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Abstract. We prove that the minimal number of branchings of arithmetic

algorithms of approximate solution of the general real polynomial equation

xd + a1xd−1 + · · · + ad−1x + ad = 0 of odd degree d grows to infinity at
least as log2 d. The same estimate is true for the ε-genus of the real algebraic

function associated with this equation, i.e. for the minimal number of open sets
covering the space Rd of such polynomials in such a way that on any of these

sets there exists a continuous function whose value at any point (a1, . . . , ad) is

approximately (up to some sufficiently small ε > 0) equal to one of real roots
of the corresponding equation.
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1. Definitions, problems, statements and examples

1.1. Definitions and obvious properties.

Definition 1 (see [8]). The topological complexity of an algorithm is the number
of its branchings (operators IF). The topological complexity of a computational
problem is the minimal topological complexity of algorithms solving it.

Continuing [10], we study this characteristic of algorithms finding one approxi-
mate real root of the general polynomial

(1) Fa(x) ≡ xd + a1x
d−1 + · · ·+ ad−1x+ ad

of odd degree with real coefficients ai. The main result of the paper, Theorem 1,
states that the topological complexity of this problem grows at least as log2 d.

A major approach to the problems of this kind is due to S. Smale [8], who
considered a similar problem for complex polynomials of the form (1). He has
related this problem to the study of a topological characteristic, the Schwarz genus
[7], of a map of topological spaces associated with the general polynomial (1). In
what follows we will study this characteristic only (for real polynomials), more
exactly, its ε-version, see Definition 2. We refer to [8] concerning the definition of
the algorithm used in this problem.

Throughout the article, we will assume that d is natural and odd, and consider
Rd as the space of real polynomials (1) with coordinates ai. For any T > 0, denote
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by Bd
T the subset in Rd consisting of all polynomials (1) all whose complex roots

lie in the closed disc {z||z| ≤ T} in C1. It is easy to see that Bd
T is homeomorphic

to a d-dimensional closed ball.
Let Md be the hypersurface in Bd

T × R1 consisting of all points (a, x), a ≡
(a1, . . . , ad) ∈ Bd

T , satisfying the equation Fa(x) = 0. The obvious projection

(2) Md → Bd
T

is surjective, proper and has at most d preimages over any point a.

Definition 2. The ε-genus G(d, ε, T ) of the map (2) is the smallest number g such
that the ball Bd

T can be covered by g open sets Ui, i = 1, . . . , g, arranged with
continuous functions ϕi : Ui → R1 in such a way that for any a ∈ Ui the value
ϕi(a) lies in the ε-neighborhood of some real root of the polynomial Fa.

Proposition 1. The topological complexity of the problem of finding one approxi-
mate (up to ε) real root of the general equation Fa(x) = 0, a ∈ Bd

T , is not less than
maxν>0G(d, ε+ ν, T )− 1.

Proof is almost tautological, see [8], [11]; note however that it assumes the definition
of the algorithm formulated in [8], see also [12]. 2

The next proposition follows almost immediately from definitions.

Proposition 2. 1. G(d, ε, T ) does not decrease when d or T grows or ε decreases.
2. G(d, ε, T ) is invariant under simultaneous dilations of T and ε: G(d, ε, T ) =

G(d, λε, λT ) for any positive λ.
3. In the definition of numbers G(d, ε, T ) we can replace the ball Bd

T by its
boundary Sd−1

T .
4. The number G(d, ε, T ) is not greater than the similar number defined in almost

the same way, only with the ball Bd
T replaced by the intersection of the ball Bd

2T with
the hyperplane {a1 = 0} ⊂ Rd.

Proof. 1. The monotonicity of G(d, ε, T ) over T and ε is obvious. To prove the
inequality G(d, ε, T ) ≤ G(d+ 2, ε, T ), consider the embedding Bd

T → Bd+2
T sending

any polynomial Fa(x) to (x2+T 2)Fa(x). Given any system of g sets Ui ⊂ Rd+2 and
functions ϕi : Ui → R1 proving the inequality G(d + 2, ε, T ) ≤ g, this embedding
induces from it a similar system proving G(d, ε, T ) ≤ g.

2. Consider the following action of the group R1
+ on the space of functions

R1 → R1 : any element λ ∈ R1
+ sends a function f to the function whose value at

x ∈ R1 is equal to λdf(x/λ). This action preserves the origin {xd} of the space Rd;
in coordinates ai it is expressed by

(3) λ : (a1, a2, . . . , ad) 7→ (λa1, λ
2a2, . . . , λ

dad).

Also, this element λ moves any collection of sets Ui and functions ϕi, satisfy-
ing the definition of the number G(d, ε, T ), into that satisfying the definition of
G(d, λε, λT ).

3. Suppose that we have g open subsets Vi ⊂ Sd−1
T , covering Sd−1

T , and con-
tinuous functions ψi : Vi → R1 such that for any a ∈ Vi the value ψi(a) is in
ε-neighborhood of some root of Fa. Then the unions of orbits of points a ∈ Vi

under the action (3) define an open cover {Ũi} of the set Bd
T \ 0. Let ϕ̃i : Ũi → R1

be functions coinciding with ψi on Sd−1
T and satisfying the homogeneity condition

ϕ̃i(λ(a)) = λϕ̃i(a), where λ(a) is defined by (3). Extend all these functions by 0
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to the point 0 and continue them to a very small neighborhood of this point in
such a way that the values of these continuations are very close to 0. Adding this
very small neighborhood to all Ũi we obtain the desired system of open sets and
functions proving that G(d, ε, T ) ≤ g.

4. The group of translations in R1 acts on the space Rd: for any t ∈ R1

γt(Fa(x)) ≡ Fa(x − t). Any orbit of this action intersects once the hyperplane
Rd−1 ≡ {a1 = 0}, so having an open cover {Wi} of some (d − 1)-dimensional ball
Bd

T ′ ∩Rd−1 and system of functions φi : Wi → R satisfying the condition of Defini-
tion 2, we can extend these functions to the functions defined on the unions of orbits
passing through the points of Wi and satisfying the relation φi(γt(Fa)) ≡ φi(Fa)+t.
If T ′ ≥ 2T , then these unions of orbits define an open cover of Bd

T , and the (ex-
tended) functions φi satisfy the conditions of Definition 2. 2

1.2. Main result.

Theorem 1. G(2d+ 1, ε, 2T + 2ε+ ν) ≥ G(d, ε, T ) + 1 for any odd d and positive
T, ε and ν.

This theorem will be proved in Section 2.

By statement 2 of Proposition 2, the number limε→+0G(d, ε, T ) does not depend
on T . Denote it by G(d).

Corollary 1. 1. G(2d+ 1) ≥ G(d) + 1 for any odd d.
2. If d ∈ [2m − 1, 2m+1 − 2], then G(d) ≥ m.

Conjecture 1. For any odd d, G(d+ 2) ≤ G(d) + 1.

Proposition 3 (see [10], [11]). 1. G(5) = 2.
2. G(d) ≤ (d + 1)/2 for any odd d. Moreover, the topological complexity of the

problem of finding one approximate (up to arbitrary fixed ε > 0) real root of the
general equation Fa(x) − 0, a ∈ Bd

T , does not exceed (d − 1)/2, see Proposition 1.
2

By Corollary 1, G(7) ≥ 3; Conjecture 1 together with Proposition 3.1 would
imply that this estimate is sharp.

1.3. Basic example: d = 3.

Proposition 4. The equation

(4) x3 + px+ q = 0

does not allow a continuous function R2
p,q → R1 whose value at any point (p, q) is

equal to some root of the corresponding polynomial (4). Moreover, if ε < T/2 then
there is no continuous function on the disc R2

p,q ∩ B3
T , whose value at any point

(p, q) of this disc lies in the ε-neighborhood of the corresponding polynomial (4).

Proof. Consider the boundary S1(T ) of this disc in R2
p,q and the subset C ⊂

R2
p,q×R1 consisting of all triples (p, q;x) such that (p, q) ∈ S1(T ) and the equation

(4) is satisfied. The discriminant curve in R2
p,q splits S1(T ) into two open intervals

consisting of polynomials having respectively one or three real roots. The obvious
projection C → S1(T ) is topologically situated as is shown in Fig. 1, so it obviously
has no continuous cross-sections. Moreover, the segment of S1(T ), whose points
are polynomials with ≥ 2 roots, consists of two halves, filled by polynomials (x +
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Figure 1. The map I : C → S1(T ) has no continuous cross-sections

T )(x− ( 1
2 − t)T )(x− ( 1

2 + t)T ) and (x− T )(x+ (1
2 + t)T )(x+ (1

2 − t)T ), t ∈ [0, 1
2 ],

respectively. The desired continuous function on S1(T ), whose value is everywhere
in the T

2 -neighborhood of some real root of the corresponding polynomial, should
be equal to −T on the entire first segment, and to +T on the second one. This
gives a contradiction at the common point {x3 − T 2x} of these segments. 2

1.4. Another example: the function from Hilbert’s 13th problem. The
Hilbert’s 13th problem, Unmöglichkeit der Lösung der allgemeinen Gleichung 7ten
Grades mittelst Functionen von nur 2 Argumenten, is formulated as follows:

Now it is probable that the root of the equation of the seventh
degree is a function of its coefficients which does not belong to
this class of functions capable of nomographic construction, i. e.,
that it cannot be constructed by a finite number of insertions of
functions of two arguments. In order to prove this, the proof would
be necessary that the equation of the seventh degree

(5) f7 + xf3 + yf2 + zf + 1 = 0

is not solvable with the help of any continuous functions of only
two arguments1.

Proposition 5. For any sufficiently small ε, the ε-genus associated with the real al-
gebraic function R3

x,y,z → R1 defined by the equation (5) is equal to 2 (in particular,
this function does not have continuous cross-sections defined on entire R3

x,y,z).

1Wahrscheinlich ist nun die Wurzel der Gleichung 7ten Grades eine solche Function ihrer

Coefficienten, die nicht zu der genannten Klasse nomographisch construirbarer Functionen gehört,
d. h. die sich nicht durch eine endliche Anzahl von Einschachtelungen von Functionen zweier
Argumente erzeugen läßt. Um dieses einzusehen, wäre der Nachweis dafür nötig, daß die Gleichung

7ten Grades f7 + xf3 + yf2 + zf + 1 = 0 nicht, mit Hülfe beliebiger stetiger Functionen von nur
zwei Argumenten lösbar ist.
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So, “with the help of any continuous functions of only two arguments” in the
Hilbert’s statement should mean something more complicated than just the repre-
sentation by such a superposition function (as it can seem from the preceding text,
“constructed by a finite number of insertions of functions of two arguments”). Of
course, in any reasonable (but not in this one) understanding of this statement, the
Arnold-Kolmogorov theorem [1], [6] on representation of any continuous function
in three variables by a superposition of two-argument functions is enough to give a
negative solution to this problem.

Proof of Proposition 5. First, let us prove that this ε-genus is greater than 1, i.e.
for sufficiently small ε > 0 there is no continuous function φ : R3 → R1 such that
for any (x, y, z) ∈ R3 the value φ(x, y, z, ) is less than ε-distant from some real root
of the corresponding polynomial (5). Suppose that such a function φ does exist.
Consider two polynomials Φ0(f) = f7 + 1 and

(6) Φ1(f) = f7 − 14f3 − 21f2 − 7f + 1 ≡ (f + 1)3(f4 − 3f3 + 6f2 − 10f + 1),

and the segment in R3
x,y,z connecting them. None of polynomials from this segment

can have roots in the 1
10 -neighborhood of 0, therefore for ε < 1

10 the signs of φ(Φ0)
and φ(Φ1) should coincide (and thus be negative, as the unique real root of Φ0 is
equal to −1).

The polynomial Φ1 has only one (three-fold) negative root f = −1 and two simple
positive (and hence not interesting for us) roots. Functions f and f2 additively
generate the basis of the local ring of the critical point {−1} of Φ1, hence (see [3])
the two-parameter family of all functions (5) with x ≡ −14 forms a versal unfolding
of this critical point. Therefore close to this point this family behaves topologically
in the same way as the family (4) behaves at the origin, in particular for sufficiently
small ε it does not admit negative continuous ε-sections defined in a neighborhood
of the point (6).

Now let us prove that the ε-genus of the family (5) is not greater than 2. The
polynomials (5) never have more than three negative roots. Indeed, the number of
such roots (taken with multiplicities) always should be odd, but having five negative
roots would imply that the third derivative 210f4 + 6x of our polynomial has two
negative roots. So, the space R3

x,y,z can be split by the discriminant variety into
two open parts O1 and O3, such that the polynomials from these parts have exactly
1 and 3 different negative roots, respectively. The algebraic function (5) defines a
single-valued function over O1, which can be uniquely continued to the closure of
O1. Further, any continuous extension of this function into entire R3 is a ε-section
of the algebraic function (5) in some open neighborhood Õ1 of this closure of O1.
On the other hand, in O3 we also have a continuous cross-section of (5), sending
any polynomial with three real roots into its greatest root. So, the sets O3 and Õ1

form the desired cover of R3. 2

2. Proof of Theorem 1

Consider first the case d ≥ 3. Denote the number G(d, ε, T ) by g. Choose an
arbitrary ν > 0 and denote T + 2ε+ ν by T̃ .

Let D− and D+ be two closed discs of radius T in C1 with centers in the points
−T̃ and T̃ respectively; in particular they belong to the disc of radius T + T̃ .

Now we construct a compact subset inB2d+1

T+T̃
consisting of six parts J−3, J−2, J−1,

J1, J2, J3.
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J−3 consists of all real polynomials of degree 2d + 1 with leading term x2d+1,
whose d+1

2 roots coincide with one another and are equal to −T̃ + iλT for some
λ ∈ [0, 1], some other d+1

2 roots also coincide with one another and are equal to
−T̃ − iλT with the same λ, and the remaining d roots lie in D+, and at least one
of them on the boundary of D+. In particular, for λ = 0 all these polynomials have
the (d+ 1)-fold root −T̃ . This set J−3 is naturally homeomorphic to Sd−1

T × [0, 1]:
the factor [0, 1] is defined by the numbers λ, and the projection to Sd−1

T maps any
polynomial f ∈ J−3 of degree 2d+1 to the polynomial of degree d, whose roots are
obtained from the roots of f placed in D+ by subtracting T̃ .
J−2 is also naturally homeomorphic to Sd−1

T × [0, 1], it consists of all real poly-
nomials of degree 2d+ 1 with leading term x2d+1, whose d roots lie in D+ (and at
least one of them on ∂D+), d roots coincide with the point −T̃ , and the remaining
root runs over the segment [−T̃ , 0].
J−1 is naturally homeomorphic to the product Sd−1

T × Bd−1
T . It consists of all

polynomials f ∈ R2d+1, some d roots of which lie in D+ (and at least one of them
on ∂D+), one root is equal to 0, and remaining d roots lie in D−.

The sets J1, J2 and J3 are defined in exactly the same way as J−1, J−2 and J−3

respectively, only up to the symmetry x 7→ −x, permuting D+ and D−, replacing
the segment [−T̃ , 0] by [0, T̃ ], etc. Denote by = the union J−3∪J−2∪J−1∪J1∪J2∪J3

of all these sets.
Let us define a continuous map of the set = to the segment [−3, 3]. The map

J−3 → [−3,−2] is defined by the function {λ 7→ −2−λ}. The map J−2 → [−2,−1]
sends any polynomial with a root µ ∈ (−T̃ , 0] to −1 + µ

T̃
, and all polynomials with

the (d + 1)-fold root −T̃ to −2. For any polynomial Fa ∈ J−1 consider all its d
roots placed in the disc D−; then take the minimal distance of these points from
the boundary of this disc, and send this polynomial to the point in [−1, 0] equal to
this distance multiplied by − 1

T .
The sets J1, J2 and J3 are mapped to the segments [0, 1], [1, 2] and [2, 3] in the

symmetric way.
All these maps are compatible over the intersections of these segments. For

instance, the preimages of the point −2 under the maps J−3 → [−3,−2] and J−2 →
[−2,−1] coincide with one another and with the set J−3 ∩ J−2; similar statements
hold for preimages of all other breakpoints −1, 0, 1, and 2. So these maps can be
composed to the single continuous map π : = → [−3, 3].

Now suppose that there are g ≡ G(d, ε, T ) open subsets Ui ⊂ R2d+1, i = 1, . . . , g,
covering the set =, and g continuous functions ϕi : Ui → R1 such that for any a ∈ Ui

the value ϕi(a) is in the ε-neighborhood of some real root of the corresponding
polynomial Fa. Let Ω− ⊂ [−3, 0] be the set of all points t ∈ [−3, 0] such that there
exist i ∈ {1, . . . , g} and a ∈ Ui ∩ π−1(t) for which ϕi(a) ∈ (−∞, ε).

Lemma 1. The set Ω− is empty.

Proof. Since all Ui are open and functions ϕi are continuous, the set Ω− is open
in [−3, 0]. Suppose that it is non-empty. Denote its lower bound by ω−. Then
ω− ≥ −2, because the polynomials from the set π−1([−3, 2)) do not have roots in
the ray (−∞, 2ε). Hence, ω− 6∈ Ω−, and the values of all functions ϕi at the points
of π−1(ω−) belong to (ε+ ν,+∞).

Suppose first that ω− ∈ [−2,−1]. Then we have the natural homeomorphism
A : π−1(ω−) → Sd−1

T ⊂ Rd, sending any polynomial Fa ∈ π−1(ω−) to the unique
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real polynomial with leading term xd, all whose roots are obtained by subtracting T̃
from the roots of Fa placed in D+. Composing all functions ϕi : Ui∩π−1(ω−) → R1

with this homeomorphism, we obtain an open cover of the sphere Sd−1
T by the sets

Vi ≡ A(Ui ∩ π−1(ω−)) and a system of functions Vi → R1 satisfying the conditions
from the definition of the ε-genus G(d, ε, T ). This ε-genus is equal to g, therefore all
g sets Ui have non-empty intersections with this fiber π−1(ω−). By the compactness
of =, we can choose a finite cover of this fiber by small balls in =, any of which
belongs to some of these sets Ui, and such that the variation of the corresponding
function ϕi along any ball is smaller than ν. Then the union of these balls covers
also some layer π−1([ω−− δ, ω−+ δ]), δ > 0. So, the values of all functions ϕi at all
points of this layer belong to (ε,+∞), in contradiction with the definition of the
set Ω− and number ω−.

Now suppose that ω− ∈ (−1, 0). In this case π−1(ω−) is homeomorphic to

(7) Sd−1
T × Sd−1

T (1+ω−),

where projections of the point Fa ∈ J−1 to two factors are defined by collections
of roots of Fa placed in the right-hand and left-hand half-planes of C1 (these col-
lections should be moved by T̃ to the left and to the right respectively). Fix an
arbitrary point of the second factor Sd−1

T (1+ω−), e.g. the polynomial (x+T (1+ω−))d,

and consider the subset in π−1(ω−) homeomorphic to Sd−1
T and corresponding to

the fiber of the product (7) over this point. In the same way as in the previous
paragraph, we obtain that all g sets Ui should have non-empty intersections with
this subset. Again, the union of some finitely many small balls inscribed in these
sets Ui and centered at points of this fiber covers also some neighborhood in J−1

of this fiber. This neighborhood contains some points, at which the map π takes
values to the right of ω−, and we again get a contradiction with the assumption
that Ω− is not empty. Lemma 1 is proved.

Therefore all functions ϕi, i = 1, . . . , g, take only positive values at the points
of corresponding sets Ui ∩ π−1([−3, 0]). In exactly the same way we prove that all
these functions can take only negative values at the points of sets Ui ∩ π−1([0, 3]).
This gives us a contradiction on the fiber π−1(0), and Theorem is proved for d ≥ 3.

Finally, in the case d = 1 the proof is almost the same, but with missing pieces
J−1 and J1 of =, so that we need to consider a map π of = to the segment [−2, 2]
(and not [−3, 3]), sending J−3 to [−2,−1], J−2 to [−1, 0], J2 to [0, 1], and J3 to
[1, 2]. 2

3. Schwarz type formula for the 0-genus

Along with the ε-genus G(d, ε, T ) we can define the number G0(d) as the minimal
number of open sets covering Rd (or Bd

T ), on any of which a continuous function is
defined, whose value at the point a is equal exactly to one of roots of the correspond-
ing polynomial Fa. Obviously, G0(d) ≥ G(d). An easy modification of arguments
from [7] gives us the following criterion for G0(d).

Define the mth power of the map (2) as the map whose fiber over a ∈ Bd
T is the

join of m copies of the collection of real roots of Fa. More precisely, the mth join
(R1)?m of R1 can be considered as the (naturally topologized) union of (m − 1)-
dimensional simplices, whose vertices are some (maybe repeating) points of R1.
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Define the space Md
m as the union of all pairs (Y, a) ∈ (R1)?m × Bd

T where Y is a
point of a simplex, all whose vertices are some roots of Fa.

Proposition 6. For any natural m and odd d, G0(d) ≤ m if and only if the obvious
map Md

m → Bd
T has a continuous cross-section. 2

But, unlike [7], in our case the latter map is not a fiber bundle.

4. History of the problem

S. Smale [8] has studied the topological complexity of algorithms finding ap-
proximate values of all d roots of any complex polynomial of the form (1). He
has rediscovered (under the name covering number) the Schwarz genus [7] of fiber
bundles, and also some homological lower estimate of this characteristic. In fact,
Smale considered a more general situation of arbitrary surjective maps, which is,
in particular, the case for the problem considered in the present article. Using the
results of Arnold and Fuchs [2], [4] on the cohomology of the space of complex poly-
nomials without multiple roots, Smale has proved that the topological complexity
τ(d) of this problem grows to infinity when d does; namely, he proved the asymp-
totic lower bound τ(d) > (log2 d)2/3. In [8] I have proved the asymptotically sharp
two-sided estimate τ(d) ∈ [d −minp(Dp(d)), d − 1], where Dp(d) is the number of
digits in the p-adic decomposition of d, p a prime number. If d is a power of a
prime number, then both bounds are equal to d − 1. Moreover, in this case even
the problem of finding only one approximate root of any complex polynomial of
the form (1) has the same topological complexity: τ1(d) = d− 1. For general d the
corresponding lower estimate is much worse: τ1(d) + 1 is not less than the greatest
power of a prime dividing d; by the asymptotical law of prime numbers, this gives
us the asymptotic lower bound ln d.

In [10], [11] I have noticed that this problem has a non-trivial real analog, namely,
that the topological complexity of finding one real root of any real polynomial (1)
of odd degree d ≥ 3 also is greater than 0. However, until now it was not clear
whether the latter topological complexity grows infinitely together with d.
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