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ABSTRACT
A loop S! — R™ is holonomic if it is the (n—1)-jet extension of a function S! — R2.
We prove that for n = 3 any tame link in R” is isotopy equivalent to a holonomic
one; for n > 3 the space of holonomic links is homotopy equivalent to the space of all
differentiable links.

1. Introduction

Denote by Cj the disjoint union of k circles with fixed parametrization, and
by R™ the real arithmetic space with coordinates Z1,...,Zn. Any smooth function
f:Cr — R? defines a map ;U f : C; — R™ the (n — 1)-jet extension of f given
by the formula

z1(t) = f(£), 22(t) = f'(2),...,2a(t) = F""D(2). (1.1)
A link in R™ is holonomic if it appears in this way from some I

Theorem 1. For anyn > 4 and k > 1, the space of holonomic links of k strings
in R™ 4s homotopy equivalent to the space of all differentiable k-string links; this
homotopy equivalence is induced by the identical embedding.

Theorem 2. Any tame link in R® is isotopy equivalent to a holonomic one.

Problem. Is it true that any two holonomic links in R3 are isotopy equivalent
if and only if they are isotopic in the space of holonomic links? More generally, does
the obvious embedding define an isomorphism of all homology groups of the spaces
of holonomic and usual links?

This conjecture is motivated by the fact that the theory of finite-order invariants
of holonomic links is isomorphic to that for usual links, in particular the spectral
sequences from (8] calculating homology classes of both spaces are isomorphic be-
ginning with the term E;.
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These theorems are an illustration of two fundamental principles of S. Smale.
The first one (= the Smale-Hirsch principle, or parametric k-principle) in its general
form states that in many situations the spaces of smooth maps M — N without
certain singularities are topologically similar to the corresponding spaces of admis-
sible sections of the jet bundle J(M,N) — M, see ([7]), ([5]), ([6]) ([9]), ([3]) etc.
Our Theorems 1 and 2 are an extension of this fact to the case of multisingularities
and multijet bundles.

The second principle of Smale asserts that in the higher dimensions many things
(especially the ones related to the links) are easier than their low-dimensional ana-
logues. In fact, our Theorem 1 is much more standard than Theorem 2.

Theorem 2 has a braid-theoretical interpretation. All crossing points of a link or
braid diagram are naturally divided into two types. Indeed, given a crossing point,
the ordered pair of corresponding tangent vectors (where the lower string is taken
first) defines an orientation of the plane. Qur crossing point is called positive if and
only if this orientation coincides with a standard one.

Definition 1. A braid diagram is normal, if on any of its strings all the positive
crossing points lie higher than all the negative ones.

Then we have the following specialization of the Alexander theorem.

Theorem 3. Any tame link in R® can be represented by a normal braid.

2. Graphical Calculus for Holonomic Links in R?

Let us project our holonomic curve j2f(Ci) C R® to the plane (z;,z2); the
composition po j2f : Ci — R? of this projection and the holonomic embedding j2 f
is no other but the 1-jet extension of f.

Proposition 1. (i) For any generic smooth function f : Cx — R, the image
of Cx in R? under the corresponding 1-jet extension map j* f satisfies the following
conditions: T i

(a) it is a smooth closed oriented immersed curve; sye ofy w1 ohyel

(b) in the points of intersection with the azis o = 0 it is orthogonahto:this azis
and has nonzero curvature; in the half-plane {zo > 0} (respectively, {z2.'< 0})-the
coordinate xy strictly increases (respectively, decreases) along it;

(c) all its self-intersection points are the double transversal points (i1 in partzcular
they do not lie in the azis T2 = 0); RN

(d) if we supply these intersection points with the over- and under-érossing in-
formation defined by the behavior of the third coordinate xz3 at the corresponding
points of the holonomic curve j2f(Cx) C R3, then all crossing points in thelhalf-
plane {zo > 0} (respectively, {2 < 0}) are positive (respectively, nega-tiug)_f;w_ith
respect to the orientation dzi A dzs. ™ = (@)
(1) Any link diagram in R? satisfying these conditions (a—d) is the dza,gmm rqf some
holonomic link.
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Fig. 1. Reidemeister moves for holonomic links.
(i48) Two holonomic links in R®, whose diagrams satisfy these conditions, are iso-
topic in the space of holonomic links if and only if these diagrams can be connected
by wfiniteschain of local moves shown in Figs. la-1g (where the double horizontal
line [denotesithe azis z2 = 0).

(In pa.rt1cular the one- and two-string Reidemeister moves can happen only at
the pomts of that axis, and the third move only outside of it. )

¢ Proofy In the terms of the function f, condition (a) and the part of condition
(b)~eoncerning the non-vanishing curvature mean that f' and f” nowhere vanish
similtaneously, condition (d) and the rest of condition (b) are obvious, and condition
(c):cléimscthat there are no two points z,y such that flz) = fly), f'(z) = f'(y),
f'(z) = f'(y) or f(z) = f(y), f'(z) = f'(¥) =0, and there are no three points
z, g@suctothat f(z) = f(y) = f(z), f'(z) = f'(y) = f(z). All these conditions are
satisfied for generic f and statement (i) is proved.



118 V. A. Vassiliev

In a generic one-parametric family of functions fy only the following additional
degenerations can appear for particular values of the parameter .

1. The Morse surgery, connecting two function germs locally equivalent to z3 +
ez +cand 23 —ex +cor —2% + ez + ¢ and —23 — ez + ¢; the corresponding
metamorphoses of the curve are exactly the ones shown in Figs. 1c and 1d.

2. A pair of points z,y, at which f(z) = f(y), f'(z) = f'(¥) = 0, but f"(z) #
f"(y): see Figs. le, 1f and 1g.

3. A triple of points z,y,2, at which f(z) = f(y) = f(2), f'(z) = f'(y) =
f(2) # 0 and all values f'(z), f'(y) and f(z) are distinct, see Figs. la and 1b.

4. Two points z,y, at which f(z) = f(y), f'(z) = f'(¥), () = F"(y): this
situation defines a self-intersection of the holonomic curve and thus does not define
any admissible move.

This proves statement (iii). Finally, given a closed plane curve satisfying condi-
tions (a—c), we lift it to a holonomic knot in the following way. Close to any point
(z1,%2) of this curve with z, # 0, we can parametrize it by the coordinate z; and
express Tz as Tz = ¢(z1). Then the “interior” parameter t of the curve is locally
defined by the equation t = [(1/¢(z1))dz; + const, and the coordinate z3 at the
corresponding point is equal to z2d¢/dz;. It is easy to see that these functions ¢
and z3 can be continued smoothly to the points where z, =0. O

Note that the interior length of our curve (i.e., the period of the parametrization
R' — §') is defined uniquely by its image in R2. However, dilating our space R?
we can replace any holonomic knot by equivalent one of arbitrary other length.
Moreover, using the admissible deformations we can easily replace any holonomic
link by equivalent one, all whose components have prescribed interior lengths.

3. Proof of Theorem 2

Lemma 1. Any tame oriented link in R® is isotopy equivalent to a link whose
diagram satisfies conditions (a-c) of Proposition 1.

This is an immediate corollary of the Alexander theorem, see e.g. [2].

Definition 2. A crossing point of a link diagram satisfying conditions (a-c) of
Proposition 1 is irregular if the condition (d) is not satisfied at this pomt

Proposition 2. Any irregular crossing point of a diagram satzsfyzng condztzogu
(a—c) can be killed by some usual Reidemeister moves in such a way that the Jew
diagram satisfies again these conditions and no new irregular points appear m zt

Proof. We consider only irregular points in the half-plane z5 > 0: the pomts
from the other half-plane can be killed in exactly the same way. T e

Such irregular points always look as in Fig. 2a (i.e., they can be locally reduced
to this picture by a diffeomorphism of the plane (z;,z;) preserving the axis z, =0,
the orientation and the foliation of this plane into the lines {z; = const})7“The

elimination of this point A consists of three pictures. First, we suppose that the

o
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Fig. 2. The surgery in the simplest case.

upper local string at A (i.e. the one denoted by ¢ in our picture) extends without
crossings to the intersection with the axis z, = 0 at some point B and, moreover,
there are no other strings in the curvilinear quadrilateral bounded by this axis (from
bottom), vertical lines z; = z;(A) and 2; = 2;(B) and the string 3, see Fig. 2b.
Then the desired surgery lies in the similar quadrilateral bounded from below by
the line z; = —¢, € arbitrarily small, and its result looks as in Fig. 2c.

w1
W (gt

Fig. 3. Missing the trivial lower strings.

More generally, suppose that there are several other strings intersecting the first
quadrilateral, namely, all of them enter it in the points of the line z; = z;(A4), leave
it in the points of the line z; = z;(B), have no intersections in it and intersect the

o striig a ﬁ;qularly at a unique point each, i.e. are situated as shown in Fig. 3a. The
corresponding move again lies in the similar quadrilateral as in Fig. 2c and its result
is as shown in Fig. 3b. We may assume that the number € defining the bottom line
zy = —e of this quadrilateral is so small that there appear no new crossing points
other than the ones indicated in our picture.

Now we show that for any irregular point the geometry of the corresponding
string «'and of the domain bounded by it from above can be reduced to the special
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form indicated in Fig. 3a. By an arbitrarily small deformation of the link we can
ensure that for some § > 0 its diagram has no other crossing points and intersections
with the axis z3 = 0 in the strip z; € [z1(A) — 6, z1(A) +§], in particular it behaves
as in Fig. 4a in the pentagon bounded by the axis z, = —¢, the boundary lines of
this strip and the strings « and 8. Then we replace it by the curve shown in Fig. 4b.
The resulting link is the desired one. Proposition 2 is proved, and Theorem 2 is a
direct corollary of it. O

Il

Fig. 4. Cutting the upper string.

To prove Theorem 3, we take the diagram of a holonomic link equivalent to the
given one and apply to it several surgeries indicated in Figs. le, 1f and 1g in such
a way that all the intersection points of the axis zo = 0 with the resulting link
diagram, at which the corresponding string goes from the negative half-plane into
the positive one, are separated by some point C of this axis from all the intersection
points where the strings go down. Then we cut our plane (z;,z2) along the ray
L = {z2 = 0,21 € (—00,C)}; the resulting braid in the domain R?\ L ~ R? x (0,1)
is normal. O

4. On the Proof of Theorem 1

This proof essentially repeats the proof of the Smale-Hirsch principle for the
spaces of functions without (mono)singularities of large codimension, see [9], there-
. fore we only outline it emphasizing the features of our present situation.

The number of strings k and the dimension n of the target space R™ are fixed
throughout this section.

Denote by F the space of all smooth functions Cy — R! supplied with the C"-
topology, by K the space of all smooth maps Cj; — R™ with the C'-topology, and
by X the subset in K consisting of all maps which are not the knots, i.e. have either
self-intersection points or the points of vanishing derivative.
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The set ¥ has a natural partition into the strata of finite codimension (any
stratum consists of the maps having equivalent (up to the orientation-preserving
diffeomorphisms of C}) finite configurations of points in Cj which are glued together
by these maps or at which these maps have singular points) plus some strata of
infinite codimension, consisting of maps having infinitely many singular points; see
[8] and [9], Chapter V.

Definition 3. A finite-dimensional affine subspace in K is generic if it does not
intersect strata of infinite codimension and is transversal to all finite-dimensional
strata of the canonical stratification of T.

Let L = L(d) be an affine subspace in F of finite dimension d, and L(9), ; =
0,1,...,n — 1, the spaces of all functions of the form f(*) where f € L. If L is
generic, then all these spaces have the same dimension d. Denote by L*™ the space
of all maps ® : Cx — R™ of the form & = (¢y,...,Pn_1), ¢; € L) for any i.

There is a natural embedding j*~ of the space L(d) into L(d)*", namely, to
any function ¢ € L(d) there corresponds the map

(9, ¢,...,6* V) € L(d)*™.

The image of L(d) under this embedding will be denoted by L = L(d).
The spaces L(d)*™ \ T approximate the space of all links in R™ in the following
sense.

Lemma 2. There is a sequence of subspaces

- CLd)CcL(d+1)C--- inF such that

a) all the spaces L(d)*™ and L(d) C L(d)*" defined by it are generic in the sense
of Definition 8,

b) for any class v € H. (K \ Z) (respectively, for any continuous map x of a
finite-dimensional CW -complez to K \ £) there is a number d such that v can be
represented by a cycle lying in L(d)*™ \ £ (respectively, x is homotopic in X\ T to
a map whose image lies in L(d)*™), and

c) for any d and any two cycles v1,v2 € Hi(L(d)*"\X) which are homologous in
K\ I (respectively, for two maps x1, X2 of the same finite-dimensional complez into
L(d)*™ \ & which are homotopic as the maps into K \ ) there is d' > d such that
71 and y2 are homologous (respectively, x1 and x2 are homotopic) to each other in
L(d')\ Z.

Moreover, any system of subspaces --- C L'(d) C L'(d+1) C --- which is
sufficiently close to this one in the Grassmannian metric also satisfies all these
conditions.

This follows directly from the Weierstrass approximation theorem and Thom
multijet transversality theorem, cf. [8], [9]. O

Proposition 3. If all subspaces L(d)*" and L(d), d — oo, are in general
position with respect to the canonical stratification of &, then for any d' > d the
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identical embeddings L(d) — L(d)*" and L(d) — L(d’) induce four isomorphisms

HY(L(d)™\ 5) — B{(L(d)™\ 5),
L Lo (41)
HY(L(@)\Z) — HY(L(d)\D)

for alli < (n—3)(d/(n+2)+1).

Proposition 4. For any n > 4, any d > 4n and any generic L(d) the spaces
L(d)™ \ X and L(d) \ T are simple-connected.

Theorem 1 follows immediately from these two propositions and from the White-
head’s theorem.

Proof of Proposition 8. As in [1], [8], [9], we use the Alexander isomorphisms

HYL(d)*™ \ D) = Hpy_1_(EN L(d)™),
HY(L(d)\ Z) ~ Hy (= n L(d))

(where H. denotes the homology of the one-point compactification reduced modulo
the compactifying point). We construct a simplicial resolution o4, of the variety
£ N L(d)** and similar resolution ¢z of £ N L(d) exactly as in [8], [9]; by the
construction oy is a subspace in Od,n-

Denote by X the one-point compactification of the space X , then there are
canonical homotopy equivalences

Fa~XInL(d) (4.2)
Tdn ~ XN L(d)*.
Both spaces 77, 57, admit a natural increasing filtration by closed subsets
defined by the complexities of the corresponding singular strata, see [9].

Lemma 3. (see [8], [9]) If the spaces L(d), L(d)" are generic, then for m =
d/(n+2) the m-th term F,, (Ta,n) of the natural filtration of the one-point compact-
ification of the space Oa,n 18 homotopy equivalent to the (nd' — d’ )-fold (respectively,
n(d' — d)-fold, respectively, (nd' — d)-fold) suspension of the similar term of o7,
(respectively, of Tdn, respectively, of 53) while the corresponding quotient spaces
Td 0/ Fm(Garm), 03/ Fn(o7), Tdn/Fm(0an), T2/ Fm(52) of all these four spaces
are the CW -complezes whose homology groups H, are trivial for all t which are at
least by (n ~ 3)(d/(n + 2) + 1) smaller than the dimensions of the corresponding
spaces of maps (i.e. than d'n, d', dn and d respectively).

The proof repeats the proof of Proposition 4.2.4 of the book [9], see pages 102-
106 there. This lemma together with the Alexander duality implies that for any
t < (n=3)(d/(n+2)+1) all cohomology groups H* participating in the diagram (4.1)
are actually isomorphic to each other; the fact that these isomorphisms are induced
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by the identical embeddings follows from the constructions of these isomorphisms
as in [9], p. 106, and Proposition 3 is proved.

Proof of Proposition 4. For any generic affine subspace A C K, the discriminant
X N A is a subvariety of codimension > n — 2 in A. Therefore our proposition is
true if » > 4, and for n = 4 the fundamental groups of the complements of ¥ in
these subspaces are generated by finitely many simple loops embracing ¥ at several
nonsingular points of .

It follows from the comstruction of resolutions o4, 04 that the first terms
Fi(04n), Fi(oq) of their natural filtrations are the spaces of normalizations of
discriminants £ N L(d)*™ and T N L(d) respectively; these spaces are nonsingu-
lar manifolds with boundaries, and the pre-images in them of the set of singular
points of £ have codimension > n — 2. In particular, the smooth part of T is path-
connected. Hence in the case n = 4 our simple loops can be unhooked from X by
some deformations which cover the paths in the non-singular parts of £ N L(d)*",
¥ N L(d) connecting the points of embracing with the boundary of £&. O
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