\input amstex \documentstyle {amsppt} \advance\voffset by -1.0cm \NoBlackBoxes %\nopagenumbers \magnification=\magstep1 %\hfuzz=3.5pt \hsize=17truecm \vsize=24.2truecm \voffset=0.5truecm %\hoffset \document \define \cl {\Cal L_{S^1}} \define \cg {\Cal L_{\Gamma}} \define \Ga {\Gamma} \define \la {\lambda} \define \pa {\partial} \define \bR {\Bbb R} \define \bC {\Bbb C} \define \al {\alpha} \define \alij{\alpha_i^{(j)}} \topmatter \title A note on polynomial eigenfunctions of $\frac {d^k}{dx^k}Q_k(x)$ \endtitle \author G.~M\'asson and B.~Shapiro \endauthor \affil Department of Mathematics, University of Stockholm, S-10691, Sweden, {\tt gisli\@matematik.su.se,\; shapiro\@matematik.su.se}\\ \endaffil \rightheadtext {A note on polynomial eigenfunctions of $\frac {d^k}{dx^k}Q_k(x)$} \abstract Consider an operator $\frak d_Q=\frac {d^k}{dx^k}(Q_k(x)f(x))$ where Q_k(x)$ $is some fixed polynomial of degree $k$. One can easily see that $\frak d_Q$ has exactly one polynomial eigenfunction $p_n(x)$ in each degree $n\ge 0$ and its eigenvalue $\la_{n,k}$ equals $\frac {(n+k)!}{n!}$. A more intriguing fact is that all zeros of $p_{n}(x)$ lie in the convex hull of the set of zeros to $Q_{k}(x)$. In particular, if $Q_{k}(x)$ has only real zeros then each $p_{n}(x)$ enjoys the same property. We formulate a number of natural conjectures on different properties of $p_{n}(x)$ based on computer experiments as, for example, the interlacing property, a formula for the asymptotic distribution of zeros etc. These polynomial egenfunctions might be thought as an interesting generalization of the classical Gegenbauer polynomials with the integer value of the parameter (which correspond to the case $Q_{2l}(x)=(x^2-1)^l$). \endabstract \endtopmatter \enddocument