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Abstract. The Arnold’s theorem (generalizing a consideration by Jacobi)

states that on a generic Riemannian surface, which is sufficiently close to a
sphere, the k-th caustic of a generic point has at least four semi-cubical vertices.

We prove this fact by the methods of the Morse theory; in particular we replace

the previous analytical condition of the “sufficient closeness to the sphere” by
a geometric one, which probably is considerably less restrictive.

Let M2 be a compact smooth Riemannian 2-dimensional manifold, p ∈ M2,
and Φ : (TpM

2, 0) → (M2, p) the geodesic map, sending any central ray of TpM
2

into the geodesic line, passing from p to the corresponding direction so that in the
restriction to this ray the map Φ is isometric. The k-th caustic Ck(p) of the point
p is the union of k-th conjugate points on all these geodesic lines, see. [6], [3].

Let the Riemannian metric on M2 be elliptic and generic, then for any k Ck(p)
is a compact curve in M2, all whose singularities are transversal self-intersections
and semicubical cusps only. Denote by C̃(p) ⊂ TpM

2 the union of critical points of
the geodesic map Φ. This set splits into the union of curves C̃k(p), homeomorphic
to circles and consisting of the k-th intersection points of our rays with C̃(p). Then
Ck(p) ≡ Φ(C̃k(p)); this map has the fold singularity over the non-singular points
of the caustic, and the Whitney cusp singularities over the cusps, see [4], §3.1. In
addition, in TpM

2 the norm function is defined by our metric, and the cusps of
Ck(p) are exactly the images of extrema of the restriction of this function to C̃k(p).
Any locally non-singular branch of the caustic has the standard co-orientation (i.e.
orientation of normal directions): to the side, on which the geodesic map locally
has more pre-images.

The standard unit sphere S2 is an example of a non-generic surface: any its
set Ck(p) is not a curve but, depending on k, either p itself or its opposite point.
Nevertheless all the critical sets C̃k(p) are still non-singular: they are concentric
circles of radii πk. C.-G. Jacobi has noticed that on a generic ellipsoid the first
caustic of a generic point always has at least four cusps. V.I. Arnold [1], [2], using
some ideas of S.L. Tabachnikov [7], has proved the following theorem.

Theorem 1. For any k and any generic surface, sufficiently C∞-close to the stan-
dard sphere, the k-th caustic has at least 4 cusps (where the condition of closeness
to the sphere strengthens when k grows).

The proof in [1] is analytic. Below we give a topological proof. The conditions
of “closeness to the sphere” used in it also are topological and probably much less
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restrictive than the ones in [1]. Let us formulate them. A weakly deformed sphere
S2 can be identified with the initial one via the orthogonal projection, therefore
instead of the deformation of the sphere we will consider the corresponding defor-
mation of the Riemannian metric on the fixed sphere. Let us denote by S1

T the
space of rays in TpS

2 with the origin at 0.

Definition 1. A Riemannian metric in S2 (and the corresponding system of
geodesics) is k-close to the standard metric of the sphere, if it is elliptic, and there
is a closed embedded disc D ⊂ S2, containing the k-th caustic Ck(p) and such that

(1) any two points of D can be connected in D by a unique geodesic segment;
(2) for any ray c ⊂ TpS

2 with the origin at 0, the connected component of the
set Φ−1(D) ∩ c, intersecting the curve C̃k(p), does not meet other curves
C̃m(p), m 6= k;

(3) two maps S1
T → ∂D, associating any such ray c with the images of endpoints

of this connected components under the map Φ, are diffeomorphisms;
(4) let π̄ be the maximal length (in our Riemannian metric) of meridians con-

necting the point p with its antipodal point −p; let r be the maximal
geodesic distance from the points of the disc D to p if k is even or to −p if
k is odd; let ∆ be the minimal norm in TpS

2 of points of the connected com-
ponents of the set Φ−1(D), which are exterior to the component connecting
C̃k(p); then the inequality kπ̄ + r < ∆ should hold.

Example 1. If the metric is standard, and D is the disc of radius r centered at the
point (−1)kp, then π̄ = π, ∆ = (k+2)π−r. In this case all conditions of Definition
1 are satisfied for any r ∈ (0, π/2).

Below, we prove Theorem 1 in exactly this understanding of the words “suffi-
ciently close to the standard sphere”. Let us start with an obvious property of
caustics. Introduce a cyclic coordinate α ∈ R1/2πZ on ∂D. Given a tangent el-
ement in D (i.e. a couple consisting of a point and a tangent direction at it), its
bending angle is half the sum of coordinates of endpoints of the geodesic segment
in D, tangent to this tangent element. This angle is a point of the circle R1/πZ;
by condition (1) it is always well-defined. For a generic caustic Ck(p), its tangent
elements are defined not only at its non-singular points, but also at the cusps.

Proposition 1. If the conditions of Definition 1 are satisfied, then the k-th caustic
Ck(p) has a surjective parameterization S1 → Ck(p) such that the bending angle
of the tangent element of the caustic grows monotonically over the parameter, and
when this parameter passes once the entire circle S1, this angle turns exactly two
times along the circle R1/πZ.

Proof. This parameterization sends any point of the circle S1
T to the k-th conjugate

to p point of the corresponding geodesic. By condition (3) of Definition 1, when c
moves along S1

T , both endpoints of corresponding geodesic segments move mono-
tonically and accomplish one rotation along the circle R1/2πZ. 2

If a generic caustic has less than 4 cusps, then there are 2 of them: the images
of absolute extremal points of the norm function on the curve C̃k(p) ⊂ TpS

2.

Proposition 2. In the conditions of Definition 1, there is only one (up to isotopy)
curve with 2 cusps in D, having no singularities except for transversal self-inter-
sections and these cusps, and admitting a parameterization satisfying the assertions
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Figure 1. Forbidden fragments of the caustic

of Proposition 1: namely, it is the curve (well-known in this theory, see
e.g. [2], [8]).

Proof. Consider some curve with exactly two cusps, satisfying these conditions;
choose one of two branches of this curve, connecting these two cusps. Its self-
intersection points define a chord diagram on the segment parameterizing this
branch: it is obtained from this segment by adding the arcs, connecting the pre-
images of any such point, cf. [9].

Lemma 1. The rotation of the bending angle on the segment between the endpoints
of any chord is greater than the complete twist along R1/πZ.

Proof. Let K be the image of this segment: it is a closed immersed curve in D
with only one breakpoint. For any point a ∈ ∂D denote by t(a,K) the number of
geodesic segments in D with an endpoint at a, that are tangent to K at some its
non-singular point. Then the rotation of the bending angle along K equals half the
integral of the form t(a(α),K)dα along ∂D. The value of the function t(a,K) is
nowhere less than 1. Indeed, by condition (1) of Definition 1 the set of geodesics,
going from a ∈ ∂D inside D and intersecting K, has at least two boundary points;
at most one of them can not to be a geodesic tangent to K. Moreover, there
obviously exist points a, at which t(a,K) ≥ 2. So, our integral is greater than π.
2

Now let us go from some cusp point along the chosen branch of our curve until the
instant when this branch intersects for the second time its already passed part (if
such an instant exists). If the corresponding two arcs are not linked in this branch
(i.e. both endpoints of one arc are placed before both endpoints of the other), then
by Lemma 1 the bending angle makes more than two complete rotations already
on the two (separated) segments between these endpoints, in contradiction to the
condition.

Lemma 2. If these two arcs are linked by the type
����or

� ��� , then the
bending angle of our branch of the curve Ck(p) makes more than two complete
rotations already on the segment between endpoints of these arcs.

Proof. In the first case our curve has a piece K, isotopic to one shown in the left-
hand part of Fig. 1. The function t(a,K), defined as in the proof of Lemma 1, in
this case is nowhere less than 2: both boundary points of the set of geodesics defined
there should be tangent to K. In the second case we have a fragment isotopic to
one of two curves shown in the central part of Fig. 1. Then both the interior and
the exterior parts of this curve provide the rotations of the bending angle, greater
than the complete one: for the interior part of the curve this follows immediately
from Lemma 1, and for the exterior one from a very similar argument. 2
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Figure 2. Curves with monotone bending angle

So, none of two branches of Ck(p), connecting two its cusp points, can have
two self-intersections, and at least one of them has no one. There are only two
possibilities remained: either we have no self-intersections of these branches, and
only intersections of one branch with the other, or additionally there is a single
self-intersection of one of branches.

In the first case the topological types of the mutual intersections of these branches,
not contradicting the monotonicity of the bending angle, are depicted in the left-
hand part of Fig. 2 with arbitrary (maybe equal to zero) numbers of intersections
on the left and on the right. In any of these cases already the exterior contour of
our curve provides more than two complete rotations of the bending angle.

In the second case suppose that there is at least one intersection point of these
branches. If at least one of corresponding points of the self-intersecting branch is
placed in it outside of the segment between the pre-images of the self-intersection
points of this branch, then the curve Ck(p) contains a fragment isotopic to the

figure ♥ or (in which the angle of the upper wedge is equal to zero, while
that of the lower one is not). Exactly as in Lemma 1 we obtain that the rotation
of the bending angle along this fragment in the first case is greater than π, and in
the second one greater than 2π; in addition by Lemma 1 the segment between the
self-intersection points contributes more than π. If the self-intersecting branch is
intersected by the other one only between its self-intersection points, then Ck(p)
contains a fragment isotopic to the one shown in Fig. 1 on the right or on the left.
Already the rotation of the bending angle provided by any of these fragments is
greater than 2π.

Finally, only one possibility has remained: our branches have no mutual inter-
section points, and exactly one of them has a single self-intersection. There are

only two isotopy types of such curves: and one shown in the right-hand
part of Fig. 2. The same arguments as before show that the latter picture provides
the rotation number greater than 2, and Proposition 2 is proved. 2

Proof of Theorem 1. Suppose that the caustic Ck(p) ⊂ D is isotopic to .
Let D̃ ⊂ TpS

2 be the connected component of the set Φ−1(D), containing C̃k(p).
By condition (2) of Definition 1, any point x ∈ ∂D has exactly two pre-images
under the map

(1) Φ|D̃ : D̃ → D.

When x crosses Ck(p) in the direction of the standard co-orientation, the number
of its pre-images increases by 2. Close to cusp points this co-orientation is always
directed inside the smaller local area of the complement of the caustic, hence in

the right-hand part of
?

it is directed outside. Therefore the points from the
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right-hand (containing the point ?) component of the figure bounded by this curve
have no pre-images under the map (1); this means that no geodesics from p enter
this component close to their k-th conjugate points. After that any geodesic leaves
the disc D and comes back to it at some point, whose distance from p along this
geodesic is not less than ∆ > kπ̄ + r, see condition (4) of Definition 1. So, any
geodesic, connecting the points ? and p and containing at least k points conjugate
to p, is no shorter than ∆. For k = 1 this contradicts the Hopf-Rinow theorem [5],
[6]: the distance from any point of the disc D to p is no more than π̄ + r, hence
there is a geodesic connecting them, whose length does not exceed this number.

Now let be k > 1. Choose a point ? in our component, which is not conjugate to
p along any geodesic of length ≤ 2kπ̄ + r. Consider the space Ω(p, ?; kπ̄ + r) of all
piecewise smooth paths from p to ? of length ≤ kπ̄ + r. This space has non-trivial
homology groups in all dimensions 0, 1, . . . , k; moreover, the identical embedding of
this space into the entire space Ω(p, ?) of all continuous paths from p to ? induces
non-trivial homology maps in all these dimensions. Namely, for any i = 1, . . . , k a
non-trivial i-dimensional cycle in Ω(p, ?) is realized by the fundamental class of the
imbedded i-dimensional torus, whose points are piecewise smooth curves, consisting
of (i+1) smooth segments, the first of which is a fixed path of length ≤ r (if i = k)
or ≤ π̄ + r (if i < k) from ? to (−1)ip, and remaining i segments are arbitrary
meridians connecting p and −p.

In particular, the energy function (i.e. simply the length of paths) on the space
Ω(p, ?; kπ̄ + r) has critical points of any integer index i ∈ [0, k]. By [6], Theorem
16.2, such critical points are nothing else than the geodesics from p to ? with exactly
i conjugate points. A contradiction. 2
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