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Invariants of Ornaments

VICTOR A. VASSILIEV

ABSTRACT. An ornament is a collection of orented closed curves in a plane,
no three of which infersect at the same point. The classification of ornaments
up to natural equivalence relation is parallel to the homotopy classification
of links. We construct a series of invariants of ornaments, many of which
have a very classical interpretation.

The general construction leads naturally to problems in modermn homolog-
ical combinatorics (see [BW, Bj]) and seems to be closely related to the
higher-dimensional analogues of the Chern-Simons theory and Yang-Baxter
equation (see [MS, FNRSj}).

§0. Introduction

Denote by C, the disjoint union of & circles.
DEFINITION A k-ornament (or simply an ornament) isa C"-smooth map
C, - R’ such that the images of no three different circles intersect at the

same p01m in R?. Two ormaments are equivalent if the correspondmg maps
C, — R’ can be connected by a homotopy C, x [0 1] — R? such that for

any f € [0, I] the corresponding map C, xt— R’ is an ornament.

(Similar objects were considered in [FT] under the name doodles: the only
difference is that doodles are collections of Jordan curves (without selfinter-
sections). Of course, invariants of ornaments are also invariants of doodles:
conversely, the invariants introduced in [FT] can be easily generalized to
invariants of ornaments, see 1.2 in [Mx].)

In this paper we construct a series of numerical invariants of equivalence
classes of ornaments. Like the knot invariants in [V1, V2], these invariants
appear from the study of the discriminant, i.e., the space of all maps C,. - R?
which necessaraly have triple intersections.

(We follow again the general strategy from [A2]: to replace the study of
the soft, homogeneous space of nonsingular objects by the study of the com-
plementary space of singular objects, which usually has a rich geometrical
structure.)

Using the geometry of the discriminant, we construct a spectral sequence
E?'% which calculates the cohomology groups of the space of ornaments; in
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126 VICTOR A. VASSILIEY

particular the groups E_"" of this spectral sequence provide invariants of
ornaments.

A lot of our invarianis can be interpreted in absolutely classical terms;
these invariants are described in 1.4 below,

Asin [V1, V2], the invariants coming from the cell E of this spectral
sequence are called invariants of order i, and all such invariants correspond-
ing to different i are called finite-order invariants.

This theory is a model version of a wide class of problems (stated in [FNRS]
in connection with the higher-dimensional generalizations of Chern-Simons
theory) where a similar technigue works: for example, the next problem of
this class is the classification of all maps of & two-spheres (or arbitrary fixed
Riemannian surfaces) in R’ in such way that no four of them intersect at
the same point. The construction of our invariants can be immediately gen-
eralized to these problems.

There are also many invariants of ornaments (due to Fenn, Taylor, and
Merkov) which seem to be specifically “one-dimensional”, see 1.2, 1.3 of the
present paper and §§1, 2 in the article of A. Merkov in this volume,

In §§2, 3 we describe the elementary characterization of finite-order invari-
ants and show how to calculate the values of these invariants on an ornament,
In §§4-7 we construct and investigate the principal spectral sequence which
provides such invariants. The first calculations are presented in §8. A large
list of unsolved problems is given in §9.

-yt

Ficure 1. The simplest nontrivial ornament

About the pictures. In almost all the pictures and examples no more than
three components of C, participate. We depict these components by ordi-
nary, dotted, and dashed lines, see Figure 1.
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§1. Elementary theory
1.1. Reidemeister moves.
F o x ] o "
DEFINITION. An ornament ¢: C, — R is regular if 1t is an immersion

of C,, and all the multiple points of the image of (, in R? are double
transversal intersection points.

THEOREM 1. Any ornament is equivalent to a regular ornament, Two reg-
ular ornaments are equivalent if an only if they can be transformed one into
the other by a finite sequence of isotopies of R> (which do not change the
topological picture of the image of the ornament), and of local moves shown
on Figure 2 (or obtained from these moves by recoloring the strands).
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FiGURE 2. Reidemeister moves

(In other words, only the local move shown on Figure 3 is forbidden among
the moves which can appear in a generic homotopy of a generic smooth map
C, —R*).

&

FiGURE 3. The forbidden move

ProoF. This theorem follows immediately from the Thom multijet trans-
versality theorem, see [GG].



228 YVICTOR A. VASSILIEV

1.2. On Fenn-Taylor invariants. In [FT], Fenn and Taylor introduced an
invarant of doodles, i.e., of collections of Jordan curves without triple in-
tersections on a two-sphere. This invariant can be easily generalized to an
invariant of ormaments on two-spheres. The values of this invariant are col-
lections of k elements of the free group with k — 1 generator considered up
to cyclic permutations of symbols.

For a description and a generalization of these invariants, see [Mx].

1.3. Reduction to the homotopy classification of links. The classification
of k-ornaments can be partially reduced in several ways to the homotopy
classification of links. These reductions (which essentially also were intro-
duced in [FT]) are numbered by the orientations of the complete graph with
k vertices: given such an orientation, we assign a k-component link in R® 10
any k-ornament in such way that to equivalent ornaments there correspond
homotopy equivalent links.

Indeed, let us fix such an orientation. Make a link diagram from the (image
of) our regular ornament in the following way: the ith string goes everywhere
under the jth at their crossing points if the edge (ij) of the complete graph
is oriented from the ith vertex to the jth, At the selfintersection points of
the same component the over/undercrossings may be chosen in an arbitrary
way.

THEOREM 2. If two ornaments are equivalent, then the links assigned 1o
them by the above rule (based on an arbitrary orientation of the complete
graph) are homotopy equivalent.

Indeed, by Theorem 1, any Reidemeisier move can be lifted to an admis-
sible move of a link which preserves its homotopy class, and the resulting
link diagram again satisfies the above rule for over/ undercrossings.

In particular, homotopy invariants of links provide the invariants of orna-
ments. These invariants can be nontrivial; for instance, any cyclic orientation
of the complete graph with three vertices transforms the 3-ornament from
Figure | into the Borromean link.

1.4. Index-type invariants. Recall that any closed oriented immersed curve
¢ in R* defines an integer-valued function ind. on its compiement: for any
point ¢ of the complement, ind (f) equals the rotation number of the vector
(t, x) when x runs once around ¢.

To any regular k-ornament we assign (g) functions [, ;= n"[.”,-(b1 D 1
1< i< j< k, with integer values and arguments; these functions are in-
variant under the moves from Theorem 1 and hence define invariants of
ornaments.

To do this, to any (transversal) intersection point x of the ith and jth
curves we assign k integers b (x},... ., b, (x)} and a sign o(x) in the fol-
lowing way.
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If / #i,j,then b(x) is just the number ind,(x}, the index of x with
respect to the /th curve. Now, close to any regular point of the ith curve
(in particular, to the intersection point x ) the values of the corresponding
function ind,(-) take two neighboring integer values on different sides of
the curve. Define the number b(x) as the smallest of these values at the
neighboring points to x. The number b (x) is defined in the same way by
means of md Finally, o(x) equals 1 1f the tangent vectors of the ith and
Jjth curves at the point x define a positive frame (with respect to a fixed
orientation of R’ ) and equals —1 if this frame is negatively oriented.

Given a regular k-ornament and k integers b, ... , b, , define the num-
ber I, (b ..., b) as the number of transversal intersection points x of
the :th and jth curves of our omament such that b,(x) = aab(x)=
b, and o(x) = I, minus the number of similar pomts with a(x) =—1,

THEOREM 3. All the functions I, TR i< j<k, are invariant under all
the Reidemeister moves of Figure 2.

Proor. Immediate.
The functions 7, , are not independent. For instance, for k& = 3 let us
define the numbers Il - 12 3+ {3 4 as the sums

o0 (e ]

Z b3Il ,I(bl L bz ? b3) ¥ Z b112.3(b| 2 b2 : b3) 1
b by bi=—ox b by, by=—oc

[nu]

z _5211,3(!’1?!’2-53)’
b by by=—0a

respectively.
PROPOSITION 1. All three numbers i, ,, i, ;,1; | coincide.

ProoF. Indeed, for an unlinked ornament all three numbers are equal
to 0, and any forbidden mrove from Figure 3 simultaneously increases or
decreases by 1 all three numbers.

This number i, , is called the index of the 3-ornament ¢ and denoted
by ig).

More generally, for any k > 3 and any k-ornament ¢, define the index
i{p) of ¢, as the number

Z Z (b1+"'+bf—l_bz'+|_'”

|<:<;<kb
- b}._l + bm 4 - +bk)I,.d.{bl, %

This number (@) is always an integer: again, any elementary surgery of
Figure 3 decreases or increases the previous double sum by 3.
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In a similar way, given a regular k-ornament, for any kK integer nonnega-

tive exponents B, ... , f, we can define the corresponding momenia
= B, B
Mi.j(ﬁl----sﬁk): Z bl]”'bk”;.j(bi'----bk)-
by By =—2

It is natural to call the function M, . the Laplace transform of I,

Since all the functions /; j are ﬁmte they can be reconstructed frorn thelr
Laplace transforms.

Here are some other relations on the indices I‘..j and their momenta.

PROPOSITION 2. Forany | < i < j < k and any two values b, and b;-,
the sum

equals 0.

Proor. The curves other than the ith and jth ones actually do not par-
ticipate in these sums; after they are removed the statement becomes trivial.

Here is an equivalent reformulation of this proposition in terms of mo-
menta.

PropostTiON 2. If B, = 0 for all | other than i or j, then M, (B, .

ReMARK. The construction of the invariants /, } o and M, , can be imme-
diately extended to that of invariants which distinguish maps of collections
of (n— 1)-dimensional manifolds in R" , no n+ 1 of which intersect at the
same point; the corresponding functions / and M in this case have n lower
indices.

ReEMARK. [expect that there are many other elementary invariants of orna-
ments, and the spectral sequence of §4 can be considered as a regular method
of guessing them: for instance, I guessed the invarnants 7, and M, after
calculating the terms E~ ' of the sequence with /=2, 3, 4.

For a generalization of these index-type invariants see §§3, 4 in [Mx].

1.5. Examples. A. The simplest picture of the nontrivial ornament {see
Figure 4) has 16 nonequivalent realizations, depending on the orientation
and ordering (coloring) of circles. All of them can be distinguished by the
functions /7, . The Fenn-Taylor invarianis split these 16 ornaments into
two groups, with 8 ormaments in each (and are constant on any of these
two groups): indeed, all ornaments in any of these groups are equivalent as
ornaments on a sphere.

B. For the ornament in Figure 5, all invariants /, vanish. However, this

ornament is nontrivial because so is its Fenn-Taylor invariant.
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FiGURE 4.

Figure 5. An ornament which annihilates all index-
type invariants

C. For the omament in Figure 5 of the work [Mx], both Fenn-Taylor in-
variant and invariants /, . vanish. (This example is due to Merkov, who
also proved the nontriviality of this ornament by using a refinement of the
Fenn-Taylor invariant, see [Mx].) It seems also likely that the link obtained
from this ornament by the construction of 1,3 is homotopy nontrivial, which
also proves the nontriviality of this ornament.

§2. Elementary definition of finite-order invariants

DEFINITION AND NOTATION. A quasiornament is any C *.smooth map
c, — R’. The space of all k-quasiornaments is denoted by x; . The dis-
criminant I C x, is the space of all quasiomaments that are not ornaments,
i.e., have triple points.

The discriminant is a singular subvariety in x, . Its regular points are the
guasiornaments having only one forbidden triple point such that the three lo-
cal branches at the triple point are smooth and pairwise nontangent; singular
points of I correspond to quasiornamenis with several singularities or with
more complicated singularities. A natural stratification of the discriminant
is provided by the classification of these singularities.
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Any numerical invariant of ornaments can be expressed in terms of the
discniminant. Indeed, 1o each nonsingular piece of the discriminant (i.e.,
a connected component of the set of its nonsingular points) we can assign
its index, i.e., the difference of values of this invariant on two neighboring
topologically different ornaments, taken in an appropriate order.

The value of the invariant on any ornament can be reconstrucied from
this system of indices (under the assumption that any invariant vanishes on
the trivial ornament): to do this, we connect our invariant with the trivial
one by a generic homotopy in the space x, and count all the indices of all
quasiornaments at which this homotopy intersects the discriminant.

Conversely, suppose that to each nonsingular component of the discrim-
inant we have assigned a numerical index. In order that this collection of
indices define an invanant of ornaments, it must satisfy a homological con-
dition: the sum of these components taken with the appropriate coefficients
{i.e., their indices) must have no boundary in the space of all quasiornaments.
Enumeration of such admissible collections is a problem in homology theory
and can be solved by standard methods of this theory, A partial solution to
this problem is described in §§4-8; in the present section we give an elemen-
tary characterization of the invariants thus obtained.

DEFINITION. A degree j standard singularity of ommaments is a pair of the
form

. 2 .
a quasiornament ¢: C, — R ; a point x € R’
9Ly

such that m_l(x) consists of exactly j + ! points z , ..., Z;yp» at least
three of which belong to different components of C, , the map ¢ close to
all these points is an immersion, and the corresponding j+ [ local branches
of ¢(C,) are pairwise nontangent at x. A quasiornament is called a regular
quasiornament of complexity i if all its forbidden points (i.e., the points at
which at least three different components meet) are standard singular points,
and the sum of degrees of these singularities equals 7.

Given an invariant of ornaments, to any regular quasiornament of finite
complexity there corresponds a collection of characteristic numbers which
we define below; the invariant is of order [ if an only if all such numbers
corresponding to all quasiornaments of complexity > i are equal to zero.

Let us define the characteristic numbers. Let ¢ be a regular quasiomnament
with m singular points x,, ... , x,, € R’ , with inverse imagesin C, of these
points being

Zy s s Z % W L by s Z e s Iy eg (x,)

A degeneration mode corresponding to the regular guasiornament ¢ is
some arbitrary order of marking all these points z, NERETIRE-FApa satisfying
the following conditions: at any step we mark either some three points of a
group w'l(x{) belonging to some three different components of C, (if no



INVARIANTS OF ORNAMENTS 233

point of the same group is already marked) or one point (if some three or
more other points of the same group are already marked).

EXAMPLE. Suppose that our 3-quasiornament has one singular point at
which four points of C, meet: two from the first compenent of C,, one
from the second and one from the third (see Figure 6). Then there are
two different degeneration modes (see Figure 7). If our quasiornament has
exactly one additional singular point at which 3 points meet, then there are
6 different degeneration modes: for any case from Figure 7, we can mark
the whole second group before, after, or in between the steps taken while
marking the points from the first group.

L ]
®

Figure 7. Two de_gencration modes for the configura-
tion of Figure 6

To any degeneration mode there corresponds a characteristic number of
our invariant (and of the quasi-singularity ¢ ). This number will be defined
by induction over the process of marking.

Base of induction: for a nonsingular ornament ¢ {and the empty degen-
eration mode) the characteristic number equals the value which our invariant
takes on ¢@.

Suppose that the last step of degeneration consists in marking certain three
points z, z', z" (and hence the corresponding group ¢ (-} consists of these
three points only). Let j < [ < n be the numbers of the components of G,
containing these points. Then we can move our map ¢ slightly in two ways
so that all the critical points other than @(z) stay in place, and the triple point
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@(2) is resolved in the two ways shown on Figure 8. These two resolutions
are not equal: we can always call one of them positive, and the other will be
negative. Indeed, to any of these two pictures there correspond three integers:
the first of them is the index of the intersection point i of the jth and /th
curve with respect to the nth curve, multiplied by the si‘gn G(x; ;) (see 1.4);
the second number is defined in a similar way by the point *; , and sign
o(*; ,), and the third by *. » and the sign =a(x; ,). It is easy to prove
that for one of our two resolutions all these three numbers are one more than
the corresponding numbers for the other; this resolution is the one called
positive, Then the characteristic number that our invariant assigns to the
quasiornament ¢ and the degeneration mode, is equal to the characteristic
number defined by the same invariant for the positive resolution and for the
same degeneration mode without the last step (this value is already known
by the inductive assumption) minus a similar characteristic number for the
negative resolution.

FiGure 8. Two resolutions of a triple point

Now, let the last step of degeneration consists in adding only one point
) ; € qf'(xﬂ. In this case, we can partially resolve the quasiornament ¢
in two topologically different ways ¢’ , ¢” so that the remaining singularity
glues together the same points Z; i s @, except only for this one. Indeed,
we preserve our map ¢ everywhere outside a small neighborhood of Zy ;o
and in this neighborhood change it in such a way that the corresponding
local branch of {the image of) the ornament translates parallel to itself to
one side or to the other (see Figure 9). Again, one of these resolutions can
be invariantly called positive and the other negative. To do this. take an
arbitrary point in R’ not on the ornament and very close 1o qa(z,_j) {(much
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FIGURE 9. Two partial resolutions of a mulitiple point

closer than any of the points ¢'(z, ;). ¢"(z; ;): for instance, the point in
Figure 9). Then the positive resolution of ¢ is the one of the two maps ¢,
" for which the index of the point * with respect to the component of C,
containing z; ; is greater. Again, the characteristic number corresponding
to ¢ (and to our degeneration mode) equals the characteristic number of the
one of the resolutions ¢, " (with the previous degeneration mode} which
is positive, minus the characteristic number of the negative resolution.

DEFINITION. An invariant of ornaments is of order i if all corresponding
characteristic numbers for any regular quasiornament of complexity > i
vanish.

An equivalent definition will be given in §4.

Remark. Of course, the characteristic numbers corresponding to different
degeneration modes of the same regular quasiornament satisfy some natural
relations; the study of these relations is closely related to the theory of ar-
rangements, order complexes, etc., see §85-7.

For instance, if two degeneration modes differ only by a permutation of
markings preserving the order of marking the points in the group ¢ : (x;) for
any / =1,... , m, then the corresponding characteristic numbers coincide.

THEOREM 4. Any invariant M, (8, ... . B,) from 1.4 is an invariant of
order B, +---+ B, +1.

ProoF. Immediate, by induction over the process of degeneration.

Let A be a finite series of integers, 4 = (a, > @, > ... > a, > 3). Denote
by |4| the number @, +---+a,, , and by #4 the number of elements @, of
the series (denoted in the previous line by m ).
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DEFINITION. An A4-configuration is a collection of |4| patrwise different
points in C, divided into groups of cardinalities @,...,a,, in such a
way that any group contains points of at least three different components
of C,. Two A-configurations are equivalent if they can be transformed
one into the other by a diffeomorphism C, — C, which preserves ordering
and orientations of all components of C, . A quasiornament ¢: C, — R?
respects an A-configuration if it sends any of the corrgsponding #4 groups
of points into one point in R>. The quasiornament @ strictly respects the
A-configuration if, moreover, all these #4 points in R” are distinct, have
no preimages other than these |A4| points, and @ has no extra points in R’
at which the images of three or more different components of C, intersect.
A degeneration mode of an A-configuration is a degeneration mode of an
arbitrary quasiornament strictly respecting it.

Obviously, the space of all quasiornaments which respect a given A-config-
uration J is a linear subspace of codimension 2(]4] — #4) in the space of
all quasiornaments. We shall denote this subspace by y(J). The set of all
quasiornaments that strictly respect this configuration is an open dense subset
in this subspace.

Let M be an invaniant of ornaments and J an A-configuration.

THEOREM 5. If M is an invariant of order i, and |A| —#A4 = i, then for
any regular quasiornament ¢ that strictly respects the A-configuration J all
characteristic numbers defined by M and ¢ depend on the configuration J
only.

PROOF. Any two regular quasiornaments @, ¢ that strictly respect the
same A-configuration J can be transformed one into the other by some
homotopy ¢: C.x[0,1]— Rz, e=¢(-,0), ¢ = o, 1}, such that

1) any quasiornament ¢, =9, 1), t€[0, 1], respects the configuration
J, and

2) for almost all ¢ € [0, 1] it strictly respects this configuration, and only
at a finite number of instants {, € (0, 1) the topological picture of the set
@(C,) undergoes one of the following local surgeries:

a) one of the permitted surgeries from F igure 2 away from the “bad™ points
of p(1),

b) the local move connecting the two lower pictures on Figure 8,

¢) the local move connecting the two lower pictures on Figure 9,

d} the local move preserving all local branches of @(C,) at all its singular
points but one, and changing the last branch as shown in Figure 10.

The invariance of the characteristic numbers under one of the surgeries of
type a) is obvious, and the invariance under the surgeries b) and c) follows
from the definition of invariants of order i (indeed, the difference of the
characteristic numbers of the quasiornaments at the left and right sides of
Figure 8 or 9 is just the characteristic number of the upper quasiornament on
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Ficure 10.

the same picture, and it is zero because the complexity of this quasiornament
is greater than J). Finally, for surgery d) the invariance follows easily from
the definitions, and the theorem is proved.

Any equivalence of A-configurations establishes an one-to-one correspon-
dence between their degeneration modes.

THEOREM 5. Any invariant of order | assigns equal characteristic num-
bers to any two equivalent A-configurations and their degeneration modes cor-
responding to each other via this equivalence.

Proor. The proof is obvious.

COROLLARY. For any natural k and i, the space of order i invariants of
k-ornaments is finite-dimensional.

Proor. Indeed, for any &k there is only a finite number of equivalence
classes of configurations of a given complexity, as well as of their degeneration
modes.

In §§4-8 we show how to calculate all such invariants.

§3, Coding finite-order invariants and ealculating their values on knots

Any invariant of order i/ can be encoded by its actuality table which we
now describe.

This table has i+1 levels numberedby 0, 1, ... , i. The /th level consists
of several cells which are in one-to-one correspondence with all possible pairs
consisting of

a) an equivalence class of 4-configurations of complexity {,

b) a degeneration mode of this A4-configuration.

In each cell we put

a) a picture (or a code) representing a “model” regular quasiormament
which respects some A-configuration from the corresponding equivalence
class (this picture is the same for all invariants), and

b) a number (called the actuality index corresponding to this picture) which
is just the characteristic number that our invariant and the degeneration mode
corresponding to the cell assign to this quasiornament.

By Theorem 5', we need not draw the pictures in the cells of the highest
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(ith) level of the table; indeed, the corresponding characteristic numbers
depend only on the data indexing the cell.

For instance, the Oth level consists of the trivial (disjoint) ornament, and
the corresponding characteristic number equals ( (recall that we assume that
all invariants vanish on the trivial ornament). The first level is empty, because
there are no configurations of complexity 1.

In order to calculate the value of our invariant on some ormament, we join
this ornament with the trivial one by a generic path in the space «, . This path
has only a finite number of transversal intersections with the discriminant in
its nonsingular points, i.€., in some regular quasiornaments with only one
simplest triple point. The value of the invariant on our ormament equals
the sum of charactenistic numbers of these quasiornaments taken with the
signs depending on the direction in which we traverse the discriminant at the
corresponding points (i.e., from the negative side to the positive on or in the
opposite direction).

To calculate these characteristic numbers, we use an inductive process, the
general (/th) step of which consists in the following.

Before this step, we have reduced our problem to the calculation of the
characteristic numbers which our invariant assigns to several regular quasior-
naments of complexity >/, taken together with certain degeneration modes
of the configurations strictly respected by them.

To calculate such a number for some quasiornament ¢ of this list, we
choose the cell in the actuality table corresponding to the (equivalence class
of the) A-configuration strictly respected by this quasiornament, and to the
degeneration mode. (Without loss of generality, we shall assume that the qua-
siornament encoded in this cell respects exactly the same A-configuration as
¢ : the corresponding reduction can be always done by a reparametrization
of C,.) Then we join these two quasiornaments by a generic path in the
space of all quasiornaments that respect this A-configuration. For almost
all points of the path, the corresponding quasiornaments respect this con-
figuration strictly, and only at a finite number of instants they undergo one
of the local surgeries shown in Figures 8, 9, 10. The surgery in Figure 10
may be disregarded. At the instant of any other surgery, we get a regular
quasiornament that strictly respects some A'-conﬁgurati'on whose complex-
ity |4'| — #4" is strictly greater (by two in the case in Figure 8, and by one
in the case in Figure 9) than that for the configuration 4. Also a degenera-
tion mode for this A4'-configuration is well defined: it is obtained from the
previous mode for the A-configuration by adding one more step: marking all
additional points belonging to the A'-configuration but not belonging to the
A-configuration. The characteristic number of the original quasiornament ¢
and the original degeneration mode equals the sirmilar characteristic num-
ber for the table quasiornament respecting the same A4-configuration and for
the same degeneration mode, plus the sum of characteristic numbers for the
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regular quasiornaments (and the degeneration modes just defined) respecting
more complicated configurations that we meet along the path: these char-
acteristic numbers in the sum must be taken with the coefficient | {resp.,
— 1} if the corresponding local surgery goes from the negative picture to the
positive one (see §2) (resp., from the positive picture to the negative).

Thus we have reduced the calculation of characteristic numbers for some
regular quasiornament respecting an 4-configuration to that for several qua-
siornaments respecting certain A'-configurations, where the complexities of
all A'-configurations are strictly greater than those for 4. Since our in-
variant is of order i, this process stops when the complexities of all such
configurations attain .

§4. Discriminants and their resolutions

In this section, we begin the systematic topological study of the discrimi-
nant X C x, ; in particular, we present a method of calculation of all finite-
order invariants (and show why this class of invariants is natural).

We construct a spectral sequence E7*? that calculates the cohomology of
the space of ornaments, k, — . This construction is based on the natural
stratification of the discriminant by the types of degeneration of quasiorna-
ments. For r > 1 this spectral sequence lies in the domain {p, g lp <
0,p+g >0}, see Figure 11. ‘The invariants of ornaments correspond to the
elements of the groups E_'*', i > 1. The invariants that appear from our
spectral sequence are exactly the invariants of finite order described in §2:
they are, in a sense, exactly the invariants that can be expressed in terms of
strata of finite codimension in the discriminant,

Zeros

FiGURE 11. The principal spectral sequence
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The description of invariants in terms of the discriminant, given in §2, can
be intuitively considered as a version of the Alexander duality formula:

H -D)=H__ (%) (1)

In this (strictly speaking, meaningless) formula and everywhere helow H,
denotes the closed homology, i.e., the homology of the one-point compacti-
fication reduced modulo the compactifying point; oo is the notation for the
dimension of K, , and the right part Fm_,(z) is just the group of all de-
scribed above lingar combinations of smooth pieces of X satisfying certain
homological concordance constraints, see the beginning of §2.

The spectral sequence we construct in this section also provides elements
of the higher cohomology groups H’(xk -%), i > 0. Indeed, the formula (1)
can be extended to the general Alexander duality formula

H -Z)=H,_,_ (), (2)

which can also be given an exact meaning in terms of the discriminant and
its strata. To justify these formulas, we proceed as follows:

a) choose an increasing sequence of affing subspaces l",: ,d— oo, K
such that any compact subset in x, can be approximated arbitrarily well by
points of an appropriate subspace of this sequence;

b) for any &, construct a spectral sequence E! *(d) — H’”q(f‘f VXY,

¢) prove the stabilization of these spectral sequences.

The groups Efo'q[oc) of the stabilized spectral sequence provide the ele-
ments of the group H‘”q(xk — X): as usual, these elements are well defined
modulo similar elements coming from the groups

EP ), 121

4.1, Finite-dimensional approximations of the space of ornaments. For any
d > 1, define the subspace f‘: C Kk, as the space of all maps C, — R’ given
by 2k trigonometric polynomials of degree < d. ’

The space l:i 1s tautologically embedded in all spaces ff,: ,d >d.

The spaces f‘: are in an intuitive sense “nongeneric” in x, : for instance,
they contain “infinitely degenerated” constant maps of C, : of course, this
situation cannot arise in any generic finite-dimensional family of maps. For
our approximating spaces Fj: we use small perturbations of f“; which are
generic in the following precise sense.

For any A4-configuration J C C, and any affine subspace I' C kx, denote

by x(I', J} the space I'Ny(J), 1.e., the space of all maps ¢ € I that respect
J.

ProrosITION 3. In the space of all affine subspaces of fixed finite dimension
in x, ., a residual (in particular, dense) subset consists of planes T such that
Jor any index A= (a, > ... > a,, > 3) and any A-configuration J Cc C,
the following assertions hold.:
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(A) For almost any A-configuration J' equivalent to J, the set y(T', J) is
an affine subspace of codimension 2(|A|—#A) in T (in particular, it is empty
if 2(|A| —#4) > dimT").

(B) Denote the number |A| — #4 by ( and suppose that 2i < dimI".
Then, in the set of all configurations equivalent to J, the subset of those
configurations J' for which x(T, J') is empty, is of codimension > dimI" -
2i+ 1, while the set of J' such that the codimension of x(T, JY in T equals
2i—1, I > 1, is a subset of codimension > {{dimT = 2i+/+1}. In particular,
if i < 2(dimT + 1)/7, then the codimension of any set x(I', J) defined by
any A-configuration J with |A| —#A =i is exactly equal to 2i.

(C) Suppose that |A|—#4 =i > dimI[ /2. Then in the set of configurations
equivalent to J the set of all configurations J' such thar dim x(T, Jy=1>
0 is either empty or has codimension at least (I + 1)(2i — dimI" + /). In
particular, the set of all J' such that x(I', J') is nonempty, is of codimension
>2i—dimT and is empty when dimI" < i.

ProOF. This proposition is a corollary of the Thom transversality theorem,
see [GGI.

DermniTioN. The subspaces TI' in «, satisfying the conditions of this
proposition are called Z-nondegenerate.

In what follows l"i denotes a Z-nondegenerate affine subspace in ¥, that
is sufficiently close to the subspace F‘; in the space of all subspaces of the
same dimension.

By the Weierstrass approximation theorem, any quasiornament and any
compact subset in the space of quasiormaments can be approximated arbi-
trarily close (in any prescribed C™-topology) by quasiornaments lying in an
appropriate space 1":

4.2. Geometrical resolution of the discriminant. Here we construct a reso-
lution of the space XN l"‘: , i.e., a semialgebraic set o together with a proper
projection ¢ — LN 1"‘,: such that the induced map H (o) — H,(ZN l'ﬂ) is
an isomorphism.

Denote by ¥ the disjoint union of all (;‘) possible three-dimensional tori
Tjﬁ?, 1 <a< B <y <k, that are the direct products of three different
components of the manifold C, .

Let N be a very large natural number, and 4: ¥ — k" a smooth embed-

ding. Denote by ¢, the subset in F‘z x RY consisting of all possible pairs of
the form

(a map (aer‘z;apoint l(x,y,z)ERN) (3)
such that x, y, z are points of three different components of C, and ¢(x) =
p(y) = p(2).

ProposiTION 4. If N and d are sufficiently large, the map A is generic,
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and l'f satisfies the conditions of Proposition 3, then o, is a@ smooth manifold
with a natural structure of the space of an orientable (and even stably trivial)
(diml"‘; — 4)-dimensional affine bundle over Y, the projection in this bundle
being defined by forgetting the first elements ¢ in the pairs (3).

Proor. This follows immediately from the construction.

The obvious map g, — N F‘: is a smooth normalization of Z N F‘: its
inverse image over a nonsingular point consists of only one point, while the
inverse images of singular points can consist of several points.

For any point ¢ € znr‘,{, let us take all possible points (x, ¥, z) € ¥ such
that @(x) = e(y) = p(z); let A(g) be the convex hull in &Y of all points
Alx, y, z) where the point (x, v, z) satisfies the following condition.

PROPOSITION 5. Suppose that l'f satishes the conditions of Proposition 3,
N is sufficiently large and the embedding A. Y — RY is generic. Then, for
any @ € LN r",{ the polyhedron A(g) is a simplex whose vertices are all the
points A(x,y, z) such that p(x)=¢(y) = p(z).

Proor. It follows from the Thom multijet transversality theorem, see [GG].

Below we shall assume that rjf N and A satisfy the conditions of this
proposition.

Forany ¢ C ZN l"d denote by A(p) the simplex @ x A(p) C T‘d x RY
and by ¢ the union of all simplices A(g) over all ¢. The Iopology of the
space o 1s induced from the ambient space l'd xR" . The obvious projection

I":x}R —»l"i maps ¢ onto Zﬂl"’i.

PROPOSITION 6. Suppose that the conditions of Proposition 5 are satisfied.
Then the prajection #: 0 — EN I’f is proper and induces a homotopy equiva-
lence of the one point compactifications of these two spaces, and in particular,
an isomorphism H (o) — H (L0 rf).

Proor. Indeed, the fact that z is proper follows from the construction;
the induced map of compactifications 1s a piecewise-algebraic map of semi-
algebraic compact sets with contractible fibers. This implies the assertion
about the homotopy equivalence, see [D].

The space o together with the projection 7 is called the geomerrical res-
olution of ¥ n F‘f i

4.3. Filtration on the space of the geometrical resolution. Restrict the ob-
vious projection I"‘: x RY — R" to the space o. If N is sufficiently large
and 4 is generic, then the inverse image of any point 6 in R" under this
projection is an affine subspace of the form x(r*,f ,J)x @, where J is some
A-configuration.

Define an increasing filtration ¢, C 0, C -+ C o3, = 0 on the set ¢ by

assigning to o, the union of all subspaces of the form x(l":, J) x 8§ where
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J is an A-configuration with |4| — #4 < i. By Proposition 3, the number
of last elements of the filtration does not exceed dim l": .
Consider the homology spectral sequence E;‘q(d) converging to the group

H (6) and generated by this filiration. By definition, the term E;.q of this

spectral sequence equals H ).

p+q(a—p -

-p=1
PrROPOSITION 7. If 1 Is in the stable range, 1 < 2(diml": + 1)/7, then the
term o_,—0_, of our filtration is the space of an affine fiber bundle (whose

fibers are the fibers of the projection I‘f x BRY — RY restricted to o ); this
bundle is orientable.

ProoF. Indeed, the fact that this projection is an affine fiber bundle fol-
lows from Proposition 3. This bundle can be regarded as a subbundle of the
trivial bundle with fiber T‘g . The fiber of this subbundie at each point 1s dis-
tinguished in f': by several conditions of type ¢(x) = p(y), where the pairs
of points x, y are defined by the point of the base. For stable i, all these
conditions are lineariy independent. Hence, the quotient bundle of our sub-
bundle at each point splits into the direct sum of several copies of R? , with
the canonical two-dimensional coordinate ¢(x) — ¢{y») on each. This split-
ting is defined invariantly, up to a possible permutation of summands. Such
permutations do not change the orientation of the sum, and the proposition
1s proved.

Thus, by the Thom isomorphism, the closed homology group H_ of the
space 0_, —0_,_, reduces to that of the base of this bundle, which can be,
in principle, described in combinatorial terms. For the first calculations see
§8 below.

Make our spectral sequence E; .q(d) a cohomological spectral sequence by

renaming the term E, (d) as E:p‘dimr‘:hl_q(a’). This spectral sequence is
called the main spectral sequence, and the previous one the main homological
spectral sequence. By the Alexander duality theorem, the spectral sequence
EP"? converges to H'(l": \Z).

By construction, this spectral sequence lies in the region {p.g|p <0},
and its term E”'? can be nontrivial only if p+4¢ > 0.

4.4, Main properties of the main spectral sequence.

THEOREM 6. For any choice of the space f‘f satisfying the conditions of
Proposition 3,
(A) Ifthe term E}%(d) of our spectral sequence is nontrivial, then
(1) 1) p+g2>0:
(2) (i) p > —dimI};
(B) Forany d' >d and any space rjf satisfying the assertions of Propo-
sition 3, the corresponding spectral sequence EY'°(d") coincides with
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EP"%(d) for following values of p, q and r:
(3) (1) for r=1 and p, q inthe "stable” region {p+q >0, p <
2(dim % + 1)/7};
(4) (ii) for any r > | and p. g such that the differentials d’,
t < r, do not act into the cell Ef‘q from the unstable region.

CoroLLARY L. If rﬁ and r‘: are in general position, then E,_f“(d) =]
E;"!d") forany r=1,2, ..., c andany d >d>((7i/2-1)/2k-1)/2.

CoRroLLARY 2. For any i the inclusion homomorphism ﬁdimr‘:_l(a‘.) —
Hdimr';—1(‘7) is a monomorphism.

The restriction (ii) in part {A) of the theorem follows from Proposition 3.
Part (i) will be proved in §6 (and, in a different way, in §7).

Let s = 2(diml"f +1)/7; then the identical embedding F‘; — 1"‘: induces
an embedding o (d) — as(d') of sth terms of the corresponding resolutions;
this embedding respects the above-defined filtrations on both spaces.

LEMMA. The last embedding can be extended to a homotopy equivalence
of the 4k{d — d)-fold suspension of the one-point compactification of o.(d)
onto the one-point compactification of crs(d*) such that for any u < s the
restriction of this homotopy equivalence to the 4k{d — d)-fold suspension of
the compactification of ¢,(d) is a homotopy equivalence of this space onto the
compactification of o,(d .

Proor. The proof repeats that of Theorem 4.2.4 in Chapter 111 of the
book [V2]; this lemma implies part (B) of Theorem 6.

4.5. The stable spectral sequence. Part (B) of Theorem 6 allows us to define
the stable spectral sequence E”*% = E"'%(o0): its term E?'? is equal to the
common term Ef “9(d) of all spectral sequences corresponding to sufficiently
large 4.

ProrosITION 8. For any |, :here exists d = d(i) such that forall d' > d
and all r we have E."'(d") = “tY(d), in particular E, e gTT )y,
Namely, it is sufficient to take d > [(?1/2 —1)/2k - 1])/2.

Proor. This follows immediately from the structure of the spectral se-
quence (see Theorem 6) and the stabilization properties of the strata of an":
(see Proposition 3}.

The isomorphism E'*(d") = E.'*(d) from this proposition agrees with
the map in homology: for d' > d sufficiently large with respect to i, there
is a canonical isomorphism

ﬁEk{2d+l) (o,(d)) =" 2" +1)—140; (@) (4)
This isomorphism is compatible with the Alexander duality 1somorph1srn
let & and 8’ be equivalent ornaments in K,.and 6 € I'd 9 e Fd then the
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elements of groups (4) corresponding to each other by the isomorphism (4)
have the same values on these knots.

DEFINITION. A stable invariant of order i is an element of the homology
group ﬁdimr‘f—l(gi{d)) , where 4 is sufficiently large. Two elements of such
groups corresponding to different ¢ define the same invariant of order i if
they correspond to each other via the isomorphism (4).

Any such stable invariant of finite order / can be regarded as a well-defined
invariant of ornaments: this follows from the stability property and from
the fact that any homotopy that realizes the equivalence of two ornaments
can be approximated arbitrarily well by some homotopy that also avoids the
discriminant in an appropriate space Ff .

DEFINITION. An invariant of ornaments is of order [ if it is obtained by
the above construction from some stable invariant of order /.

THeorREM 7. This definition is equivalent to the definition from §2.

A proof will be given in §7.
In the next §§5, 6 we begin the study of the term E , of the stable spectral
sequence, and in §8 we present the results of the first calculations.

§5. Complexes of connected hypergraphs

Recall that for i in stable range, i < 2(dim I’f +1)/7, the space g, —a,_,
is the space of an oriented affine bundle over a stratified variety, in particular
the closed homology group F‘(oi —a,_,) reduces to a similar group of that
base variety,

To study the last group (and to estimate similar groups for / in the non-
stable domain) we need some homological preliminaries.

Let 8 be a finite set given together with some subdivision into k disjoint
subsets, 8 = (6, , ... , 8,). Denote by A[#] (or A[G,, ..., 8,]) the simplex
whose vertices correspond to all triples of points in # belonging to different
subsets 9J.,e,,,6m, l<jaclamsk.

DermviTION. A collection of vertices of the simplex A[#] is called connect-
ing if any two points of # can be joined by a chain of points such any two
neighboring points belong to one triple corresponding to some vertex of the
collection. A face of A[6)] is called connecting, if the collection of its vertices
is connecting,

The connecting part of the simplex A[f] is the union of interior points
of all its connecting faces (including the simplex itself, if there is at least 3
nonempty sets ; ).

Now, let 8 = (6", ,B“) be a collection of #A4 sets Oj,j =1,
.. , #4 , of cardinalities a,,...,a,,, any of which is divided into some
subsets 6/, ..., 8/ (k is the same for all j).

Consider the join of the simplices A[Gj] overall j=1,...,#4, 1i.e, the

simplex whose vertices are all the vertices of these #4 simplices. Denote
this simplex by A[[6]].
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DerINITION. A face of the simplex A[[B]] is essential if forany j =1,

. #4, the vertices of this face belonging to the simplex A[f’] span a

connecting face of this simplex. The essential part of the simplex A[[8]] is
the union of interior points of all its essential faces.

The union of all nonessential faces in the simplex A[[8]] is obviously a
subcomplex of its natural triangulation. Denote by Z(6) the corresponding
guotient complex. The (reduced modulo a point) homology group of this
quotient complex is another realization of the closed homology group of the
essential part of the simplex.

CoNVENTION. From now on, we consider homology with coefficients in
the field B only.

ExaMPLES. Let #4 = 1, sothat 6 = (81),and k = 3, so that g' consists
of 3 subsets of cardinalities o, , a,, ;.

1. Let «, = e, = 1. Then the simplex A[[©]] is of dimension (a; — 1)
and has only one essential face: the simplex itself. In particular, the group
H(E(8)) equals R if i=a, -1 and is trnivial for all other i.

2.Let a, =a, =2, ay= l Then 8, consists of the points x, and X,,
while ¢, consists of the points ¥, and y5»and 6, has only one point z.
The dunensnon of the simplex A[[B]] equals 3, ancl its vertices are called

(xlsy!'rz)y(x]pyz'l z),{xzsylyz)i(xzsyzrz)s

see Figure 12. The essential faces of this simplex are: the simplex itself, all its
two-dimensional faces, and two edges ((x,, ¥y, 2); (X5, ¥5: 2)), (X ¥ps 2
(x5, ¥, 2)). The group H(E(8)) equals R for i = 2 and is trivial for
other i. The group ﬁz(E(B)) is generated by either of two chains

(g, Pys 20 (Xy. ¥y, 205 (0 9y 2D+ (X0 0 205 (g0 Yy 2 (%), 955 2))

Qar

(%> 0 205 (X3, 705 203 00, ¥y0 2)H(0xg, ¥a0 208 (K0 9y0 205 (X5 93 2D

the sum of these chains being homologous to zero.

L¥y

Aa¥y
t2¥

‘l'lyz

FIGURE 12. Simplex A(f) for a, =a,=2, a, =1
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The case when © consists of more than one collection 8’ can be reduced
10 the case #4 = | by the following assertion.

ProrosiTION 9. Forany © = (61 oo, 8™, there is natural isomorphism

#A

H_,,.,(E(0) =&/ H (&)

ProoF. Indeed, this follows from the formula for the homology of a join,

TueorREM 8. The camplex Z(8) s acyclic in dimensions greater than (A|—
244 — 1, where |A| is the total number of elements in all sets & .

ProoF. The proof is based on the Goresky—MacPherson formula (see
[GM]) for the homology of subspace arrangements, cf. [BW, V3].

Indeed, by Proposition 9 it is sufficient to prove this theorem in the case
when #4 = 1, i.e., we have only one group of points @ = g' divided into k
subsets of cardinalities o, ... , &, . Consider the space R* .- R™ with
fixed linear coordinates x; |, ... + X in B™ and so on. Consider the
collection of all subspaces in this space distinguished by ali possible systems
of equations of the form x, , =x, . =X ; where i #£ j #1 # i. By the
Goresky-MacPherson formula (in the form proposed in Theorem 4 of [V3])
and the Alexander duality theorem, the homology group of the one-point
compactification of the union of all such planes splits into the direct sum
of homology groups of certain cell complexes corresponding to all possible
intersections of these planes. In particular, the complex corresponding to
the intersection of all these planes (i.e., to the line x; | = =X }is
nothing but the suspension of our quotient complex Z(8). Therefore, the
i-dimensional homology group of this quotient complex enters as a direct
summand in the (i + 1)-dimensional homology group of some (|A4| — 2)-
dimensional topological space. This implies the theorem.

§6. Structure of the space 0, —0,_,

6.1. J-blocks and complexes of connected hypergraphs. The space &, —~
6, , C T‘i «R¥ splits in a natural way in a union of subspaces corresponding
to different equivalence classes of A-configurations of complexity /. Indeed,
let us fix some index A = (@, > ... = a,,) and some A-configuration J
in C,. To this configuration we assign the subset in T‘f x BY which is
the direct product of the affine subspace x(f‘i. J) C I‘f (see 4.1) and the
simplex Alp(J)) C &Y (see 4.2), where @(J) is an arbitrary generic point
of this subspace (i.e., a map that strictly respects J ); this simplex depends
on J only.

DerFviTION. For any A-configuration J of complexity 7 in C,, the J-
block in o, is the union of all products

2T Ty x Blp(d") c Ty x BY (5)
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where J' is some A-configuration equivalent to J, and ¢{(J 'Y is arbitrary
map C, — R” strictly respecting J' .

Obviously, the closure of the space o, — 6;,_, in g, coincides with the
union of all J-blocks over all {equivalence classes of) configurations J of
complexity i.

For any A-configuration J = (8' LA 9#”’) with card & = a, . the sim-
plex A(p{J)) can be identified in an obvious way with the simplex A[J]
defined in §5; indeed, to the vertex (x, y. z) € A[J] there corresponds the
vertex A(x,v,z) € Alg(J)), and this correspondence extends inside the
simplices by linearity.

ProrosiTioN 10. A point of the left product in (5) belongs to the term a,_|
of our filtration if an only if its projection onto the factor Alp(J")) lies in a
nonessential fuce of this simplex.

PrRooF. This follows directly from the definitions.

6.2. Auxiliary spectral sequence. Define the auxiliary filtration on the space
o, — 0;,_, by assigning 1o its /th term the union of points of J-blocks over
all A-configurations J with [A| </.

This filtration defines a new spectral sequence, G;_ 4+ converging to the
group -P_I_*(cr; —a,_,) which is {up to a shift of indices) just the column Ef.l‘,
of the main homological spectral sequence from §4.

We call this spectral sequence G the aquxiliary spectral sequence.

The term G; ” of this spectral sequence is the direct sum of the homology
groups Fm q((.!-block) \o,_,) taken over all equivalence classes J of A-
configurations with (4| —#4 =1, |4|=p.

6.3. Proof of part A(i) of Theorem 6. Consider an arbitrary J-block in
o, where J is an A-configuration of complexity /. The intersection of this
J-block with the set o, — ,_, can be considered as a fiber bundle whose
base is the space of pairs of the form {a configuration J " equivalent to J ;
amap ¢: C, — R’ respecting J' }, and the fiber is the essential part of the
simplex A[J']. By Proposition 3, the dimension of the base is no greater
than |4|+dim I"f —2(]4| - #A4) , and the closed homology group of the fiber,
H,, is trivial for / > |4 - 2#4 — | . Hence, the term G;‘q of the auxiliary
spectral sequence is trivial for p+g¢ > dim 1"‘: — 1. This completes the proof
of Theorem 6.

6.4. On the calculation of the stable spectral sequence. If i is in the stable
domain, { < 2(dim I"z+l)/? .and J isan A-configuration with |A|—#A4 =1,
then the corresponding J-block in ¢, — o,_, is a fiber bundle whose base is
the space of all .4-configurations equivalent to J and the fiber is the product
of a (canonically oriented) affine space and the essential part of the simplex
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A(p(J)) = AlJ]. By the Thom isomorphism, we can forget about the first
factor in the fiber (and, moreover, about all such factors for all such J-
blocks simultaneously) and calculate the terms E :‘* of the principal spectral

sequence by investigating the remaining bundles and their interrelations for
different J. For the first calculations see §8.

§7. Proof of Theorem 7

To prove this theorem, we construct one more resolution of the discrimi-
nant variety Z C If , based on the notion of order complex. This resolution
will be calied the visible resolution of the discriminant and denoted by ov.

The space of this resolution again has a natural filtration equivalent to
that of the resolution ¢ considered above (i.e., there is a natural proper
embedding ogv — ¢ preserving the filtrations and such that the induced
morphisms

H (ov,

i~ oV )~ HJg,—0,_,)

are isomorphisms, in particular this embedding establishes an isomorphism
of the corresponding spectral sequences, starting from their terms E ). All
the notions in the definition of invariants of order i given in §2 (i.e., invari-
ants, regular quasiornaments, degeneration modes, and characteristic num-
bers) can be naturally interpreted in terms of this resolution.

For example, the degeneration modes can be interpreted as follows, Again,
the spaces ov,—gv,_, are divided into J-blocks (which are compatible with
the J-blocks in o, — o, _, by means of the previous embedding). These J-
blocks are fibered into certain simplicial complexes Av(J) (instead of sim-
plices A(@(J)) for the resolution ¢ ). For any A4-configuration J , the topol-
ogy of the corresponding complex Av(J) depends only on A, the dimension
of this complex equals |4| —2#4 — 1, and its simplices of highest dimension
|A| —2#A4 — 1 are in one-to-one correspondence with the degeneration modes
of J. Thus, the dimension of the J-block equals exactly diml",‘: —1; this
implies a new proof of assertion (A(i)) of Theorem 6.

After this interpretation of these notions, the equivalence of two defini-
tions of the orders of invariants becomes almost tautological, see Proposi-
tion 17,

7.1. Two concepts of order complex of a collection of intersecting sets. Sup-
pose that we have a collection of sets Vi,..., ¥;. To such collection there
correspond two (homotopy equivalent) simplicial complexes: the formal or-
der complex and the visible order complex; let us define them.

Denote by L the set (1,... , /) of indices of the sets V,, by 2% the set
of all subsets in L, by V' the union ViU...UV, and, for any a € 2L, by
V. the intersection ﬂjEulf}.

DEeFINITION. The formal order complex related to the collection V,.....V,
is the abstract simplicial complex whose i-dimensional simplices are
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sequences (ay, @,, ... ,a;) of subsets in L such that
a) a; strictly contains o, forany j=0,...,i-1;

b} the set Vm0 is nonempty.

The visible order complex related to the same collection is the abstract
simplicial complex whose /-dimensional simplices are sequences

AR (6)

such that
a) I«;k is strictly contained in Vﬂm forany k=0,... ,i—1;
b) the set K*u is nonempty.
The notations for the formal and visible order complexes are
Af(V,,..., V) and Av(V,,.... V).
respectively.
Note that the same simplex (or even vertex) of the visible order complex
can have different expressions in the form (6) if V, =V for some a # 8.
EXAMPLE. Let / = 3 and the intersection ¥, N¥,NV; be nonempty. Then,
the formal and visible order complexes are shown on Figures 13 and 14
respectively. The picture from Figure 13 does not depend on which sets
v Vaup are strictly incident, whereas the complex Av depends strongly on
this circumstance. In general, for arbitrary /, if the intersection of the sets
Viv.-- » ¥, 1s nonempty, then the corresponding formal order complex can
be naturally identified with the first barycentric subdivision of the (/ — 1)-
dimensional simplex whose vertices correspond to the sets V,, ... , ¥}.

(28]

FiGure 13. Formal order complex of three sets with
nonempty intersection

NotaTioN, For any a ¢ L, let @ be the maximal possible set in the
family of all subsets o' C L such that Ve=V,.

ProprosITION 11. The visible order complex of any collection of sets (V)

., V}) can be naturally regarded as a subcomplex of the formal order com-
plex of the same collection. Moreover, this subcomplex is a deformation retract
of the formal order complex.
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; @

FiGUrE 14. Visible order complexes for different three-
element sets with nonempty intersections

Proor. The O-dimensional skeleton of the complex Av is naturally em-
bedded into that of Af: to any point in Av (i.e, to a set of the form
V.« BE ZL) we assign the set @. This embedding 7 of O-skeletons extends
to a map of the whole complex Av by linearity on any simplex, and the re-
sulting map is, obviously, again an embedding: its image coincides with the
union of all simplices (a;, ... , @) such that o; =7, forany f=0, ..., /.

Now, let us construct the retraction Af — Av.

We map any point « € sk®(Af) to the point & € sk"(I(Av)) and extend
this map of O-skeletons to a map Af — I(Av) by linearity on the simplices.
This map is obviously continuous and is a deformation retraction; indeed,
the inverse image of any point x in f{Av) consists of a family of segments
in Af which have no intersection points except for their endpoints {which
all coincide with x ).

7.2. Visible resolution of the discriminant.

LEMMA. If the space l"‘: is YX-nondegenerate, then there exists an affine sub-
space I' C K, containing F}f and such that for any A and any A-configuration

J which is respected by at least one element of 2, the codimension of the
corresponding subspace x(U', J) in T equals exactly 2(|A| —#4) and has no
other representations in the form (U, ), J' #J.

Proor. The proof is trivial.
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Obviously, if some space I' satisfies the conditions of this lemma, then
any affine space containing I” also satisfies these conditions.

Let u be the largest possible complexity | 4| — #4 of configurations re-
spected by the maps ¢ ¢ l"‘,: .

Let I be a space satisfying the previous lemma, let G4(l") , G(’(l") .
G* (') be all the “affine” Grassmann manifolds whose points are affine sub-
spaces of codimensions 4, 6, ... ,2u in [. Let 4%, hﬁ(l“), cee kz"(r)
be the topological subspaces in these manifolds whose points are the sub-
spaces of the form x(T", J) for some A-configurations /. Consider the join
h4(I‘) ko hz‘“(l") of these subspaces, i.e,, roughly speaking, the (suitably
topologized) union of all simplices whose vertices are the points of these
spaces hﬂ(l"}. Denote this join by X(I'). The visible resolution will be
regarded as a subset in the direct product 1"; x X(T).

DerFmiTION. For any A4-configuration J, the feud of J is a subset in
X(I") defined as the union of simplices whose vertices are points g €

hz"'(l"), &, € hz"?(l“), ... with /| < I, < ..., such that the corresponding
planes of codimensions 2/,,2/,,... in I' form a flag (i.e., are all incident
to each other) and all belong to x(I', J).

Obviously, the feud of any A4-configuration J 1s a contractible space: it
is the union of simplices with one common vertex Blaj-284 = {x(T", )}.

For any point ¢ € £ C I"z consider the A-configuration J{p) strictly
respected by ¢, and take the subset

o x feud(J(9)) ¢ T% x X(I) (7

Define the visible resolution ov C I"f x X(I') of the set £ C Fz as the
union of sets like the left-hand side of (7) overall ¢ € X.

ProprosITION 12, The obvious projection av — l": is proper and establishes
a homotopy equivalence between the one-point compactifications of av and
b

Proor. The proof is the same as for Proposition 6.

7.3. Embedding the visible resolution into the (formal) resolution con-
structed in §4. Here is another description of the feud of J(g). Consider
ail points (xj- s Vo, zj.) € ¥ (where x,v and z are points of three differ-
ent components of C, ) such that p(x;) = ¢{y,) = ¢(z,;). For any such
point (xj.,yj._, zj.) denote by VJ the space x(I", J’J.), where .IJ. is the (3)-
configuration (x;, 95, 2;).

ProrosITION 13. The feud of J(¢) is a finite simplicial complex and can be
naturally identified with the visible order complex of all spaces Vv, = x(r, J )

Proor. This is a tautology.



INVARIANTS OF ORNAMENTS 253

On the other hand, the simplex A{¢) which participated in the construc-
tion of the resolution ¢ in §4, can be naturally regarded as the support of
the formal order complex of the same collection of spaces VJ {and becomes
this formal order complex after barycentric subdivision). Therefore, we get
a natural embedding 7: ov — o. Indeed, for any ¢ € X the restriction
of this embedding on the set (¢ x feud(J(p)) C ov is the composition of
the identification of feud(J(@)) with the visible order complex from Propo-
sition 13, the embedding of this visible complex into the formal one (see
Proposition 11) and identification of the support of the later complex with
theset ¢ xA(p) Ca.

Since the set ov is a union of parts at the left-hand side of (7) over all
¢ € L, these embeddings define a general embedding I: ov — 0.

ProprosITION 14, This embedding [ is continuous and proper, commiultes
with the natural projections onto X, and defines a homotopy equivalence of
the one point compactifications of the spaces ov and o.

ProoF. All assertions of this proposition but the last one (about the ho-
motopy equivalence) follow immediately from the construction. Further, a
deformation retraction o — I{ov) is well defined: it is the union of re-
tractions from Proposition 11 applied to all fibers of the projection ¢ — X.
This retraction extends to a retraction of one-point compactifications of these
spaces and establishes the desired homotopy equivalence.

On the space o the filtration ¢, C 6, C --- is defined (see 4.3) as well
as the decomposition of the sets o, —g,_, into J-blocks. The embedding [
just constructed induces similar structures on the space gv : they are defined
as the inverse images of corresponding sets in ¢ . In particular, the induced
filtration ov, C ouy C - defines in a standard way a spectral sequence
vE;.q(d) — H (ov).

PROPOSITION 15. The embedding I: ov — o induces an isomorphism of

spectral sequence 'UE;. o \d) with the sequence E;‘ ;) {constructed in 4.3)

beginning with the terms vE! VE'
Proor. Indeed, the retraction o — f(ov) from Proposition 14 respects
the filtration by the sets o,, owv,, and the proposition follows.

COROLLARY. The order [ invariants could be defined via the filtration of
the space ov, not of o, as it was done in 4.5.

7.4. Homology in gv, and characteristic numbers.

PROPOSITION 16. Let ¢ be a point in X, and J(p) an A-configuration
strictly respected by ¢, § = |A| — #A4. Then the simplices of the simplicial
complex feud(J(p)) that do belong not only to av,, but also to av,_,, are

exactly those which do not contain the point {x(I', J(@))} € RY(TY. The
dimension of this simplicial complex equals |A| — 2#A4 — 1, and its simplices
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of the highest dimension are in a natural one-to-one correspondence with the
degeneration modes of the configuration J .

Proor. The one-to-one correspondence is defined as follows. Given a de-
generation mode of J(p), forany /=1,2,... .|4| - 2#4 denote by J,
the subconfiguration in J(¢@) consisting of all points marked on {and before)
the /th step of degeneration. Then, to any such degeneration mode, there
corresponds a simplex in feud(J{¢)). whose /th vertex is the affine plane in
I" consisting of all maps ¢: C, — R, @ € I', that respect the subconfigura-
tion Jm(qo). All the assertions of this proposition follow immediately from
the definitions.

As a corollary, we get a new proof of Theorem 8.

Let M be an arbitrary invariant of ornaments. The class in ﬁdim Moy (o)

= ﬁdimrﬁ_](Z) that is dual to the restriction of the invariant M to l'i—): can
be regarded as the (uniquely determined) linear combination of fundamental
cycles of maximal strata of ov.

Let us describe these strata.

Each of them belongs entirely to some space ov, — ov,_, , and, moreover,
to some J-block in this space. Suppose that / is in the stable range, i <
Z(diml"; +1)/7, and J is any A-configuration with |4| —#A4 = /. Then
our J-block in ow, — gw,_, can be naturally identified with the space of all
triples

(J' p.ox), (8)
where J' is a configuration equivalent to J, ¢ is a quasiornament which
respects J' ,and x isa point of the set ¢ x feud(J') C rjj x X(I'). The strata
of maximal dimension of v that belong to gv, — gv,_, consist exactly of
points of the form (8) such that ¢ strictly respects J' and x isa point of a
maximal (i.e., of dimension |4|~2#4 — 1) simplex in the complex feud(J’ ).

Recall that the characteristic numbers of order { were defined in §2 as the
functions of the following data; an invariant; an 4-configuration J ' with
(4| — #4 = i; a regular quasiomament strictly respecting J': a degenera-
tion mode of this quasiornament (or, what is the same, of the configuration
J'). Now we have interpreted all these data in terms of the resolution gv .
Namely, the invariant is a linear combination of fundamental cycles of max-
imal strata, and all other arguments can be encoded by an appropriate point
of any such stratum: indeed, regular quasiornament ¢ and configuration J'
respected by ¢ are two first elements of the expression of this point in the
form (8), and degeneration mode of this quasiornament is the maximal sim-
plex in ¢ x feud(J') containing the element x of this expression. Now we
give an interpretation of the characteristic number in terms of these data.

First, note that the maximal strata in ov, — gv,_, are naturally oriented.
Indeed, given a point (8) of such a stratum, consider three sets of neighboring
points: the set of all J' ~ J': for a given J' ~ J', thesetof all § = ¢
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respecting J'; and, for given such J' and ¢, the set of all ¥ ~ x such that
(J', ¢, %) is again a point of our stratum. All these three sets are invariantly
oriented; let us define these orientations.

The set of allowed X = x is a neighborhood of x in the maximal simplex
of the complex feud(J'), or, what is the same by Proposition 13, of a visible
order complex: the vertices of this simplex (and hence also the simplex itself)
are naturally ordered by the definition of this complex, the simplex is thus
naturally oriented.

The set of neighboring @ =~ ¢ 1is oriented by Proposition 7.

Finally, an orientation of the space of all J' = J' is nothing but some
ordering of the points in J'. A partial ordering of these points is defined
by the degeneration mode of J' corresponding to the simplex containing x ;
this partial ordering does not distinguish only the points in the triples that
correspond to the same step of this degeneration. But these points in the
triples are ordered by the numbers of components of C, that contain them.
So, we have defined a canonical orientation of our maximal stratum, and
hence our invariant (i.e., a linear combination of fundamental cycles of such
strata) assigns a number to any such stratum (and, in particular, to any of
its point (J', @, x) ), namely, the coefficient with which this stratum (taken
with the orientation just defined) participates in this linear combination.

PrRoOPOSITION 17. Suppose that the point (8) belongs to a maximal stratun:
of ov,—a,_, andthe quasiornament @ in (8) is regular. Then the number just
assigned to any invariant and the point (8), coincides (up to a sign) with the
characteristic nuniber defined as in §2 by our invariant, by the quasiornament
@, and by the degeneration mode corresponding to the simplex in feud(J')
that contains the point x .

Proor. We prove this proposition by induction over the degeneration
mode corresponding to this simplex. Consider the (|4|-2#A4—2)-dimensional
face (of this simplex) that does not contain the maximal vertex {x(I, J’)}
of the complex feud(J'); let x' be arbitrary interior point of this face. The
point (¢, x') C 1"‘; x X(I") belongs to gv,_, (orevento ov,_, if the last step
of the degeneration mode 1s the marking of a triple of points). It does not
belong to a maximal stratum in gv,_, {resp., in ov,_, ), because ¢ respects
a too complicated configuration.

Close to this point (¢, x') there are exactly three maximal strata of ouv:
one of them is the previously considered stratum in gv, — gv,_, containing
the point (¢, x), and the two others lie in ov,_, (in ov,_, ) and correspond
to two different resolutions of ¢ and to their degencration mode which is
just the degeneration mode corresponding to x without the fast step.

Now the assertion of the proposition follows from the inductive assump-
tion applied to these two resolutions and from the fact that our linear com-
bination of maximal strata is a cycle in gv .
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This proposition implies Theorem 7.

§8. The first calculations in the stable spectral sequence

In this section we consider only the case when k = 3 and 4 is sufficiently
large, so that for all A-configurations undert consideration the corresponding
spaces x(I‘d , J) have codimension 2(j4| — #4) in l'ﬁ

The main result of this section is the following theorem,

THEOREM 9. There is no order | invariants of 3-ornaments, exactly one
(up to multiplicative constant) invariant of order 2, exactly three more linearly
independent invariants of order 3, and exactly seven more linearly indepen-
dent invariants of order 4.

All these invariants can be reduced to those from 1.4, for this reduction
see 8.5.

We only outline the calculations which prove this theorem.

Recall that all J-blocks are the spaces of certain affine bundles. Since the
exact value of 4 is not significant, we indicate the codimensions of these
bundles, i.e., the differences between the dimensions of F‘i and of the fibers
of the bundles. For any J-block in a; — g,_, this codimension equals 2i.

8.1. The term o, of the filtration of the space g is empty: the simplest
singularity is the triple point, for which |4| —#4=3-1=12.

8.2. The term o, is the space of an oriented affine fiber bundle of codi-

mension 4 over a 3- dumensmnal torus, therefore the groups E i

for g =2, 5§, equal R® for ¢ =3, 4, and are trivial for all other q.
The group E ]_2'2 obviously stabilizes at that term, the corresponding in-
variant of order 2 is just the index i(¢) = M, ,(0,0, 1), see 1.4.

equal R

8.3. The term o, — o, consists of three J-blocks, where J is an A-
configuration with 4 = (4), and J has two points on certain component
of C, and one point on any of the other two components. Any of these
hlocks is the space of a fiber bundle whose base is the space of all such
configurations, and the fiber is the product of a canonically oriented affine
space of codimension 6 and an open interval (the missing endpoints of these
intervals lie in the boundary of 0, - g, in o, ).

The base of this bundle is obviously diffeomorphic to the direct product of
the two-dimensional torus and an open Mabius band; the bundle of intervals
changes its orientation after traversing exactly the same loops in the base
that destroy the orientation of the base. Hence, the space of this bundle
of intervals is diffeomorphic to the direct product of a 3-torus and an open
two-dimensional disk.

In particular, the contribution of any of these three J-blocks into the group
E 3+¢ is isomorphic to R for ¢ =3, 6, to R® for g =4, 5, and is trivial
for all other g.
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8.4. The term o0, — o, consists of seven J-blocks.

8.4.1. The three simplest blocks correspond to the A-configurations J,
where 4 = (5) and J has three points on one component, and one point
on any of the other two. This J-block is the space of a bundle whose base is
diffeomorphic to the direct product of 2 3-torus and an open two-dimensional
disk, and the fiber is the product of an oriented affine space of codimension
8 and an orientable bundle whose fiber is the interior part of an triangle.

Since these J-blocks do not adjoin other blocks of the same set g, — o5,

the contribution of any of these blocks to the groups E ,_4'“ equals R for
g=4, 17, equals R* for g =35, 6, and is trivial for all other g.

8.4.2. The second collection of three J-blocks corresponds to (5)-configu-
rations J with one point on one of components and two points on any of
two others. The base of the corresponding fiber bundle is the product of
a circle and two Mdbius bands, while the fiber is a product of an oriented
affine space of codimension 8 and the essential part of the tetrahedron from
Example 2 in §5, see Figure 12.

In particular, the fiber of this bundle of essential parts has nontrivial closed
homology only in dimension 2 (and the corresponding homology group is
one-dimensional). It is easy to calculate that the generator of this group
becomes its opposite after monodromy over the orientation-reserving paths
in the base.

Since these blocks have the smallest auxiliary filtration among the J-blocks
with J of complexity 4, the contribution of any of these three J-blocks (o
E7** is again equal to R.

8.4.3. Finally, one more J-block corresponds to the A-configuration J
with A = (3, 3). This A-block is again a fiber bundle; let us describe its
base.

A two-fold covering of this base (whose leaves correspond to the order-
ings of two triples in the (3, 3)-configuration) is diffeomorphic to the direct
product of three copies of the direct product of a circle and an open interval,
hence is orientable. This orientation fails after projection onto the base of
the covering: this two-fold covering coincides with the orientation covering
of the base.

The fiber of our bundle is the direct product of a canonically oriented
affine plane of codimension 8 and an interval, whose orientation fails over
the orientation-reversing paths in the base. In particular, the space of the
bundle is orientable, hence the contribution of our J-block to E 44 s
either R or zero, depending on the homology class of its boundary in the
J-blocks considered in 8.4.2.

The corresponding geometrical boundary (ie., the intersection of the
closure of our block with the blocks from 8.4.2) coincides with the
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subbundle in the bundle from 8.4.2, whose fiber corresponds to the union of
the edges ((x,,¥y,, z), (X5, ¥y, 2)) and {(x,,¥,, 2), (x,,¥,, z}) on Fig-
ure 12; it is easy to calculate that this geometrical boundary participates int
the algebraic boundary twice with opposite orientations, and the auxiliary
spectral sequence degenerates in the corresponding term. So, our J-block
enters nontrivially into the group E|_4‘4, whach is hence equal to R

8.5. All the described elements of the groups EI-"' ., i=2,3,4, donot
vanish at the next steps of the spectral sequence. In particular, there exist
certain invariants of order i/ mapped into these elements by the obvious
reductions mod o,_, .
All these invariants are the invariants M;‘.;‘ from 1.4 or functions of them.

TueoreM 10. The only generator of the group El_z' coincides with the
index i(g) =M, ,(0,0,1). Three generators of group E]_3'3 are reductions
mod o, of the invarignts M| ,(0,0,2), M, (0,2,0) and M, 4(2,0,0)
(in the case of homology over R ; in the case of integer homology one must
take similar sums of the form

ST by = b/ by by by)
b by =m0
and so on).
The seven generators of £, % are the reductions mod o, of the following
invariants: M, ,(0,0,3), M ,(0,3,0). and M, 4(3,0.0) (or, again,
three sums of the form

o

S by — hy) /6, (b, By By)
b, by b=—sa
in the case of integer coefficients) for the generators from 8.4.1; all three pos-

sible momenta of the form M, (1,1, 1) for the generators from 8.4.2, and

§ e (M, ,(0,0, 1))2 Jfor the generaior from 8.4.3.

ProBLEM. Due to Theorem 4, all other invariants fvf‘.‘j.(ﬁI . By, B,) with
B, + B, + B, <3 are linear combinations of those indicated in Theorem 10.
What are the exact expressions for them?

§9, Open problems and possible generalizations

ProBLEM 1. Is the system of finite-order invartants complete, i.e., does it
distinguish any two nonequivalent ornaments?

In particular, do there exist invariants of this kind proving that the orna-
ments from Figure 5 of the present paper and of [Mx] are nontrivial? Of
which order are the simplest such invariants?

For the parallel theory of the homotopy classification of links, the answer
is afirmative, see [L, BN2].
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What is the smallest order of finite-order invariants that cannot be ex-
pressed as functions of the invariants M, . introduced in 1.4? My guess is
that this will be related to one of the following situations: a) the homology
group of some complex EZ(0) is more than one-dimensional in the highest
possible dimension (see Theorem 8); b) there exist several nonequivalent
A-configurations with the same 4 and all numbers of points of groups of
cardinalities a,, ... , g,, on any component. The situation b) can be real-
ized by the (4, 4)-configurations such that any of two groups of 4 points
constituting this configuration, have two points on the first component of
C, , one point on the second and one point on the third component. Indeed,
these two pairs of points from different groups on the first component can
either separate each other or not.

PROBLEM 2. A problem similar to the classification of ornaments can be
stated as follows: we consider the space of all plane curves (or collections of
curves) having no triple points and no singularities obtained as degenerations
of triple points (i.e., neither points where two local branches intersect and for
one of them this point is a singular point with @' = 0 nor points at which
¢ = ¢"” = 0.) The problem of classifying such objects has the same relation-
ship with the above classification of ornaments, as isotopy classification of
links has with homotopy classification. Concerning this problem sce [Ad].

A spectral sequence, which is a hybrid of the spectral sequences considered
in §§4-6 above and in [V2], calculates the invariants of such objects. A partial
problem is to study this spectral sequence explicitly.

ProsLEM 3. In both cases considered in Problem 2 and in the main text,
instead of triple intersections we can forbid (self)intersections of arbitrary
multiplicity /, / > 3. In this case, the space of permitted ornaments 18 con-
nected (and even (/ — 3)-connected), in particular the problem of classifying
such objects up to homotopy is void. But the problem of calculating the
higher-dimensional cohomology of the spaces of permitted objects is non-
trivial and can be, in principle, solved by using a spectral sequence similar to
the one from §4. In this case this spectral sequence {beginning with the term
E, ) lies inside the angle

{p.qlp<0,q+(I-2)p>0};

in particular on any line of the form p + g = const there i5 only a finite
number of finitely generated groups, and the problem of the convergence of
the spectral sequence does not arise.

PrRoBLEM 4. The classification of ornaments is a model case of a big class
of problems introduced in {[FNRS]. Namely, let (¥, ..., W,} be arbitrary
collection of compact manifolds of arbitrary dimensions. The problem is
to study the space of all maps of (the union of) these manifolds into R”
having no common points of their images (or, more generally, points where
the images of some ¢ different components W, meet, 1 < m ).

Again, if the dimensions of the manifolds W, are such that the space of
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permitted maps is dense in the space of all maps, then a speciral sequence
similar to the one above presenting the cohomology classes of such spaces
can be constructed. Problem: to siudy these spaces (and these spectral se-
guences).

Another problem appears if we can vary not only the maps of manifolds
W, into R", but also make standard cobordisms of these manifolds, cf. [FR].
This problem has obvious application to the following well-known problem:
to classify connected components of the space of homogeneous polynomial
vector fields of fixed degree in R" that have no singular points outside the
origin.

PrROBLEM 5. Do there exist invariants of ornaments arising from statistical
physics in the same way as certain invariants of knots and links do?

ProBLEM 6. Does the spectral sequence from §4 degenerate at the term
E, (at least in the case of rational coefficients, or on the main diagonal
{p+q =0}? In [K1], a similar fact was established for the invariants of
knots constructed in [V1].

ProBLEM 7. Does there exist a representation of our invariants by means
of integrals, as it was done in [K1] for the (rational) invariants constructed
in [V1]? A related question: to represent by differential forms the cohomol-
ogy of complements of “ k-equal” arrangements considered in [BW] and of
their generalizations considered in the proof of Theorem 8, see §3.

ProsLEM 8. Brunnean ornaments. For any k > 3, construct a k-ornament
which is nontrivial, but all its (k — 1)-subornaments are trivial. A natural
candidate is the ornament constructed by Merkov, see [Mx]. The fact that
any of its subornaments splits is elemeniary, but the nontriviality of this
ormament itself is not proved yet.

ProsLEM 9. To study ornaments on any smooth surface. Note that the
discriminant is invariantly cooriented even in the case of ornaments on a
nonorientable surface. Indeed, any local surgery as on Figure 3 can be carried
out as follows; we fix the first two local branches and move the third one
parallel to itself. Then the.sign of this surgery can be deduced from the
comparison of two local orientations: the first is given by the tangent frame
of first two components, and the second by the frame {tangent to the third
component, direction of the translation of this component}.

ProsLEm 10. To write out all linear relations among the invariants
ﬁﬁkﬂﬁ“...,ﬂ” from 1.4,
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