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ABSTRACT. We describe some regular techniques of calculating finite-order
invariants of triple point free smooth plane curves S* — R2. They are a
direct analog of similar techniques for knot invariants and are based on the
calculus of triangular diagrams and connected hypergraphs in the same way
that the calculation of knot invariants is based on the study of chord diagrams
and connected graphs.

For example, the simplest of these invariants is of order 4 and corresponds

to the triangular diagram @ in the same way as the simplest knot invariant
(of order 2) corresponds to the 2-chord diagram €. Also, following V. I. Arnold
and other authors, we consider invariants of tmmersed triple point free curves
and describe similar techniques also for this problem, and, more generally,
for the calculation of homology groups of the space of immersed plane curves
without points of multiplicity > k for any k > 3.

Introduction

The intensive study of invariants of generic immersions S' — R? was started
by Arnold in [5] and continued in [6], [7], [38], [1], [30], [27], [25], [24], etc.

The most interesting invariant of such objects, the strangeness, is in fact an
invariant of triple point free immersions S — R2 (with allowed self-tangencies).

Almost simultaneously ([35], [33]), I considered the ornaments, i.e., collections
of plane curves (maybe with singularities), without intersections of three different
components, and developed regular techniques for calculating their invariants. The
present work is the implantation (promised in [35]) of these methods in the theory
of triple point free plane curves.

Below we describe a natural filtration of invariants by their orders, and a regular
method of calculating all invariants of all finite orders for triple point free plane
curves. Following the idea of [3], we reduce the study of invariants (and other
cohomology classes of the space of generic objects) to that of the homology groups
of the complementary discriminant set of objects with forbidden singularities (i.e.,
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FIGURE 1. Unique invariant of order 4 for doodles

FIGURE 2. A plane curve not equivalent to the circle in the space
of singular triple point free curves (after A. B, Merkov)

in our case, of curves with triple points). The more technical tools of this method
are the simplicial resolutions of discriminants (see [31]) and the calculus (arising
from them) of triangular diagrams and connected hypergraphs, which are analogs
of chord diagrams and connected graphs arising in the theory of finite-order knot
invariants.

The simplest such invariants are described in following two theorems.

First, as was proposed in [35, §9, Problem 2], we consider the space of all
plane curves ¢ : §1 —, R2 having no triple points and no singularities obtained
as degenerations of triple points (i.e., either the double points at which one of two
local branches has a singular point with ¢/ = 0, or the points at which ¢'=¢" =0).
The problem of classifying such objects (called the doodles) is in the same relation
with the classification of ornaments, in which the isotopy classification of links is
with the homotopy classification.

In this setting, the curves “0” and “8” become equivalent, and the strangeness
fails to be an invariant of such objects; this is an analog of the fact that the trivial
chord diagram & does not define a knot invariant.

THEOREM 1. There are no invariants of doodles of orders 1, 2 or 3, and there
s ezactly one invariant of order 4.
This invariant is depicted by the triangular diagram shown in Figure 1. (This

diagram is an adequate analog of the chord diagram € defining the first nontriv-

containing elements with neighboring vertices. )

This invariant proves, in particular, that the curve of Figure 2 (discovered
previously by A. B. Merkov) is not equivalent to a circle.

Following [5], let us now consider the immersed curves in R2.
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FI1GURE 3. Notation for invariants of order 2 and 3 of immersed curves

coe BO

FiGURE 4. Notation for invariants of order 4

THEOREM 2. There are only the following invariants of orders < 4 of triple
point free plane immersed curves S' — R2:

1) no invariants of order 1;

2} one invariant of order 2 (the Arnold strangeness; for a certain reason to
be explained later we denote this invariant by the simplest “triangular diagram” of
Figure 3a);

3) one more invariant of order 3 (its natural notation given in Figure 3b);

4) five more invariants of order 4 (they are described in Figure 4).

Our methods allow us to calculate also some higher-dimensional cohomology
classes of spaces of k-points free plane curves (both immersed or just C*°-paramet-
rized) for any k > 3.

For example, let k = 4. The set X4 of all curves with 4-fold self-intersections has
codimension 2 in the space of all plane curves, thus the first interesting problem is
the calculation of the 1-dimensional cohomology group of the complementary space
of immersed plane curves without such points.!

This cohomology group H'(Imm(S*, R?)\ £4) also has a natural filtration, so
that the orders of (some) its elements are well defined.

THEOREM 3. For any connected component of the space of immersions S* —
R2, the first few groups Fyq of 1-dimensional integer cohomology classes of order d
of the space of four-point free immersions lying in this component are as follows:

Fir=F=Fs=F=0, Fs ~ 72,

However, if we calculate the Zy-cohomology, then we have F3 ~ Zg, F4/Fs =0,
Fs)Fa ~ Z3, and if we calculate the Zs-cohomology, then Fs = 0, F4 ~ Zs, Fs5 | Fs =~
z2.

1The problem, posed by Arnold (see [8, problem 1996-2]), of calculating such homology
groups stimulated me to write this paper.



278 V. A. VASSILIEV

FIGURE 5. Two generators of order 5 of the 1-cohomology group
of the space of plane immersed curves without 4-fold points

Two generators of the group F5/Fs (with integer coefficients) are naturally
depicted by two chains shown in Figure 5.

Many invariants of immersions from Theorem 1 have an elementary description.
Namely, the sum of three generators from Figure 4a is equal to the square of the
strangeness. Moreover, strangeness itself, the unique invariant of order 3, and the
sum of two invariants of order 4, shown in Figure 4b, are “index-type invariants,”
see subsection 1.3 below, thus initiating an infinite series of finite-order invariants
(one in each order) of this sort.

IMPORTANT NOTE. QOur notion of the order of invariants differs from the one
used in [5]-[7], [27], [80], etc. Any invariant of finite order k in the sense of our
work is also of order < [k/2] in the sense of these works; the converse is very much
false.

There are (among others) three equivalent definitions of finite order invariants
of knots in R3: 1) the “geometrical”, in terms of resolved discriminants and their
filtrations, 2) the “axiomatic”, in terms of finite differences of knot diagrams, and
3) the “combinatorial” (developed in [26]) in terms of homomorphisms of chord
diagrams. The equivalence of two first definitions was clear from the very beginning,
their equivalence to the third one is a nontrivial fact, conjectured by M. Polyak and
O. Viro and proved by M. Goussarov.

There is a wide class of objects (including knots, ornaments, and doodles),
whose invariants can be calculated by the methods, developed in [32] and [35], i.e.,
in the terms of resolved discriminants, thus leading to the “geometrical” definition
of finite-order invariants. An “axiomatic” elementary reformulation of the resulting
notion in our present situation also exists, but it is not a straightforward translation
of that from [32]; see §2 below. I believe that it will lead to the most interesting
algebraic structures, reflecting the rich geometric structures behind it.

The “combinatorial” definition and related aspects of the same invariants of
ornaments and doodles are introduced and investigated by A. B. Merkov, [21]-[24]
as a far generalization of the index-type invariants from [35].

In particular, he proved that these invariants distinguish any two nonequivalent
collections of (arbitrarily many) plane curves without triple intersections or self-
intersections. However 1 believe that the techniques of the present work allow us
to calculate all such invariants in the most direct and regular way.

Acknowledgment. I am very grateful to A. B. Merkov for numerous consul-
tations and multifarious assistance.
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FIGURE 6. Standard moves of quasidoodles

1. Elementary theory

This and the next sections are almost exact analogues of [35, §§1,2].

1.1. First definitions and Reidemeister moves.

DEFINITION 1. A doodle is a C®-map ¢ : S* — R? such that for no three
different points z,y,z € S* one of the following conditions holds:?

(11) ¢(z) = ¢(y) = 8(2),
(1.2) ¢'(z) =0,9(z) = ¢(y),
(1.3) ¢'(z) =¢"(z) =0.

An I-doodle (i.e., immersed doodle) is a doodle which is an immersion (i.e., a map
¢ without degenerations of two types (1.1) and

(1.4) ¢'(z)=0).

Two doodles (respectively, I-doodles) are equivalent if there is a continuous
family of doodles (I-doodles) connecting them. An invariant of doodles or I-doodles
is any function on the space of these objects, taking equal values at equivalent
objects.

A doodle is regular if it is an immersion having only transverse double points.

PROPOSITION 1. Any equivalence class of doodles or I-doodles contains regu-
lar doodles. Two regular doodles define equivalent doodles (respectively, I-doodles)
if and only if they can be transformed one into the other by a finite sequence of
isotopies of R? (which do not change the topological picture of the image of the
doodle), and of local moves shown in Figure 6a, b (respectively, 6a only).

In other words, the move of Figure 6¢ is prohibited in the classification of
doodles, and both 6b, 6¢ in the case of I-doodles.
The proof of this proposition is trivial.

DEFINITION 2. A quasidoodle is any C*®°-map S* — R2. The space of all such
maps is denoted by K. The space Imm(S', R?) of all immersions S* — R? will be

2In a more general theory (see [17], [24]) this object is called a 1-doodle. We consider here
only such one-component doodles and call them simply doodles.
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FIGURE 7

denoted by IK. The discriminant (respectively, I-discriminant) £ C K (respec-
tively, I¥ C IK) is the set of all maps from this space for which one of prohibited
conditions (1.1)—(1.3) (respectively, (1.1)) holds.

PROPOSITION 2. The set ¥ is a closed subvariety of codimension 1 in K. The
set of all maps, for which only (1.1) holds, is dense in 3, and the maps satisfying
(1.2) or (1.3) lie in its closure. The set of quasidoodles having no degenerations of
types (1.1) and (1.2) but with allowed degenerations of type (1.3) is path-connected
in K.

The proof of the last assertion essentially coincides with that of the fact that
all embeddings S — R3 (maybe not regular) form a path-connected subset in
C>(5',R3); see e.g., [13]. All other statements of the proposition are elementary.

1.2. On Arnold’s invariants of immersed plane curves. In [5] Arnold
introduced three invariants of generic immersed plane curves. One of them is the
strangeness, defined as the linking number in JK with the suitably (co)oriented va-
riety I¥ C IK. The coorientation of this variety, participating in this construction,
will be specified in subsection 1.4.

1.3. Index-type invariants of I-doodles. Let us fix an orientation of the
plane R2.

Recall that any closed oriented immersed curve ¢ in R? defines an integer-
valued function ind, on its complement: for any point ¢ of the complement, ind.(t)
equals the (counterclockwise) rotation number of the vector (¢,z) when z runs one
time along c.

Consider a regular I-doodle ¢ : S' — R2. To any self-intersection point z of
the curve ¢ = ¢(S') assign its index i(x) equal to the arithmetical mean of four
values of ind, in four neighboring components of R? \ ¢; see Figure 7. Let us fix a
regular (not intersection) point  in ¢ and define its index i(*) as the greatest value
of ind. in two neighboring domains of the complement of c. For any self-intersection
point z consider the frame in it, formed by (oriented) tangent vectors to c. These
vectors are ordered according to the order of visits of ¢ after leaving the point *.
Define the sign o(z) of the point = as the sign of the orientation of this ordered
frame.

For any integer ¢ and natural 3, denote by (/"3) the number

Wi —1)---(i— B+ 1)/8Y

cf. [22], [35]. It is easy to see that this number is always an integer.
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For any natural 3, define the 3th moment M(3) of the regular doodle by the
equality

1. M(B) = 2 .
(15) ®=x@("5) +2(5 1)

PROPOSITION 3 (cf. [28], [35]). All numbers M(8), 8 = 1,2,..., are invari-
ants of I-doodles, in particular they do not depend on the choice of the distinguished

point x. The first of them, M (1), is the Arnold strangeness.

REMARK 1. In a very similar case of ornaments such invariants were intro-
duced in [35, §1.4], as the first nontrivial examples of finite-order invariants; see
also [22]. In [30] similar expressions appeared as invariants of one-component long
curves; i.e., essentially of curves with a fixed nonsingular point *. The formulae
for all these invariants contained only the terms similar to the first term of the
right-hand part of (1.5). Finally, Shumakovich [28] introduced a correcting second
term and obtained invariants independent of the choice of this point: his invariants
coincide with (1.5) up to a linear transformation with rational coefficients. (The
simplest version of this correcting term, corresponding to the case § = 1 and pro-
viding a combinatorial expression for the Arnold strangeness, appeared previously
in [27].) Numerous more general combinatorial expressions for invariants of doo-
dles, ornaments, I-doodles, etc., were given in [21]-[24]. It seems likely that the
method described below (see also [35], [22]) is the most universal algorithm for
guessing such expressions: first one calculates several first elements of a spectral
sequence converging to the group of all invariants of finite degree, and then finds
an elementary interpretation for them; cf. also [32], [33].

1.4. Coorientation of the discriminant. The discriminant set ¥ has a nat-
ural (co)orientation in its regular points: if we go along a generic path in the space
KC and traverse the discriminant, doing the local surgery shown in Figure 6¢, then
there is an invariant way to say which one of these two resolved pictures lies on the
positive side of the discriminant, and which on the negative. There are numerous
equivalent definitions of this coorientation; see, e.g., [5], [27], [22]. One of them
can be formulated as follows. We consider the sum like (1.5) with § = 1, but with
summation only over 3 points participating in the surgery. The positive (negative)
side of discriminant is that with the greater (smaller) value of this sum.

This coorientation is well defined even if the curve has forbidden multiple (or,
in the theory of I-doodles, forbidden singular) points far away from the location of
the surgery: in fact, this is a coorientation of the locally irreducible branch of the
discriminant set.

2. Elementary definition of the order of invariants

2.1. Degeneration modes and characteristic numbers. The orders of
invariants of doodles and I-doodles will be defined in the same way.

DEFINITION 3. Suppose that j is a natural number, j > 2. A degree j standard
singularity of doodles is a pair of the form {a quasidoodle ¢ : S* — R?2; a point
z € R?} such that ¢~!(x) consists of exactly j+1 points z1,..., Zj+1, the map ¢ in
a neighborhood of all these points is an immersion, and the corresponding j+1 local
branches of the curve ¢(S*) are pairwise nontangent at x. A quasidoodle is called
a regular quasidoodle of complexity i, if it is an immersion, all its forbidden points
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FIGURE 8. Nonessential move of a complicated multiple point

(i.e., the points, at which at least three different components meet) are standard
singular points, and the sum of degrees of these singularities is equal to i.

Any regular quasidoodle can be obtained from regular doodles by a sequence of
elementary degenerations. Namely, first we move along a generic path in the space
K, up to the first instant when some three points of ¢(S') meet at the same point,
forming a regular singularity of degree 2 (we do not pay attention to the surgeries
shown in Figures 6a and 6b). Then we consider the vector subspace in K, consisting
of maps gluing together these three points of S, and go along a generic path in
it; at some instant either another triple point occurs or a fourth branch joins these
three. Again, we fix the smaller subspace consisting of maps gluing together all the
same points, and move inside it. On the third step a point of multiplicity 5 can
oceur, or two points of multiplicities 4 and 3, of 3 points of multiplicity 3, etc. (In
this case we do not also pay attention to the nonessential local moves like the one
shown in Figure 8.) At the last step we get our quasidoodle.

Any such sequence of paths is called the degeneration process of our regular
quasidoodle.

ExAMPLES. If our quasidoodle has only one triple point, then it can be obtained
by two essentially different processes, corresponding to two of its resolutions shown
in Figure 6c.

A quasidoodle with one singular point of multiplicity 4 has 16 = 4 x 2 x 2
essentially different degeneration processes: at the first step any 3 of 4 points can
meet at the same point of R? (and this can be done in two different ways; see
Figure 6¢), and on the second, the fourth point joins them in one of two different
ways, as shown in Figure 6d.

If our quasidoodle has one more point of multiplicity 3, then there are 96 =
4 x 3 x 2% different degeneration processes: the points of the second group can meet
before, after, or between two steps of degeneration of the first group.

Any degeneration process of a regular quasidoodle and any invariant of doodles
(or I-doodles) defines a characteristic number; cf. [35, §2]. Namely, if we have a
quasidoodle of some complexity j and a degeneration process DP of it, then there
are exactly two quasidoodles of smaller complexity, whose degeneration processes
coincide with DP without its last step. If at this last step some new group of
multiplicity 3 occurs, then these are two resolutions of this group shown in Figure 6c;
if at this step one branch of ¢(S') joined an existing group of multiplicity > 3, then
we can move this branch to exactly two sides from this point; see Figure 6d.
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In all cases these two resolutions are ordered, i.e., one of them can be called
positive and the other negative. In the first case this order is described in subsection
1.4.

In the second case we define the index of a multiple point as the arithmetical
mean of indices of points from all neighboring components of the complement of
#(S1), and call positive the side for which the close point of multiplicity > 3 has
greater index with respect to the curve.

The characteristic number, which is an invariant and is defined at the pair {a
regular quasidoodle, some its degeneration process}, is equal to the difference of
similar numbers at two corresponding one-step resolutions (at the positive minus,
at the negative one) supplied with the same degeneration process less its last step.
(For these simpler singularities such characteristic numbers are well defined by the
inductive conjecture.)

DEFINITION 4. An invariant is of order j if for any quasidoodle, whose complex-
ity is greater than j, and any degeneration process, the corresponding characteristic
number is equal to 0.

PROPOSITION 4 (cf. Theorem 4 in [35]). Any indez-type invariant M(8) from
subsection 1.3 is of order 3+ 1. O

A wide class of invariants, generalizing these from subsection 1.3, was con-
structed by A. B. Merkov (see [22]). A further generalization of these invariants
[24] classifies all doodles up to equivalence; in particular it is as strong as the entire
space of all finite-order invariants.

2.2. Coding and calculation of finite-order invariants. Of course, the
characteristic numbers of a degeneration process (and hence also the notion of the
order) depend not on its geometrical realization, but only on some discrete data
related to it, such as the combinatorial type of the set of points in S! pasted together
at its different steps. Let us describe these data.

Let A be a finite set of integer numbers A = (a1, a9, ...,a), all of which are
> 3. Denote by |A| the number a; + - - - + ay,,, and by #A the number of elements
a; of the set A (denoted in the previous line by m).

DEFINITION 5. An A-configurationis a collection of | A| pairwise different points
in S! divided into groups of cardinalities a1, .. .,ax4. Two A-configurations are
equivalent if they can be transformed one into the other by an orientation-preserving
diffeomorphism of S*. A quasidoodle ¢ : S* — R? respects an A-configuration if
it sends any of corresponding #A groups of points into one point in R%2. We say
¢ strictly respects the A-configuration if, moreover, all these #A4 points in R? are
distinct, have no extra preimages than these |A| points, and ¢ has no extra points
in R? at which images of three of more different points of S* meet.

Obviously, the space of all quasidoodles respecting a given A-configuration J
is a linear subspace of codimension 2(|A| — #A) in the space K of all quasidoodles.
The number |A| — #A is thus called the complezity of the configuration. We shall
denote this subspace by x(J). The set of all quasidoodles, which strictly respects
this configuration, is an open dense subset in this subspace.

DEFINITION 6. A degeneration mode of an A-configuration is some arbitrary
order of marking all the points of the configuration, satisfying the following condi-
tions. On any step we mark either some three points of some of #A groups (if no
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point of the same group is already marked) or one point of a group, some three or
more points of which are already marked.

Any degeneration process of a regular quasidoodle ¢ defines in the obvious way
a degeneration mode of the A-configuration strictly respected by ¢.
Let M be an invariant of doodles, and J an A-configuration.

PROPOSITION 5 (cf. Theorem 5 in [35]). If M is an invariant of order i, and
|A] — #A = i, then for any regular quasidoodle ¢, which strictly respects the A-con-
figuration J, any characteristic number defined by the triple consisting of M, ¢ and
a degeneration process of ¢, depends only on the pair consisting of the configuration
J and its degeneration mode defined by this degeneration process. O

COROLLARY. For any j the group of order j invariants of doodles or I-doodles
is finitely generated.)

Indeed, the number of its generators does not exceed the sum (over all equiva-
lence classes of A-configurations of complexity < i) of numbers of their degeneration
modes. O

Any invariant of order 7 can be encoded by its characteristic table, which we
now describe.

This table has 7+ 1 levels numbered by 0, 1,...,4. The lth level consists of sev-
eral cells, which are in one-to-one correspondence with all possible pairs consisting
of:

a) an equivalence class of A-configurations of complexity [ in S*;

b) a degeneration mode of this A-configuration.

In each cell we indicate

a) a picture (or a code) representing a “model” regular quasidoodle, which
strictly respects some A-configuration from the corresponding equivalence class
(this picture is the same for all invariants),

b) a degeneration process of this quasidoodle, defining this degeneration mode
(also not depending on the invariant), and

¢) the characteristic number, which our invariant and the degeneration process,
corresponding to the cell, assign to this quasidoodle.

By Proposition 5, we may not specify the pictures and degeneration processes
in the cells of the highest (ith) level of the table; indeed, the corresponding char-
acteristic numbers depend only on the data indexing the cell.

For instance, the Oth level consists of the trivial ()-like doodle, and the cor-
responding characteristic number equals 0 (we can normalize all invariants so that
they take zero value on the trivial doodle). The first level is empty, because there
are no configurations of complexity 1.

Having these data, we can calculate our invariant by the inductive process,
coinciding identically with the one described in [35, §3] or [32, §4.2] (where, how-
ever, the characteristic numbers are sometimes called “actuality indices”, and all
(quasi)doodles should be replaced by (quasi)ornaments or (singular) knots).

REMARK 2. Of course, the characteristic numbers corresponding to different
degeneration modes of the same regular quasidoodle satisfy some natural relations.
For instance, if two degeneration modes differ only by a reordering of markings, pre-
serving their order inside any group of the A-configuration, then the corresponding
characteristic numbers coincide.
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Less trivial identities, relating different degeneration modes inside the same
group, follow from the differentials in the chain complex of connected hypergraphs;
see [34], [12].

3. Invariants of doodles in terms of the resolved discriminant

We shall work with the space K = C*°(S', R?) as with a Euclidean space of
a very large but finite dimension A. The justification of this assumption uses the
finite-dimensional approximations of this space and is similar to that given in [35]
and [32]. Everywhere below, a cautious reader can consider X to be a generic
finite-dimensional subspace in C*°(S*, R?).

In particular, we shall use the Alexander duality formula
(3.1) HY(K\X) =~ Ha_1_:(%),

where H* is the usual reduced cohomology group (we are especially interested in
the group HO(K \ £) of invariants taking zero value on the trivial doodle), and
H, is the Borel-Moore homology group, i.e., the homology group of the one-point
compactification reduced modulo the added point.

3.1. Simplicial resolution of the discriminant variety. Denote by ¥
the configuration space of all unordered collections of three points in S, so that
¥ = (81)3/5(3). It is a smooth 3-dimensional manifold with corners, homotopy
equivalent to S'. More precisely, it is the space of an orientable fiber bundle over
S1, whose projection p sends a triple of points to their sum in the Lie group S, the
fiber is a closed filled triangle, and the monodromy over the entire base S' provides
the cyclic permutation of sides and vertices of the triangles. The “zero section”,
consisting of centers of these fibers, consists of configurations, all of whose points
are at the distance 27/3 one from the other.

Let us fix a space RY of a huge dimension (much greater than that of the space
K) and fix a generic embedding A : ¥ — R". For any point ¢ € ¥ consider all such
points {z,y, 2z} € ¥ that one of three conditions holds:

a)  #y # 2z # 2 and ¢(z) = ¢(y) = 6(2);

b) o =z £y and ¢/(x) = 0, 6(2) = B(y);

c)z=y=zand ¢'(z) =¢"(z) =0.

Then consider all points A({z,y, z}) € RY for all such triples {z,y, z}. Since
our embedding is generic (and N is sufficiently large), then for any ¢ € % the
convex hull of all such points is a simplex with vertices at all these points. (Using
the generic finite-dimensional approximations of the space K, we can ignore the
situation when the number of such triples is infinite; moreover, we can assume that
the number of such triples has a finite upper estimate, uniform over all ¢ € X.)

Denote this simplex by o(¢).

Finally, define the resolution set ¢ C K x R as the union of all simplices of
the form ¢ x o(¢) over all ¢ € .

The obvious projection K xRY — K provides the map 7 : ¢ — . By definition,
this map is surjective, and by the previous “finiteness assumption” it is also proper.

PROPOSITION 6 (cf. [32], [35]). The map m provides the homotopy equivalence
of one-point compactifications of spaces o and X.

In particular, the Borel-Moore homology groups (see (3.1)) of these spaces are
canonically isomorphic.
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3.2. A-cliques and the main filtration of the resolved discriminant.
The space o admits a natural filtration, which can be defined in two equivalent ways.
To do it, we need to extend the notion of the A-configuration used in subsection
2.2. Again, let A be a finite set of #A integer numbers A = (a1,0a2,...,a%4), all
of which are > 3.

DEFINITION 7. An A-clique is an unordered collection of a1 +- - -+ax 4 points in
S1, divided into groups of cardinalities ay,...,ax4, such that a) points of different
groups do not coincide geometrically; b) points inside a group can coincide, but
with multiplicity at most 3. Again, the complezity of a clique J is the number
|A| — #A; another important characteristic, p(J), is the number of geometrically
distinct points in it, i.e., the dimension of the space of cliques equivalent to it.

The map ¢ : ST — R? respects an A-clique if it glues together all geometrically
distinct points inside any of its groups, satisfies the condition ¢’ = 0 at all points of
multiplicity 2, and satisfies the condition ¢’ = ¢” = 0 at all points of multiplicity
3. ¢ strictly respects it, if additionally it does not respect any cliques of larger
complexity.

For any A-clique J, consider all triples of points in S* belonging to the same
group. All such triples are the points of the configuration space ¥. Consider the
images in RY of all these points under the embedding A and define the simplex
a(J) C K x R" as the convex hull of all such points.

EXAMPLE 1. Suppose that #4 = 1, a; = 4, and the unique group of our A-
clique is a quadruple of points (z,x,y, z), exactly two of which coincide. Then the
simplex o(J) is a triangle with 3 vertices (z,x,vy), (z,z,2), (z,y, 2).

Now, for any natural i we take all quasidoodles, strictly respecting all possible
A-cliques of complexities < 4, then consider the union of their complete preimages
in ¢ and, finally, define the term o; of our main filtration as the closure of this
union. It also contains some points of the form ¢ x 8 € K x RN, where ¢ is a
quasidoodle of complexity > i, and 6 is some boundary point of the corresponding
simplex o (¢).

Equivalently, for any A-clique J we can define the linear subspace x(J) C K
counsisting of all quasidoodles respecting (strictly or not) this clique. The term
o; C o of the main filtration is then defined as the union of all subsets x(J) xa(J) C
K x RN over all cliques J of complexity < i. It is easy to see that these two
definitions of the main filtration are equivalent.

DEFINITION 8. An element of the group H, (%) = H.(0) is of orderi if it can be
realized by a locally finite cycle lying in the term o; of this filtration. In particular,
an invariant of doodles is of order 17 if its class in the group (3.1) can be realized as
a linking number with the direct image of a cycle lying in o;.

PROPOSITION 7 (cf. [35], Theorem 7). The latter definition of the order of in-
variants is equivalent to that given in Section 2. O
4. Calculation of invariants of doodles

Consider the spectral sequence Ej . calculating the Borel-Moore homology
group of the space o and generated by our filtration. Its term E;'q is isomorphic

to Hpiq(op \ 0p-1).
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PROPOSITION 8 (cf. [85]). All groups E} , with p+q > A vanish.

The proof of this proposition will be given in subsection 4.4.

Hence, for the calculation of the group of invariants (by (3.1) coinciding with
Ha_1(0)) only the (A—1)- and (A —2)-dimensional Borel-Moore homology groups
of these spaces o; \ 0;—; are interesting.

In this section we calculate these groups for i < 4.

4.1. Stratification of the resolved discriminant. By construction, any
space o; \ 0;—1 consists of several J-blocks, numbered by all equivalence classes
J of A-cliques of complexity exactly i. Given such an equivalence class J, the
corresponding block B(J) is the space of a fiber bundle, whose base is the space of
all A-cliques J of this class, and the fiber over a clique J is the direct product of:

a) a linear subspace of codimension 2¢ in K, consisting of all quasidoodles
respecting J (the vector bundle of such subspaces is always orientable); and

b) a dense subset of the simplex ¢(.J); namely, this simplex minus some its
faces, which may belong to o;_;.

By the Thom isomorphism, the Borel-Moore homology group H, of any such
block is canonically isomorphic to the group I:I*,( A—2q) of the space of only the
second bundle of complexes b). Such spaces will be called the reduced J-blocks.

The bases of these fiber bundles are p(J)-dimensional manifolds, where p(J)
is the number of geometrically distinct points in any clique J of the class J.

4.2. The auxiliary filtration.

DEFINITION 9. We introduce the auziliary filtration in the space o; \ 0;-1,
defining its term F,, as the union of all above-described blocks over all classes J of
A-cliques such that p(7) < a.

EXAMPLE 2. The term o5 of the main filtration consists of exactly 3 terms
Fy, C Fy C F3 = 05 of the auxiliary filtration, because the (3)-cliques {z,y, z} can
consist of 1, 2 or 3 geometrically different points.

DEeFINITION 10. The spectral sequence, calculating the group H.(o; \ oi—_1)
and generated by this auxiliary filtration, is called the auxiliary spectral sequence
in contrast to the main spectral sequence generated by the main filtration and
calculating the homology groups of entire o.

4.3. Columns p =1 and p = 2 of the main spectral sequence. The term
o1 is empty, because there are no cliques of complexity 1.

PROPOSITION 9. The column {p = 2} of the term E' of the main spectral
sequence has only the following nontrivial elements: E21 as=Z and B3 o_¢~Z.

Proor. The term o5 is the space of a fiber bundle, whose base is the configura-
tion space ¥, and the fiber over its point {z,y, z} is the linear subspace of codimen-
sion 4 in K consisting of all quasidoodles respecting the corresponding (3)-clique.
This bundle is orientable; therefore H,(03) = H, A y4(¥) =~ Ho_ara(S?). O

3If J is an A-configuration, i.e., has no multiple points, then these are exactly the faces
corresponding to not connected 3-hypergraphs; see [34], [12].
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4.4. Revised resolution. Before continuing, we improve slightly the con-
struction of our J-blocks, described in the subsection 4.1. Namely, any of these
blocks contains a deformation retract having the same Borel-Moore homology
group; it will be convenient to consider these new blocks VB(J), which we (in
accordance with the terminology of [35]) shall call the wvisible blocks.

Again, any such block, corresponding to an equivalence class J of A-cliques,
is the space of a fibered product of two bundles, whose base and the first factor
of the fiber are the same as described previously (i.e., respectively the space of
all cliques J € J and an oriented vector space of dimension A — 2(|A| — #A4)).
However, the second factors of the fibers of this new bundle are some subcomplexes
of the barycentric subdivision of the corresponding fibers of the former bundle of
simplices.

Namely, consider any A-clique J and the corresponding simplex o(J). Any
vertex of this simplex, i.e., a triple of points of our A-clique lying inside one of
its groups, defines a vector subspace of codimension 4 in K. Consider all these
subspaces corresponding to our clique (e.g., if the clique is an A-configuration, then

there are exactly 3%/ (%) such different subspaces). These subspaces together
with all their possible intersections form a partially ordered set II(J) with respect
to the relation of the (inverse) inclusion. This poset has unique maximal element:
the subspace x(J), i.e., the intersection of all our subspaces.

Having such a partially ordered set, we can define its order complez (J) (see
e.g., [11]): this is a formal simplicial complex, whose simplices are all the strictly
monotone sequences of elements of our poset. For example, if the A-clique J is an
A-configuration, then such simplices of the maximal dimension in ©(J) are nothing
but the degeneration modes of J described in subsection 2.2.

This order complex &(J) can be naturally considered as a subcomplex of the
barycentric subdivision of the simplex o(J) (while its maximal element {x(J)}
corresponds to the center of o (J)).

If the complexity |A| — #A of J is equal to j, then the set O(J) N oj_q of
“marginal” faces of this complex consists of all its faces not containing the main
vertex {x(J)}.

Define the visible block V B(J) corresponding to our equivalence class J of A-
cliques as the subset of the previously defined block B(7), described in subsection
4.1, in which elements of the fibers o(J) should belong to the subcomplex &(J) C
a(J).

Define the revised resolved discriminant ¢ C ¢ as the union of all such revised
blocks VB(J). It has a natural main filiration {O;} induced by the identical
embedding from the main filtration in ¢. Similarly, in any space <; \ ©;_; the
auxiliary filtration is induced from that in o; \ o;_1.

PROPOSITION 10 (see [35], [87]). The inclusion & < o induces a homotopy
equivalence of one-point compactifications of these spaces. The same is true for the
wnclusion $; — o; of any terms of the main filtrations and also for the inclusions
VB(J) — B(J) of their blocks corresponding to the same classes of equivalent A-
cliques of complexity j. In particular this inclusion induces an isomorphism of both
the main and auxiliary spectral sequences calculating the Borel-Moore homology
groups of all these objects. O

Proposition 8 follows immediately from Proposition 10 and Lemma 1.
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LEMMA 1. The dimension of any block VB(J) of & does not exceed A — 1.

PRroOOF. This dimension consists of three numbers:

a) the dimension p(J) of the space of cliques of our class (which does not

exceed the number |A|);

b) the dimension A—2(]A|—#A) of the standard fiber x(J) of the first (vector)

bundle;

¢) the dimension of the order complex of subspaces associated with the clique

.

The last dimension is equal to the length of the maximal monotone chain of
subspaces constituting our poset TI(J) minus 1. This length is equal to |A| — 2#A.
Indeed, all our subspaces are of even codimension in K, their maximal element is
the space x(J) of codimension 2(|A| — #A), and there are exactly #A steps in the
chain, when the dimension jumps by 4 (when we start a new group of points; the
very first step is one of them).

Finally, we obtain that the dimension of our block is not greater than |A| +
A —2(JA| — #A) + |A| —2#A - 1. O

COROLLARY. Calculating the invariants of doodles, we can consider only the
J-blocks corresponding to such A-cliques J, that |A| — p(4) < 1, ie., either all
their points are geometrically distinct or there is at most one point of multiplicity
2. Moreover, the blocks of the latter kind can only provide relations in the group
of invariants Ha_;(c), but not its generators.

4.5. The third column of the spectral sequence.

THEOREM 4. The group Eé,q = H3,,(C3\ C2) of the main spectral sequence is
trivial for all numbers g not equal to A —6 and A—T7, while E} n ¢ ~Z =~ E} A_.

The proof of this theorem occupies the rest of this subsection.

The term O3 \ Oy consists of exactly four J-blocks corresponding to different
equivalence classes J of cliques of complexity 3: the main block A (all four points
in the cliques are distinct), the block B of auxiliary filtration 3 (exactly two points
coincide), and two blocks of auxiliary filtration 2: C (one simple point and one
point of multiplicity 3) and D (two double points).

Consider the corresponding reduced blocks (see subsection 4.1) [A4], [B], [C] and
[D].

The main reduced block [A] is the space of a fiber bundle, whose base J is
the configuration space B(S',4) of subsets of cardinality 4 in S*, and the fiber is a
cross with its four endpoints removed. The vertices of such a cross correspond to
all possible choices of some three points of the 4-point configuration; this notation
is transparent in Figure 9a.

The base B(S!,4), in its turn, is the space of the fiber bundle

(4.1) p: B(S',4) — S',

where the projection sends a quadruple of points in S* = R/Z to their sum (mod
Z), and the fiber is diffeomorphic to an open 3-dimensional disc. The monodromy
over the basis circle of (4.1) violates the orientation of the bundle of 3-dimensional
discs and acts on the bundle of crosses as a cyclic permutation of their edges.
Thus the Wang exact sequence of this bundle gives us the following assertion.
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PROPOSITION 11. The Borel-Moore homology group of the reduced main block
[4] of O3\ O2 is nontriwvial only in dimensions 5 and 4 and is isomorphic to Z
mn these dimensions. The generator of the 5-dimensional group is swept out by
the bundle over B(S',4) of 1-chains shown in Figure 3b = Figure 9a (i.e., the
unique chains anti-invariart under the monodromy action). The generator of the
4-dimensional group is swept out by the fiber bundle, whose base is the fiber p~1(0)
of the bundle (4.1), and fibers are 1-chains shown in these pictures by the sum of
two right-hand arrows. O

The block [B] is also the space of a (trivial) fiber bundle, whose base is the
space of all configurations of three points in S, one of which (the double point) is
distinguished, and the fiber is a star with three rays without endpoints. These fibers
and their endpoints are shown in Figure 9b: two right-hand endpoints correspond
to the subspaces in K given by the conditions of the form ¢(z) = ¢(y),¢d'(z) =0
and ¢(z) = ¢(z),¢'(z) = 0, while the left endpoint corresponds to the equation
#(x) = ¢(y) = ¢(2); cf. Example in subsection 3.2.

The base of this bundle is diffeomorphic to the direct product S' x B2, where B2
is an open 2-dimensional disc. Monodromy along the basic circle S! acts trivially
on the bundle of 3-stars. Therefore we have the following statement.

PROPOSITION 12. The Borel-Moore homology group of the reduced block [B]
is nontrivial only in dimensions 4 and 3 and is isomorphic to Z? in both these
dimensions. O

In a similar way we get the following statements.

PROPOSITION 13. The Borel-Moore homology group of the reduced block [C)|
is nontrivial only in dimensions 3 and 2 and is isomorphic to Z in both these
dimensions. a
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FIGURE 10. Auxiliary spectral sequence for the column p =3

PROPOSITION 14. The Borel-Moore homology group of the reduced block [D]
is nontrivial only in dimensions 3 and 2 and is isomorphic to Z in both these
dimensions. O

The corresponding order complexes are shown in Figures 9¢ and 9d, respec-
tively.

COROLLARY. The term E' of the spectral sequence, calculating the Borel-
Moore homology group of the (not reduced) term O3\ Oy of the main filtration of
our resolved discriminant and generated by the auziliary filtration in this term, is
as shown in Figure 10 (i.e., all its cells E;’q other than the siz indicated there are
trivial).

PROPOSITION 15. The Borel-Moore homology group of the subspace in &3\ O
formed only by the blocks A, B and C, is acyclic in all dimensions.

This follows immediately from the shape of all these blocks and their generators,
and from accounting the limit positions of subspaces in K corresponding to the
cliques of types A and B when they degenerate and form configurations of types B
and C, respectively.

For example, let us consider the (4)-clique :: drawn at any endpoint of Figure 9a
and let the two right-hand points of it move one towards the other, forming at the
last instant a clique of type B. The subspaces of codimension 2 in K, corresponding
to all endpoints of the cross, tend to similar subspaces for endpoints of the star of
Figure 9b. Namely, to both left-hand endpoints of the cross x there corresponds
the unique left-hand endpoint of the star, and the other two endpoints “remain
unmoved”. Therefore the boundary under this degeneration of the basic cycle
shown in Figure 9a is equal to the basic cycle in Ha_3 (the block B) depicted by
two arrows in Figure 9b (i.e., swept out by the fiber bundle of such 1-chains over
the entire base S x B? of this block).

Other boundary operators H,(A) — H,(B) and H,(B) — H,(C) can be con-
sidered in a similar way and give the assertion of Proposition 15. O

COROLLARY. The Borel-Moore homology group of the space ©3\ $o coincides
with that of its unique block D (described in Proposition 14).

This concludes the proof of Theorem 4. O

4.6. Invariants of order 4. In this subsection, we shall be interested only in
the (A — 1)-dimensional homology group of the space ¢4 \ ¢3, which can provide
invariants of doodles.

In accordance with the Corollary to Proposition 10, we shall consider only those
blocks of complexity 4 having at most one double point.
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FIGURE 11. Degenerated blocks of complexity 4

PROPOSITION 16. There are exactly four J-blocks of complezity 4 correspond-
ing to classes J of A-configurations (i.e., of A-cliques, all whose points are geomet-
rically distinct). Three of them correspond to (3, 3)-cliques consisting of siz points
in S' separated into two triples in one of ways shown in Figure 4a. The fourth
corresponds to the unique class of (5)-configurations.

Also, there are ezactly five blocks of complexity 4 corresponding to cliques with
ezactly one point of multiplicity 2. Four of them also are of type A = (3,3) and
can be obtained from the first two pictures in Figure 4a by some degenerations; see
Figures 11a and 11b, respectively. The fifth J-block corresponds to (5)-cliques with
exactly one double point; see Figure 11c. a

Let us study all these J-blocks and their homology groups.

PROPOSITION 17. All three [J-blocks corresponding to three pictures of Fig-
ure 4a are smooth orientable manifolds diffeomorphic to S* x RA‘z,_z'n particular
any of them has only two nontrivial Borel-Moore homology groups Ha—1 ~ Z ~
Ha_os. O

More precisely, in the first and the third (respectively, in the second) case the
corresponding space J of equivalent cliques is diffeomorphic to a nonorientable
(respectively, orientable) fiber bundle over S* with fiber B®. The order complexes
&(J) in all cases are homeomorphic to open intervals, whose endpoints correspond
to subspaces of codimension 2 in K defined by the (3)-cliques forming the triangles,
and the center corresponds to the subspace of codimension 4, defined by their
intersection. The bundle of these intervals is (non)orientable exactly in the same
cases when the corresponding configuration space is.

PROPOSITION 18. The (A—1)-dimensional Borel~-Moore homology group of the
J-block in Oy \ O3, corresponding to the unique class J of (5)-configurations, is
equal to Z7.

(I thank A. B. Merkov very much who proved this proposition, and also sug-
gested the following notation, convenient for the homological study of such blocks.)

PROOF. Let J be a configuration of five different points in S*. The correspond-
ing order complex <(J) is two-dimensional. Its twenty simplices of dimension 2 are
in a natural one-to-one correspondence with the triples of the form {some three
points of J; some four points containing these three; all five points}. Denote such a
simplex by the arrow, connecting two points not participating in the first triple and
directed towards the point not participating in the quadruple. The one-dimensional
simplices of the same order complex <(J) are the segments of the following three
kinds.

A) Connecting (the vertex corresponding to the subspace in K defined by) a
triple of our points and (the vertex corresponding to its subspace defined by) a
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quadruple containing this triple. Such edges do not belong to ¢4 and are not
interesting for us.

B) Connecting (the vertex corresponding to) a triple and (that corresponding
to) the maximal element x(J) € ©(J) (defined by the entire (5)-clique J). These
ten edges are denoted by nonoriented edges connecting two points not participating
in the triple.

C) Connecting (the vertices corresponding to) a quadruple and x(J). These
five edges are denoted by marking the point not participating in the quadruple.

_ In this notation, the boundary of an arrow (i.e., a 2-simplex of O(J)) is equal to
the edge, obtained from this arrow by forgetting the orientation, minus the endpoint
of the arrow.

LEMMA 2. The Borel-Moore homology group of this complez is concentrated in
dimension 2 and is isomorphic to Z°.

PRroOF. Indeed, the generating 2-cycles look as follows.

First of all, any arrow can appear in such a cycle only together with its opposite,
taken with opposite coefficient; otherwise the boundary of this cycle will contain
an edge of type B) with a nonzero coefficient. Thus it is sufficient to consider the
10-dimensional group, generated by the linear combinations of the form {an arrow
minus its opposite}. Such an element will be depicted by a double arrow directed
as the first arrow in this combination; see Figure 4b. A linear combination of such
double arrows is a cycle of the complex of closed chains of O(J) \ O3 if and only if
the correspondingly oriented segments form a cycle of the complete graph with five
vertices. The group H; of this complete graph is isomorphic to Z%, and Lemma 2
is proved. O

Further, our J-block is the space of a fiber bundle, whose base is the configu-
ration space B(S',5) & S! x B4, and the fiber over the configuration J is the direct
product of the oriented (A — 8)-dimensional subspace x(J) C K and the complex
&(J) \ ©3. The monodromy over the generator S* of the fundamental group of the
base acts on this complex (and its homology) as a cyclic permutation of five ver-
tices. Thus by the Wang exact sequence, the group considered in Proposition 18 is
generated exactly by all cycles of a complete 5-graph which are invariant under this
action. This group is two-dimensional; its generators are shown in Figure 4b. [

‘We have found all possible generators of the group
(4.2) Ha-1(04\ ©3);
namely, the following statement holds.

PROPOSITION 19. Each element of the group (4.2) is a linear combination of
the five chains shown in Figure 4. O

Now let us study the boundaries of these chains in other blocks.

PROPOSITION 20. The two chains corresponding to the two left pictures in Fig-
ure 4a cannot participate in an element of the group (4.2) with nonzero coefficients.

Indeed, the boundary of the first (respectively, the second) of them contains
the sum of generators of (A — 2)-dimensional homology groups of two blocks shown
in Figure 11a (respectively, 11b). These generators do not appear in the boundaries
of any other of our five chains. O
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FIGURE 12. Boundaries of basic cycles of Figure 4b and Figure 1

PROPOSITION 21. The two chains corresponding to the two pictures in Fig-
ure 4b cannot participate in an element of the group (4.2) with nonzero coefficients.

To prove this proposition, let us consider the homology group of the J. -block,
corresponding to (5)-cliques J = (z,z,y, z,w), as shown in Figure 11c. The corre-
sponding order complex <(J) again is two-dimensional.

PROPOSITION 22. For any (5)-clique J consisting of exactly four geometrically
different points in S*, the group H,.(O(J)\ ©3) is concentrated in dimension 2 and
is isomorphic to Z3. The Borel-Moore homology group of the corresponding block
in Oy \ O3 is concentrated in dimension A — 2 and also is isomorphic to Z5.

PRrOOF. Exactly as in the proof of Proposition 18, almost all two-dimensional
simplices of the complex <(J) are naturally depicted by arrows connecting some
of 4 geometrically distinct points of the clique J. (The unique extra triangle is the
triple of subspaces, whose first element is defined by three points of multiplicity 1:
it should be denoted by a loop edge, connecting the double point with itself. This
triangle cannot participate with nonzero coefficient in any cycle of the complex
O(J)\ ©3.)

Again, the cycles of this complex are depicted by double arrows, forming cycles
(in the usual sense) of the complete graph on our 4 vertices. This proves the first
assertion of Proposition 22.

The entire J-block is the space of a fiber bundle over the space of all cliques of
this type (which is diffeomorphic to S* x B?), namely, of a fibered product of an
orientable (A — 8)-dimensional vector bundle and the (trivial) bundle of complexes
<(J)\ ©3. This proves the last assertion of Proposition 22. Moreover, the (A—2)-
dimensional cycles of the block are in a one-to-one (Kiinneth) correspondence with
2-dimensional cycles of &(J) \ ©3, where J is any clique of this class. O

PROPOSITION 23. The boundaries in this block of two basic (A—1)-dimensional
cycles, shown in Figure 4b, are the two cycles shown in Figure 12a. O

PROPOSITION 24. The chain in 4, shown in Figure 1 (= the right-hand pic-
ture in Figure 4a), defines a cycle in <4\ O3.

PrOOF. The (3,3)-cliques of the type * can degenerate only in the following
way: some two neighboring points of different groups coincide, thus forming a
(5)-configuration, see the left picture of Figure 12b. Given a (5)-configuration J,
the J’-block of the type * adjoins the corresponding complex O(J) exactly five
times, because such coincidence can happen at any of its five points. The boundary
position of complexes &(J'), when J' €* tends to J in the way shown in Figure 12b
left, is (in the notation used in the proof of Proposition 18) equal to the difference
of two 1-dimensional simplices in <(J) denoted by two edges in Figure 12b right.
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The sum of such differences over all five vertices of the configuration J is equal to
0, and Proposition 24 is proved. O

REMARK 3. A much more general fact was proved in [22]: any “horizontal”
boundary operator d! of the auxiliary spectral sequence, corresponding to the col-
lision of two points of two different groups, is always trivial.

Summarizing Propositions 16-24, we get the following statement.

THEOREM 5. The group Ha_1(<4 \ O3) is isomorphic to Z and is generated
by the fundamental cycle of the J-block corresponding to the (3,3)-cliques shown
in Figure 1.

As the (A—1)- and (A — 2)-dimensional Borel-Moore homology groups of both
spaces $g and <3 \ Oy are trivial (see Proposition 9 and Theorem 4), this implies
Theorem 1 of the Introduction.

4.7. A nontrivial doodle. The theory of finite-order invariants provides a
method of constructing a priori nontrivial (and nonequivalent) objects. For exam-
ple, imagine that we do not know any nontrivial knot in R® and wish to construct
it. To do it, we can calculate the simplest finite-order knot invariant (given by
the chord diagram @), then draw the simplest singular knot respecting this dia-
gram (i.e., having two transverse self-intersections), and then consider four knots
obtained from it by all possible local resolutions of both these points. At least one
of the knots obtained will surely be nonequivalent to the others (and indeed, if we
do all this in the simplest possible way, we get three trivial knots and one trefoil).

In exactly the same way, we can construct the simplest quasidoodle with two
generic triple points, respecting the triangular diagram of Figure 1. Perturbing it
in four different ways, we shall obtain three trivial (equivalent to a circle) doodles,
and one equivalent to Figure 2a.

(However, A. B. Merkov, who discovered this doodle, arrived at it from very
different considerations.)

5. Invariants of I-doodles

In this and the next section we consider only the immersed curves in R2.
To any immersion ¢ : S' — R? there corresponds a map S' — S': any point
z € S! goes to the direction of the tangent vector ¢'(z). According to Smale [29],
this correspondence is a homotopy equivalence between spaces IKX = Imm(S!, R?)
and C(S?, S1). These spaces split into countably many components labeled by the
“winding numbers” (i.e., the indices of corresponding maps S* — S!). Any of
these components is homotopy equivalent to S*, the homotopy equivalence being
provided by the image of (the tangent direction of ¢ at) the distinguished point of
St

The discriminant I¥ in the space IK is just the intersection of this space IKX
with the discriminant set ¥ C K considered in the previous sections. Its resolution
I is a subset in ¢, namely the complete preimage of IX.

In its decomposition into J-blocks only the J-configurations, i.e., the J-cliques
without multiple points, can take part.

PROPOSITION 25. For any connected component C of the space IK and for
any A-configuration J in S, the space of immersions S — R? respecting this



296 V. A. VASSILIEV

1o
A-3] z | o
A-4l 7z |z | o
A-5| 0 | z |z
0
2 3 4 p

FIGURE 13. Spectral sequence for invariants of orders 2, 3 and 4

configuration and lying in this component is a path-connected open submanifold of
the space x(J) C K.

This follows easily from the Smale’s theorem. O

For any component C, denote by CI® and CI<; the intersection of the space
I (respectively, I<;) with the preimage of C under the projection < — K.

EXAMPLE 3. The stratum I<; is an open subset in the space of a fiber bundle,
almost coinciding with that considered in Proposition 9, with the unique difference
that its base is not the entire space ¥ = (5)3/5(3), but its open part B(S,3).
The strangeness is the linking number in C with the direct image of the fundamental
cycle of this subset. The existence of the strangeness as an integer-valued invariant
is due to the fact that this configuration space B(S',3) is orientable.

All other (A—1)-dimensional blocks in all spaces I<3 \[<Og and IO4\IO3 are the
open subsets of similar blocks considered in the previous section; the corresponding
virtual generators of the group of invariants of I-doodles are shown in Figures 3b,
4a and 4b.

All these generators define elements of corresponding groups Ha_; (<; \Ci_1) =
Eja_;_;- For two generators shown in Figure 4b, this follows from the fact that
the entire boundaries of corresponding blocks in <, \ I®3 are empty. For two
remaining blocks of Figure 4a we should additionally check that their boundaries
in the block corresponding to the (5)-configurations are trivial; the proof of this
fact essentially coincides with that of Proposition 24.

So, for any fixed component of the space IK the domain in the table {E; .}
responsible for the calculation of invariants of orders 2, 3 and 4 of I-doodles from
this component is as shown in Figure 13.

PROPOSITION 26. For any connected component C of the space I K, the frag-
ment of the spectral sequence shown in Figure 13 degenerates at the term EY, d.e.,
all its elements extend to well-defined Borel-Moore homology classes of the space
CIO.

PROOF. For the group E; o3 this is obvious.

The group E’21 A4 18 generated by the fundamental cycle of the submanifold in
CI©y, consisting of such pairs of the form {a 3-configuration (z,y,z) € B(S',3); a
map ¢ : §' — R?} that  + y + 2z = 0 (mod 27). It is obviously a cycle in entire
CIO. Let us prove that it is not homologous to zero. As H2(C) ~ 0, it is sufficient
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FA JF

FIGURE 14. The chain of I-doodles nontrivial by the invariant of
order 3

to construct two 1-dimensional cycles in C\ IS, defining the same element in H'(C)
but such that some (and then any) 2-chain realizing the homology between these
cycles has nonzero intersection number with this fundamental cycle.

Consider a map ¢ € IX N C with unique generic triple point, and let ¢y, ¢,
be its two small nondiscriminant perturbations resolving this triple point in two
different ways; see Figure 6c.

For any ¢ = 1,2, denote by [¢;] the 1-cycle in C \ £ swept out by all maps
obtained from ¢; by all cyclic reparametrizations of the source circle 5. These two
cycles are obviously homologous in C, and the intersection index of such a homology
with the above manifold is equal to £3.

This proves the assertion of Proposition 26 for cells Eyn_q and Ez po_g4.

In particular, there exist two elements of the group Hp(C \ ¥), i.e., two linear
combinations of doodles in C, which cannot be distinguished by the “strangeness”
(generating the group E3A_3 of second order 0-cohomology classes), but can be
distinguished by the invariant generating the group E$A_4- (In accordance with
subsection 4.7, we can find these combinations by resolving a unique point of multi-
plicity 4. Indeed, the linear combination of four doodles, shown locally in Figure 14
and coinciding outside it, provides such a chain.)

Exactly as above we produce from them a 1-cycle in C \ ¥, homologous to zero
in C, and having a nonzero intersection index with the chain generating the group
E% a—s- This proves our proposition. O

In particular, we have proved that for any component C of the space IK all
seven generators mentioned in Theorem 2 and shown in Figures 3 and 4 define
independent elements of the group Ha_; (X NC).

Finally, it is obvious that the intersection indices with all these (A — 1)-di-
mensional Borel-Moore homology classes of the discriminant define zero elements
in the 1-dimensional cohomology group of the component C, and hence the linking
numbers with them are well-defined invariants of I-doodles.

Theorem 2 is thus completely proved. O

6. One-dimensional cohomology of the space
of immersions S! — R? without points of multiplicity 4

Define the discriminant /34 C IK as the set of immersions ¢ : ! — R2 such
that images of some four different points coincide.

Its resolution I<>4 is constructed in essentially the same way as was done above
for the set IX. In this section we are interested in the 1-dimensional cohomology
classes of the space IK \ I¥4 or, which is the same, in the (A — 2)-dimensional
Borel-Moore homology classes of spaces IX4 or I<{A4.
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The first nonempty term of this resolution is of filtration 3. This is the space
of an orientable (A — 6)-dimensional vector bundle over the configuration space
B(S',4). This configuration space is nonorientable. Therefore the fundamental
cycle of this term defines a class only in the group Ha »(I%y, Z;), but not in the
integer homology group; see the statement “Fy ~ Zg over Zo” in Theorem 3.

The next term 14, \ 1443 of our filtration is also the space of a fiber bundle,
whose base is the configuration space B(S,5), and the fibers are direct products of
stars x with five rays (without endpoints, which belong to the smaller term of the
filtration) and some (canonically oriented) (A — 8)-dimensional vector subspaces in
K.

The base B(S*,5) of this bundle is orientable (and diffeomorphic to S* x R%),
and the monodromy over the circle generating the group 71 (B(S*,5)) ~ Z acts on
the fibration of 5-stars * by cyclic permutations of their rays.

Therefore the (A — 2)-dimensional Borel-Moore homology group of this term
coincides with the subgroup of the group H; (x) consisting of elements invariant un-
der the rotations of these stars. For any coefficient group G this group is isomorphic
to G*. If in G the condition 5a = 0 implies a = 0, then its invariant subgroup is
trivial; in the case G = Zj this group is isomorphic to Zs; see statement “Fy ~ Zs”
over Zs of Theorem 3.

Finally, consider the term 145 \ I<$4, of our filtration. It is the space of a
fiber bundle over B(S*,6), whose fiber is the product of R2~1° and some two-
dimensional order complex. This complex is similar to the one considered in the
proof of Proposition 18, with a single difference: its vertices correspond to choices
of some 4, 5 or 6 points of our 6, and not of 3, 4 or 5 points of 5. In absolutely
the same way as above, the two-dimensional cycles of this complex are the linear
combinations of (double) arrows with starts and ends at these six points, forming
the cycles (in the usual sense) of the complete graph on these six vertices.

However, unlike the case of 5-configurations, the base space B(S",6) is nonori-
entable. Therefore the (A — 2)-dimensional Borel-Moore homology classes of our
block are in a one-to-one correspondence with such cycles of the complete 6-graph,
which are anti-invariant under the cyclic permutations of its six vertices.

The group of such cycles can be easily calculated and is isomorphic to Z2; the
pictures of its generators are given in Figure 5.

By dimensional reasons, these homology classes of the space IO45 \ 1044 can
be extended to these of the space /<45, and hence to the 1-dimensional cohomology
classes (of order 5) of the entire space of immersions S* — R? without 4-fold points.

This proves Theorem 3 of the Introduction.
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