hands”, and to do the similar calculation for all
even n (which is the “super” analog of the odd-dimensional situation).

4. Spaces of m-fold points free maps and complexes of
connected m-hypergraphs

Suppose that M is a l-dimensional manifold, l < n, and we consider
the space of all smooth maps M → Rn having no points of multiplicity
m (i.e. such that there are no m points x1, . . . , xm ∈ M with f(x1) =
· · · = f(xm)). Suppose that (n − l)m > n, so that the discriminant
set, consisting of maps with forbidden m-fold points, has a positive
codimension in the space of all maps M → Rn.

Example 8. Besides the spaces of knot and links (where m = 2)
the most famous examples of such spaces are the spaces of triple-points
free plane curves studied in [6], [7], [35], [32], [39] etc.: in this case
M = S1, n = 2, m = 3.
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Again, the corresponding discriminant set can be resolved in almost
the same way as in § 3.2; the first step of this construction (and si-
multaneously the first term of the natural filtration) is the space σ1

consisting of all pairs of the form (a map f : M → Rn; an unordered
subset (x1, . . . , xm) ⊂ M) such that f(x1) = · · · = f(xm). This space
is a fiber bundle over the configuration space B(M, m) and its fibers
are vector subspaces of codimension (m− 1)n in the space of all maps
M → Rn.

Now, consider the stratum of the discriminant, consisting of all maps
f having one k-fold point in Rn, k ≥ m. Then over generic points of
this stratum we get in the resolution space a simplex with

(
k
m

)
ver-

tices. These simplices belong to the (k−m + 1)-st term of the natural
filtration, and some of their faces belong even to smaller terms of the
filtration. It is easy to see that they are exactly the faces corresponding
to not connected m-hypergraphs, see § 1.3.

Remark. Already the first step of the construction of the resolution,
i.e. the manifold σ1, can be useful. Indeed, the first-order cohomology
classes of the space of nonsingular maps are exactly those given by
linking numbers with direct images (under the obvious map H̄∗(σ1) →
H̄∗(Σ)) of cycles lying in σ1.

Consider the case M = S1. It is easy to calculate that the manifold
σ1 is orientable if and only if the number (n − 1)(m − 1) is even. If
additionally we are working with the plane curves, n = 2, then it
means that m should be odd. E.g., the strangeness (i.e. the invariant
of triple points free immersed curves, defined in [6], [7] as the linking
number with entire Σ) is well defined; on the other hand the similar one-
dimensional cohomology class of the space of plane curves without 4-
fold selfintersections (and more complicated singularities) is not defined
over the integers.

5. Problems

5.1. Homotopy degeneration of the main spectral sequence.
The Kontsevich’s splitting theorem states that the main spectral se-
quence calculating the complex cohomology of spaces of knots in Rn,
n ≥ 3, defined by the filtration from § 3.3, degenerates at the first term:
Ep,q
∞ ≡ Ep,q

1 . (For an explicit description of this spectral sequence see
e.g. [39], [47], and in the case n = 3 also [41], [38].)

I think that in fact a much more strong homotopy splitting holds,
which is similar to the splitting (4) for plane arrangements. Of course,
in this case we have two new problems: a) all terms of the filtration
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Fp(σ) are infinite-dimensional spaces, and b) there is infinitely many
of them. To formulate our conjecture correctly, we do the following.

Note that for any filtering degree p the corresponding term Fp of the
resolved discriminant σ stabilizes in the following sense. For any ap-
proximating subspace Kd ⊂ K denote by F d

p (σ) the set Fp(σ)∩π−1(Kd),
i.e. the corresponding term of the filtration of the resolution of the
space Σ ∩ Kd. Then for any p there exist such a good approximat-
ing subspace Kd that for any better approximation Ks ⊃ Kd the cor-
responding term F s

p (σ) is homeomorphic (as a filtered space) to the

direct product F d
p (σ)× R(dimKs−dimKd).

Now the homotopy splitting conjecture is formulated as fol-
lows: For any p and any sufficiently large approximating space Kd ⊂ K
(such that the above stabilization property for the space F d

p holds), its

one-point compactification F d
p ≡ F d

p (σ) is homeomorphic to the wedge

(12) F d
1 ∨ (F d

2 /F d
1 ) ∨ . . . ∨ (F d

p /F d
p−1).

There is a large series of similar situations when analogous dis-
criminants admit similar splittings. Among them, besides the above-
described case of plane arrangements, there are discriminants in spaces
of

• real and complex monic polynomials in one variable (discrimi-
nants consisting of polynomials with roots of multiplicity ≥ k),
see [2], [3], [38], [39];

• systems of complex or real polynomials (discriminants defined
as sets of systems with common roots), see [19], [38];

• maps Sm → Rn, m < n + 1 (discriminant defined as the space
of maps intersecting the origin in Rn, so that its complement is
the space Ωm(Rn\0) ∼ ΩmSn−1);

• linear endomorphisms of Kn, K = R, C or H (discriminant
defined as the determinant variety of non-isomorphic endomor-
phisms).

All these spaces have a common feature: they consist of maps into a
vector space (as well as the knot spaces discussed now). However there
are examples of similar situations when the target space is not so easy,
and the spectral sequence does not degenerates; see [46], [39], [24].

5.2. Relation with the graph-complex of trees. It seems likely
that on the level of calculating the knot invariants the study of two-
connected graphs is more or less equivalent to that of the Konsevich’s
graph-complex of trees, see [10].

21



Problem: to establish a direct isomorphism between these two the-
ories3.

5.3. Equivariant homology of complexes ∆1(k), ∆2(k), ∆1
m(k) etc.

with respect to the natural action of the permutation group
S(k). The topological study of knots, generic plane curves etc. is just
a model example of a large class of problems, one of which concerns the
topology of the space of maps M → Rn having no m-fold points of the
image (and maybe no some other similar singularities). In the same way
as above, this problem leads to the investigation of the (Borel–Moore)
homology of the following fibered space. Its base is the configuration
space B(M, k) of all k-point subsets of the manifold M , and the fiber
over such a configuration X = (x1, . . . , xk) is the complex ∆1

m(k), con-
sidered as the union of all connected open faces of the simplex ∆m(k),
whose

(
k
m

)
vertices are in a fixed one-to-one correspondence with all

m-point subsets of the configuration X.
Certainly, it is impossible to solve these problems for all manifolds

M simultaneously. However, the space of all k-configuration spaces has
a universal object, B(R∞, k), from which all others are induced by an
arbitrary embedding M → R∞. It seems reasonable first to calculate
the cohomology of our fiber bundle over this space, and then, for any
particular M , to calculate the cohomology of the similar bundle over
B(M, k) as the result of some interaction of the “coefficient subring”
induced from the cohomology of the universal bundle, and ingredients
coming from the homological features of M . But B(R∞, k) is a re-
alization of the K(S(k), 1)-space, and the homology of our universal
∆1

m(k)-bundle on it is nothing but the equivariant cohomology of the
complex ∆1

m(k) with respect to the S(k)-action induced by permuting
the k points.

Problem: to calculate these homology groups. The similar problem
holds for all complexes ∆j

m(k) (and for j = 2 this problem even has
a discriminant-theoretical sense); moreover, for some parities of n, m
and dim M , we need to consider the similar equivariant cohomology
with coefficients in the representation S(k) → Aut(Z) sending the odd
permutations to the multiplication by −1.

5.4. Realization of the Teiblum–Turchin cocycle. The (3n− 8)-
dimensional order 3 cohomology class of the space of knots in Rn,
mentioned in § 3.5.2, is defined only as the linking number with a
certain cycle in the discriminant. Moreover, in the case n = 3 it is not

3This problem was solved in Fall 1997 by V. Turchin, see [37]
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proved that this cycle is not homologous to zero, and hence that this
1-dimensional class is non-trivial.

Problem: to realize this cocycle in intrinsic terms of the space of
knots, and to construct cycles in this space, on which it takes non-zero
values. In the case n = 3, what is the simplest component of the space
of knots containing such a cycle?

The same problems for the (2n−3)-dimensional cohomology class of
order 2 of the space of compact knots, see Theorem 8.
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