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Abstract

We give a complete description of the absolute of commutative finitely
generated groups and semigroups. The absolute (previously called the
exit boundary) is a further elaboration of the notion of the boundary of
a random walk on a group (the Poisson–Furstenberg boundary); namely,
the absolute of a (semi)group is the set of all ergodic probability mea-
sures on the compactum of all infinite trajectories of a simple random
walk which has the same so-called cotransition probability as the sim-
ple random walk. Related notions have been discussed in the probability
literature: Martin boundary, entrance and exit boundaries (Dynkin), cen-
tral measures on path spaces of graphs (see [10]). The main result of this
paper, which is a far-reaching generalization of de Finetti’s theorem, is
as follows: the absolute of a commutative semigroup coincides with the
set of central measures corresponding to (nonstationary) Markov chains
with independent identically distributed increments. Topologically, the
absolute is (in the main case) a closed disk of finite dimension.

1 Introduction

The problem of describing the set of all Borel measures satisfying some invari-
ance condition is typical for several areas of mathematics (probability, dynamical
systems, graph theory, representation theory, etc.). Its most general setting pre-
sumes the existence of some equivalence relation on a Borel space (for instance,
the orbit partition for a group action) and a 2-cocycle on this equivalence re-
lation, and the problem is to describe all probability measures for which this
cocycle is the Radon–Nikodym cocycle.
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If the equivalence classes are countable, the equivalence relation itself is
hyperfinite (i. e., is a monotone limit of finite equivalence relations), and the
cocycle is identically 1, then the problem reduces to describing the so-called
central measures (see below) on the space of infinite paths of a graded graph
(Bratteli diagram). In a certain sense, the notion of centrality coincides with the
notion of invariance, namely, if we introduce the transformation of paths called
the adic shift, then the centrality of a measure coincides with its invariance
under this shift. It follows, in particular, that the set of central measures is a
Choquet simplex.

The set of all ergodic central measures for a given equivalence relation, en-
dowed with the weak topology of the space of all Borel measures, is called the ab-
solute (for more details on the setting and the history of the problem, see [8, 9]).

The special case of this problem considered in this paper is that of finding
the absolute for random walks on groups, semigroups, and for dynamic graphs.
We develop an approach and present a solution of the problem for an important
special case, namely, for random walks on countable commutative groups and
semigroups. This case has important special properties as compared with the
general case; the details are discussed below.

Note that the definition of absolute resembles the definition of boundaries in
potential theory or the theory of random walks (the Poisson–Furstenberg (PF)
boundary, Martin boundary, etc.; see, e. g., [4]). And indeed, the absolute is a
generalization, or, better to say, a refinement of the PF boundary; more exactly,
it can be nontrivial even if the PF boundary is trivial, i. e., consists of a single
point; hence the absolute provides additional information on random walks on
groups.

The foundations of the theory of absolute were laid in [8, 9, 10]. In [12], a
description of the absolute for the case of free groups and homogeneous trees
is obtained. This paper deals with the opposite class of groups, that of com-
mutative groups and semigroups. In a paper in preparation, we will consider
the next case: the absolute of nilpotent groups and, in particular, Heisenberg
groups; this case seems to be much more complicated and interesting.

Let us discuss in more detail what is meant by a description of the absolute.
The absolute is defined as a collection of measures. Measures on the compactum
of infinite paths admit a direct description in terms of their values on finite paths
(i. e., on cylinder sets corresponding to finite paths). For central measures, there
is a more concise description in terms of functions on the set of vertices of the
dynamic graph. With this approach, the absolute corresponds to classes of
proportional minimal nonnegative harmonic functions on the dynamic graph.
Another form of describing the absolute, in terms of the transition probabilities
of a Markov chain, appears since the random process corresponding to a central
measure is Markovian. It is this description that is most convenient for our
constructions.

The key result of this paper is Theorem 3.1, which says that in the case of a
commutative semigroup (with an arbitrary system of generators), the set of er-
godic central measures (i. e., the absolute) coincides with the set of central mea-
sures that give rise to Markov chains with independent identically distributed
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(i.i.d.) increments. The transition probabilities of a chain with i.i.d. increments
are the same for all vertices of the graph, they depend only on the generators
assigned to edges.

Theorem 3.1, on the one hand, generalizes de Finetti’s theorem and, on the
other hand, is related to known results on harmonic functions on commuta-
tive groups (see [1, 3], and also [14, pp. 311–312], and references therein). De
Finetti’s theorem follows from Theorem 3.1 if we consider the case of a free
semigroup. Harmonic functions are related to the absolute as follows: in the
case of a group, there is a natural bijection between the main part of the abso-
lute (for the definition, see Section 2) and the space of classes of proportional
minimal positive eigenfunctions of the Laplace operator.1 (For this reason, in
the case of a group, the main part of the absolute is also called the Laplace part
of the absolute or simply the Laplace absolute. We will discuss this in more
detail in [13].)

The paper is organized as follows. Section 2 contains the basic definitions.
Theorem 3.1 is proved in Section 3, where we also present Theorem 3.2, which
gives equations for describing the absolute. Theorems 3.1 and 3.2 allow us to
describe the absolute of a commutative semigroup given a set of defining rela-
tions. The absolute is described as the set of solutions of a system of equations
in a Euclidean space. In the same section, we give a series of examples of such a
description. In Section 4, we use Theorems 3.1 and 3.2 to derive theorems on the
topological structure of the absolute of commutative groups and semigroups. In
this case, the absolute is compact; moreover, for groups and cancellative semi-
groups, it is a closed disk of finite dimension. The main technical difficulty in
the proof of these theorems is to describe the degenerate part of the absolute.
A technical result solving this difficulty is placed in a separate Section 5. In
Section 6, we discuss the relation of the absolute of a commutative group to
multiplicative semigroup characters.

The authors are grateful to V. Kaimanovich and S. Podkorytov for valuable
comments and discussions.

2 Necessary definitions

First, we will give another definition of the absolute of a graph, which does
not involve the group-theoretic terminology. By a graph we mean a locally
finite directed graph with a distinguished vertex. Loops and multiple edges are
allowed. A path in a graph is a (finite or infinite) sequence of alternating vertices
and edges of the form

v0, e1, v1, e2, . . . , en, vn,

1Hereafter, given a semigroup G with a fixed finite system of generators S, by the Laplace
operator (Laplacian) we mean the operator on the space of functions on G that sends a
function f to the function Lf defined by the formula

Lf (g) :=
1

|S|
∑
s∈S

f(gs).
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where ek is an edge leading from the vertex vk−1 to the vertex vk (both vertices
and edges may be repeated). We will consider graphs in which each path is a
part of an infinite one.

Let Γ be a graph of the above form. Denote by PΓ the set of all infinite
paths in Γ starting at the distinguished vertex. This set is compact in the weak
topology. We consider Borel probability measures on this space. Given such a
measure, by the measure of a finite path R (starting at the distinguished vertex)
we mean the measure of the cylinder of all infinite paths that begin with R. A
measure ν on PΓ is called central if it has the following property: for every
vertex v of Γ and every positive integer n, the measure ν takes the same value
at all paths of length n that lead from the distinguished vertex to v. (For more
details, see the definition of centrality in [13].) The set of central measures is
a convex compactum, which is a simplex (see [10]) in the compactum of all
measures on PΓ. A central measure is called ergodic (or regular) if it is an
extreme point of this simplex.

The absolute of a graph is the set of all ergodic central measures on the
compactum of infinite paths starting at the distinguished vertex. (More details
are given in [9, 13].) The absolute of a finitely generated semigroup with a fixed
finite system of generators is the absolute of the corresponding Cayley graph. In
this definition, there is a subtlety related to noncancellative semigroups. Recall
that a semigroup G is called cancellative if there are no elements a, b, c in G such
that a 6= b, but ac = bc and/or ca = cb. In the case of the Cayley graph of a
cancellative semigroup, the choice of the distinguished vertex does not affect the
absolute; but in the case of a noncancellative semigroup G, we will assume that
in G there is an identity element (or it has been added), and it is this element
that is chosen as the distinguished vertex. The absolute of a semigroup G with
a system of generators S is denoted by AS(G).

A measure ν on the compactum of paths is called nondegenerate if the prob-
ability of every finite path is nonzero. The main part of the absolute is its subset
consisting of the nondegenerate measures. The set of degenerate ergodic central
measures will be called the degenerate part of the absolute.

A branching graph is a graph in which the set of paths leading from the
distinguished vertex to every vertex v is nonempty (in this case, one says that
v is reachable from the distinguished vertex) and all these paths have the same
length. On the set of vertices of a branching graph there is a natural grading
by the distance to the distinguished vertex. It turns out that in the theory of
absolute, graphs of this special form are most general in the following sense. To a
graph Γ with distinguished vertex v0 we canonically associate the corresponding
dynamic graph Dv0(Γ), which is a branching graph constructed in the following
way. The nth level of Dv0(Γ) is a copy of the set of vertices of Γ connected
with v0 by paths of length n. There are exactly k edges leading from a vertex v1

to a vertex v2 in Dv0(Γ) if and only if the level of v2 is greater by one than
the level of v1, and there are exactly k edges leading from the vertex w1 of Γ
corresponding to v1 to the vertex w2 of Γ corresponding to v2. Every branching
graph is isomorphic to its dynamic graph. The spaces of paths starting at the
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distinguished point coincide for a graph and its dynamic graph. The absolute
of a graph coincides with the absolute of its dynamic graph.

The construction of a branching graph has a counterpart at the level of
groups and semigroups. A branching monoid is a monoid (semigroup with iden-
tity element) whose Cayley graph (with respect to some system of generators)
is a branching graph. A semigroup is called a branching semigroup if it is a
branching monoid or can be obtained from a branching monoid by removing
the identity element. The following property is characteristic for branching
semigroups: if G is a branching semigroup with respect to a system of genera-
tors S, then for every element of G, all words over the alphabet S representing
this element have the same length (in other words, relations in this case identify
only words of equal length). In a branching semigroup there is a canonical set of
generators, which consists exactly of all irreducible elements of the semigroup.
Systems of generators build from this canonical set (a system of generators
may contain repeated elements, i. e., include elements with multiplicities) will
be called admissible. The Cayley graph of a branching monoid is a branching
graph only for an admissible system of generators. To a semigroup G with a
fixed system of generators S we canonically associate a branching monoid DS(G)
defined as follows: the system of generators of DS(G) is a copy of S, and the
set of relations is the subset of the full set of relations for (G,S) consisting of
the relations that identify words of equal length.

3 The absolute of commutative groups and
semigroups

As one can easily see, the random process corresponding to a central measure
(on an arbitrary graph of the form described above) is Markovian. For Markov
chains on the Cayley graph of a semigroup, we introduce the notion of inde-
pendent identically distributed increments: a Markov chain is said to have in-
dependent identically distributed increments if its transition probabilities at all
edges marked by the same generator are equal.2 For commutative semigroups,
the following key theorem holds, which is a far-reaching generalization of de
Finetti’s theorem.

3.1. Theorem. For every finitely generated commutative semigroup with an
arbitrary finite system of generators, the set of ergodic central measures (i. e.,
the absolute) coincides with the set of central measures that give rise to Markov
chains with independent identically distributed increments.

Thus the absolute is in a bijective correspondence with the set of measures
on the set of generators that determine Markov chains with the above centrality

2In the paper “Markov processes in asymptotic combinatorics and their transfers” in prepa-
ration, by the first author, a more general notion of transfer is introduced; it is a transforma-
tion on the path space of a graph with the meaning of a shift of increments. The notion of
a Markov chain with independent identically distributed increments can be rephrased as that
of a Bernoulli transfer.
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property. An explicit condition that distinguishes these measures is given in
Theorem 3.2.

Proof. For brevity, measures that give rise to Markov chains with independent
identically distributed increments will be called measures with i.i.d. increments.
Let P be a finite path (starting at the distinguished point) in the Cayley graph
of the given semigroup (with respect to the given system of generators). The
left translation in the semigroup determines a homeomorphism between the
subcompactum PP of infinite paths that begin with P and the compactum of all
infinite paths (starting at the distinguished vertex), as well as an isomorphism φ∗
between the spaces of measures on these compacta.3 If ν is an ergodic central
measure and ν(PP ) > 0, denote by νP the corresponding conditional measure
on PP . Then the measure φ∗(νP ) is also central (since a = b implies ca = cb).
As one can easily see, since the semigroup is commutative, the central measure ν
dominates the (finite central) measure ν(PP ) ·φ∗(νP ). By ergodicity, it follows
that ν = φ∗(νP ). This proves that ν is a measure with i.i.d. increments. On
the other hand, if all ergodic central measures have i.i.d. increments, then every
central measure with i.i.d. increments is ergodic, since noncoinciding measures
with i.i.d. increments are mutually singular (the problem reduces to the mutual
singularity of noncoinciding Bernoulli measures).

3.1 Explicit computation of the absolute

Theorem 3.1 provides a recipe for describing the absolute, and below we carry
out its computation.

For an arbitrary semigroup G with a fixed finite system of generators S, the
set IS(G) of measures with i.i.d. increments can be identified in a natural way
with the simplex ∆S of probability distributions on S: to a distribution µ on S
we associate the measure in IS(G) for which the probability of the increment
by s ∈ S is equal to µ(s). A distribution on S for which the corresponding
measure in IS(G) is central will be called precentral. By Theorem 3.1, in the
case of a commutative semigroup, the absolute coincides with the intersection
of the (S − 1)-dimensional simplex IS(G) ∼= ∆S (in general, it is not convex in
the space of measures on the compactum of paths) with the infinite-dimensional
simplex ΣS(G) of central measures:

AS(G) = ΣS(G) ∩IS(G).

Thus Theorem 3.1 reduces the problem of describing the absolute AS(G) of a
commutative semigroup to the problem of describing the set σS(G) of precentral

3Examples of noncancellative semigroups are interesting, but they are partly beyond the
context we are interested in. In particular, the Cayley graph of such a semigroup is inhomo-
geneous: a pair of edges marked by s1 and s2 may have the same initial vertices and the same
final vertices at one segment of the graph, and the same initial vertices but different final
vertices at another segment of the graph. In the context of this proof, it is worth mentioning
that in the case of a noncancellative semigroup, the tail filtrations (for the theory of filtrations,
see [11]) on the subcompactum PP and on the compactum of all paths are not necessarily
isomorphic.
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distributions in ∆S . The (pre)centrality condition splits into a set of necessary
conditions for pairs of finite paths of equal length leading to the same vertex
of the Cayley graph. The following proposition immediately follows from the
definition of centrality.

3.2. Theorem. A probability distribution µ = {µ(s); s ∈ S} on a finite system
of generators S of a commutative semigroup G is precentral if and only if for
every pair of vectors (ms)s∈S and (ns)s∈S from NS0 such that∑

s∈S
ms =

∑
s∈S

ns in N0 and
∑
s∈S

ms · s =
∑
s∈S

ns · s in G, (1)

the following equation holds:∏
s∈S

(µ(s))ms =
∏
s∈S

(µ(s))ns . (2)

In other words, the set σS(G) of precentral distributions corresponding to the
absolute coincides with the set of distributions on S that are solutions of equa-
tions (2) for all coefficients satisfying (1).

Theorem 3.2 allows one to obtain a description of the absolute of a commu-
tative semigroup from the set of defining relations. Conditions (2) are called the
centrality equations and are of the main interest in the study of the topology of
the absolute. When describing the absolute in the context of Theorem 3.2, it is
convenient to take into account the following considerations.

1. The pairs of vectors satisfying condition (1) for given G and S form a
semigroup (we denote it by RcS(G); this semigroup describes the relations in
the branching monoid DS(G)). To verify the precentrality, it suffices to verify
condition (2) for an arbitrary set of generators of the semigroup RcS(G).

2. The pairs of vectors from NS0 consisting of two equal4 vectors form a
subsemigroup in RcS(G) (we denote it by R0). Equations (2) corresponding to
elements from R0 are trivial, i. e., they are identities, so in order to verify the
precentrality, it suffices to take an arbitrary set of vectors from RcS(G) that
yields a generating set being combined with R0. In other words, in order to
describe the absolute, it suffices to take the system of equations (2) for a set
of noncommutative relations that is defining for the branching monoid DS(G)
modulo the commutativity relations.

Examples. 1. The absolute of the commutative semigroup freely generated
by a set of generators S is represented by the simplex ∆S , since vectors (ms)s∈S
and (ns)s∈S from NS0 satisfy condition (1) only if they coincide, and in this case
equation (2) becomes an identity. At the level of branching monoids, this fact
manifests itself as the absence of noncommutative relations.

2. Let G = Z and S = {+1,−1}. In this case, as in Example 1, vec-
tors (ms)s∈S and (ns)s∈S satisfy condition (1) only if they coincide, so the

4The same vector in NS0 can represent different paths of equal length leading to the same
vertex.
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absolute A{+1,−1}(Z) is homeomorphic to the one-dimensional simplex. At the
level of branching monoids, the explanation is that the branching monoid for
(Z, {+1,−1}) is the free monoid with two generators.

3. Let G = Z2 and S = {(+1, 0), (−1, 0), (0,+1), (0,−1)}. The
semigroup RcS(G) is generated by the subsemigroup R0 and the pair
((1, 1, 0, 0), (0, 0, 1, 1)). This pair gives rise to the equation x1x2 = x3x4 in R4.
The absolute is represented by the intersection of the set of solutions of this
equation with the simplex{

x ∈ R4 :
∑

xi = 1, xi > 0
}
.

It is homeomorphic to the closed disk of dimension 2 (see Theorem 4.1).
4. Let G = Zd and S be the standard symmetric system of generators. This

is a generalization of the previous example. In this case, the system of equations
is as follows:

x1x2 = x3x4 = · · · = x2d−1x2d.

5. For G = Z and S = {0,+6,−1}, the centrality relation takes the form
x7

1 = x2x
6
3.

6. Let G be the commutative semigroup with three generators a, b, c and
the additional noncommutative relation a + b = a + c. Then G is a branching
semigroup, so the set σS(G) is determined by the equation µ(a)µ(b) = µ(a)µ(c)
corresponding to the relation a + b = a + c. The absolute is homeomorphic to
the tripod ⊥.

7. If G is the commutative semigroup with generators a, b, c and the addi-
tional noncommutative relations a+ b = 2c and a+ c = 2b, then the absolute is
disconnected, it consists of two points.

3.3. Proposition. The absolute of the quotient semigroup of a commutative
semigroup by a finite subgroup coincides with the absolute of the semigroup.

Proof. Assume that there is a semigroup epimorphism G1 → G2 and we con-
sider the system of generators S in G2 inherited from G1. If a pair of vectors
(ms)s∈S and (ns)s∈S from NS0 satisfies condition (1) for G1, then it also satisfies
condition (1) for G2, since we deal with a homomorphism. Conversely, if an epi-
morhpism G1 → G2 corresponds to taking the quotient by a finite subgroup and
a pair of vectors (ms)s∈S and (ns)s∈S satisfies condition (1) for G2, then there is
a positive integer k such that the pair of vectors (k ·ms)s∈S and (k ·ns)s∈S satis-
fies condition (1) for G1. In view of Theorem 3.2, it follows that the sets σS(G1)
and σS(G2) of precentral distributions are described by equivalent systems of
equations, and Theorem 3.1 implies the desired assertion.

Comments. 1. The idea of shifting used in the proof of Theorem 3.1 appeared
in the probability literature of the 1960s in connection with harmonic functions;
see [3, Theorem 5], [7, Lemma 1], and also [14, Lemma 25.2].

2. Already for nilpotent groups, Theorem 3.1 does not hold for an arbitrary
ergodic central measure.
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4 The topology of the absolute of commutative
(semi)groups

As we have already mentioned, the set of all central measures is a simplex, and
the absolute is its Choquet boundary. A meaningful question is what topology
is induced on the absolute by the weak topology in the space of measures on the
compactum of paths. In this section, we study the topology of the absolute of
commutative (semi)groups. From Theorems 3.1 and 3.2 we derive (the proofs
are given below) the following theorems on the topological structure of the
absolute. The most important result is as follows: in the case of groups and
cancellative semigroups, the main part of the absolute is the interior of a disk,
and the degenerate part is the boundary of this disk.

4.1. Theorem (on the topology of the absolute of commutative
groups). The absolute of a finitely generated commutative group with respect
to any finite system of semigroup generators is homeomorphic to the closed disk
of dimension equal to the rank of the group. The main part of the absolute
corresponds to the interior of the disk.

Theorem 4.1 extends to cancellative semigroups.

4.2. Theorem (generalization for cancellative commutative semi-
groups). The absolute of a finitely generated cancellative commutative semi-
group G (with respect to any finite system of generators S) is homeomorphic
to the closed disk whose dimension either coincides with the rank of the group
of fractions5of G, or is one less than this rank if G is a branching semigroup
and S is an admissible system of generators. The main part of the absolute
corresponds to the interior of the disk.

In the case of a noncancellative commutative semigroup, the absolute can
have a more complex structure (see Example 4 above). However, it is still
compact, and the main part has the same form.

4.3. Theorem (generalization for noncancellative commutative semi-
groups). The absolute of an arbitrary finitely generated commutative semi-
group (with respect to any finite system of generators) is compact6, and its main
part is homeomorphic to the open disk whose dimension is determined by the
rule described in Theorem 4.2.

Proof of Theorems 4.1–4.3. Let G be a commutative semigroup with a finite
system of generators S. Theorems 3.1 and 3.2 reduce the problem of describing
the absolute AS(G) to that of describing the set σS(G) of solutions of equa-
tions (2) in the simplex ∆S of probability distributions on S.

5The group of fractions of a semigroup G is the group with the same generators as that
of G in which the relations are all corollaries of the relations in G.

6In the literature, a simplex whose Choquet boundary is closed is called a Bauer simplex.

9



A proof that the absolute is compact. For arbitrary pair of vectors (ms)s∈S
and (ns)s∈S from NS0 , the subset of solutions of equation (2) in ∆S is com-
pact, since ∆S is compact and the expressions in both sides of (2) are con-
tinuous on ∆S as functions of µ. Therefore, the set σS(G) (and hence the
absolute AS(G)) is compact as an intersection of compact subsets.

The centrality equations. If vectors (ms)s∈S and (ns)s∈S from NS0 satisfy the
condition

∑
s∈Sms ·s =

∑
s∈S ns ·s in G, then the vector (ms−ns)s∈S from ZS

will be called a reduced relation vector for (G,S). If, in addition, the equation∑
s∈Sms =

∑
s∈S ns holds, then the reduced relation vector (ms−ns)s∈S will be

called central, equation (2) will be called a centrality equation, and the equation
(in the variables µ(s))∏

s∈S
(µ(s))ms−min{ms,ns} =

∏
s∈S

(µ(s))ns−min{ms,ns} (3)

will be called a reduced centrality equation.7 Denote by σ̄S(G) the set of dis-
tributions from ∆S that are solutions of all reduced centrality equations of the
pair (G,S). Then the following holds.

(i) The set σ̄S(G) is contained in σS(G), since σS(G) coincides with the
set of solutions of the centrality equations lying in ∆S , and every centrality
equation (2) can be obtained from the corresponding reduced equation (3) by
multiplying both sides of the latter by

∏
s∈S(µ(s))min{ms,ns}.

(ii) If G is a cancellative semigroup, then σ̄S(G) = σS(G), since in such a
semigroup every reduced centrality equation is, obviously, a centrality equation,
so σS(G) is contained in σ̄S(G) (and σ̄S(G) is contained in σS(G) by (i)).

(iii) The intersection σS(G) ∩ int(∆S) coincides with the intersection of the
sets σ̄S(G) and int(∆S), both in the case of a cancellative semigroup and in the
general case, since in int(∆S) the condition µ(s) > 0 holds for all s ∈ S, and a
centrality equation in int(∆S) has the same set of solutions as the corresponding
reduced centrality equation.

Now observe that the set R̄S(G) of reduced relation vectors for (G,S) is,
obviously, a subgroup in ZS , and the subset R̄cS(G) of all central reduced relation
vectors either coincides with R̄S(G), or is a subgroup in R̄S(G) of corank 1.8

It follows that the sets R̄cS(G) and σ̄S(G) satisfy the conditions of Propo-
sition 5.1 (in the notation of this proposition, σ̄S(G) = ΛR̄c

S(G)), which

implies that the set σ̄S(G) is homeomorphic to the closed disk of dimen-
sion |S|−1−rank(R̄cS(G)) (hereafter, rank stands for the rank of a commutative
group), and, moreover, the interior of the disk σ̄S(G) lies in int(∆S), while the
boundary of σ̄S(G) lies in the boundary ∂∆S .

To complete the proof of Theorems 4.1–4.3, it remains to observe that under
the bijection AS(G) ∼= σS(G), the main part of the absolute is represented
by the intersection σS(G) ∩ int(∆S), the rank of the group of fractions of the

7In the general case of a noncancellative semigroup, a reduced centrality equation is not
necessarily a centrality equation.

8If the group of fractions of a semigroup is torsion-free, then the subgroups R̄S(G)
and R̄c

S(G) are linear subspaces in ZS .
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semigroup G is equal to |S| − rank(R̄S(G)), and the rank of the group R̄S(G)
coincides with the rank of R̄cS(G) if and only if (these groups coincide, so) (G,S)
is a branching semigroup with an admissible system of generators.

5 A proposition on linear spaces

Let S be a finite set, ∆S be the simplex of probability distributions on S, RS be
the space of real functions on S, V0 ⊂ RS be the subset of functions with values
summing to zero. We identify ∆S with the subset of nonnegative functions
in RS with values summing to one. Given a vector κ = (ks)s∈S from V0, denote
by λκ the subset in ∆S consisting of all distributions µ satisfying the condition∏

s∈S: ks>0

(µ(s))ks =
∏

r∈S: kr<0

(µ(r))|kr|. (4)

Given a subset9 K in V0, put

ΛK :=
⋂
κ∈K

λκ.

By VK we denote the linear hull of K, and dim(V ) stands for the dimension of
a space V . We also denote by int(M) and ∂M the interior and the boundary of
a multidimensional polyhedron M (irrespective of the ambient space).

The purpose of this section is to prove the following proposition.

5.1. Proposition. If a subset K of a hyperplane V0 is a linear subspace or a
semigroup of vectors with integer coordinates, then the set ΛK is homeomorphic
to the closed disk of dimension |S| − 1−dim(VK); moreover, the interior of ΛK
lies in int(∆S), and the boundary of ΛK lies in ∂∆S.

We split the proof of Proposition 5.1 into a series of claims.

5.2. Claim. For every subset K in V0, the intersection of the set ΛK with
the interior int(∆S) of the simplex ∆S is homeomorphic to the open disk of
dimension |S| − 1− dim(VK).

Proof. Observe that the maps

exp: V0 → int(∆S) and log : int(∆S)→ V0

given by the formulas

exp((vs)s∈S) =

(
evs∑
s∈S e

vs

)
s∈S

and

9If we extend the above definitions to subsets K not in V0, then part of the assertions
stated below remains valid. However, here we do not consider generalizations; we are mainly
interested in the simplex ∆S and the space V0, as the vector space associated with the affine
hull of ∆S ; these spaces are embedded into the auxiliary space RS only for convenience.
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log((ps)s∈S) =

(
log ps −

∑
s∈S

log ps

)
s∈S

are mutually inverse diffeomorphisms between V0 and int(∆S). Taking the log-
arithms of both sides of (4), we see that the maps exp and log provide a diffeo-
morphism between the set ΛK ∩ int(∆S) and the orthogonal complement to VK
in V0. It remains to observe that this complement has dimension

dim(V0)− dim(VK) = |S| − 1− dim(VK).

5.3. Claim. For every subset K in V0, the set ΛK is compact.

Proof. For every vector κ = (ks)s∈S , the set λκ is compact, since ∆S is compact
and the expressions in both sides of (4) are continuous on ∆S as functions of µ.
Therefore, ΛK is compact as an intersection of compact sets.

5.4. Claim. If vectors κ and κ′ in V0 are collinear, then λκ = λκ′ .

Proof. Follows from the definition of λκ for κ and κ′ from V0.

5.5. Claim. If K is a subgroup in V0 that contains only vectors with integer
coordinates, then ΛK = ΛVK

.

Proof. First, observe that if K is a group of vectors with integer coordinates,
then in VK every vector with rational coordinates is proportional to a vector
from K. In view of Claim 5.4, it follows that every distribution µ from ΛK
belongs also to λκ if κ is a vector in VK with rational coordinates.

Second, it is clear that for every fixed distribution µ ∈ ∆S , both sides of (4),
regarded as functions of a vector (ks)s∈S , are continuous on each connected
component of each stratum of the form

RSm := {(ks)s∈S ∈ RS : card{s ∈ S : ks = 0} = m}.

Finally, for every m ∈ N0, the vectors with rational coordinates are dense
in the stratum VK ∩RSm (this follows from the fact that the intersection of two
linear subspaces spanned by vectors with integer coordinates is also spanned
by vectors with integer coordinates; this fact becomes obvious if one regards
the intersection as the orthogonal complement to the sum of the orthogonal
complements to the original subspaces and observes that the property of being
spanned by vectors with integer coordinates is preserved under taking orthogo-
nal complements and sums).

5.6. Claim. If an affine line L in RS intersects the simplex ∆S by an interval I
with endpoints a and b, then the set λa−b intersects L at a single point, and this
point lies in the interior of I.

Proof. For the vector κ = a− b, condition (4) takes the form∏
s∈S: as−bs>0

(µ(s))as−bs =
∏

r∈S: br−ar>0

(µ(r))br−ar . (5)
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As µ moves along the interval I from a to b, the function FL(µ) given by the
left-hand side of (5) decreases, while the function FR(µ) given by the right-hand
side of (5) increases. Since I is cut out of ∆S by a straight line, there is q ∈ S
with aq = 0 and bq > 0 and there is r ∈ S with ar > 0 and br = 0 such that
FL(b) = 0 and FR(a) = 0. This immediately implies the desired assertion.

5.7. Claim. If K is a linear subspace in V0, then taking the quotient
ρ : RS → RS/K yields a homeomorphism between the set ΛK and the convex
polyhedron ρ(∆S); moreover, the intersection ΛK ∩ ∂∆S is homeomorphic to
the boundary ∂(ρ(∆S)).

We split the proof of Claim 5.7 into several parts.

5.8. Claim. Under the conditions of Claim 5.7, the restriction of ρ to ΛK is
injective.

Proof. Aiming at a contradiction, assume that in ΛK there are distinct points x
and y with ρ(x) = ρ(y). Then the vector x−y lies in K, so {x, y} ⊂ ΛK ⊂ λx−y,
which contradicts Claim 5.6 if we choose L to be the affine line passing through
the points x and y (see also Claim 5.4).

5.9. Claim. Under the conditions of Claim 5.7, the map ρ sends the set
ΛK ∩ ∂∆S to the boundary ∂(ρ(∆S)) of the polyhedron ρ(∆S).

Proof. Aiming at a contradiction, assume that in ΛK ∩ ∂∆S there is a point b
with ρ(b) in int(ρ(∆S)). Observe that the interior of the polyhedron ρ(∆S)
is covered by the interior of the polyhedron ∆S (and, moreover, ρ(int(∆S)) =
int(ρ(∆S))). Therefore, in int(∆S) there is a point y with ρ(y) = ρ(b). Then
the vector b − y lies in K. By Claim 5.6, the point b does not lie in λb−y,
since it is an endpoint of the interval cut out of ∆S by the straight line passing
through b and y (see also Claim 5.4). This contradicts the assumption that b
lies in ΛK .

5.10. Claim. Under the conditions of Claim 5.7, the image Q := ρ(ΛK ∩
int(∆S)) coincides with the interior int(ρ(∆S)) of the polyhedron ρ(∆S).

Proof. We have proved that the restriction of ρ to ΛK is injective (Claim 5.8),
and the set ΛK ∩ int(∆S) is homeomorphic to the open disk of dimen-
sion |S|−1−dim(K) (see Claim 5.2), which coincides with the dimension of the
polyhedron ρ(∆S). As is well known, the image of a continuous embedding of a
Euclidean space into itself is open (Brouwer’s invariance of domain theorem). It
follows that the set Q is contained in int(ρ(∆S)) and open in ρ(∆S). Therefore,
if Q did not cover the domain int(ρ(∆S)), then there would be a point x in this
domain that does not belong to Q but belongs to the closure of Q. Since ΛK is
compact, this would mean that in ΛK ∩ ∂∆S there is a point b with ρ(b) = x.
However, this contradicts Claim 5.9.

Completing the proof of Proposition 5.7. Since ΛK is compact (see Claim 5.3),
it follows from Claim 5.10 that ρ(ΛK) = ρ(∆S). Since the restriction of ρ to ΛK
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is injective (see Claim 5.8), it follows that ρ yields a bijection between ΛK
and ρ(∆S). It remains to observe that, as one can easily see, a continuous bi-
jection of a metric compact space is a homeomorphism. Thus ρ yields a homeo-
morhism between ΛK and ρ(∆S), and, in view of Claim 5.10, a homeomoprhism
between the spheres ΛK ∩ ∂∆S and ∂(ρ(∆S)).

Completing the proof of Proposition 5.1. Claim 5.5 reduces the situation to the
case of a linear subspace. In this case, the existence of a homeomorphism follows
from Claim 5.7, and the refinement on the dimension, from Claim 5.2.

Remark. If a subset K of the space V0 consists of vectors with integer coor-
dinates but is not a subgroup, then the set ΛK is not necessarily homeomorphic
to a disk. For instance, for S = {1, 2, 3}, we have

Λ{(1,1,−2),(1,−2,1)} = {(1/3, 1/3, 1/3), (1, 0, 0)}.

6 Characters

The theory of the absolute of commutative groups and semigroups has an inter-
esting reformulation in terms of characters of semigroups. Here by a character
we mean a homomorhism to the multiplicative semigroup of nonnegative real
numbers. For a general theory of characters, see [2, 5, 6].

Let G be an arbitrary commutative semigroup with a finite system of gen-
erators S and DS(G) be the branching monoid for the pair (G,S). Every
central measure ν of the pair (G,S) gives rise to the functional fν on the
monoid DS(G) whose value at an element of DS(G) is equal to the measure
of a path leading to this element. Clearly, under this correspondence, functions
corresponding to central measures with i.i.d. increments are exactly characters
of the monoid DS(G) whose values on the generators from S sum to 1 (such
characters will be called normalized, or probability characters). In these terms,
Theorem 3.1 takes the following form.

6.1. Corollary. In a commutative semigroup G with an arbitrary finite sys-
tem of generators S, the above correspondence ν 7→ fν is a bijection of the
set of ergodic central measures (i. e., the absolute) onto the set of normalized
R0+-characters on the branching monoid DS(G).

Proof. If ν is ergodic, then the functional fν is a normalized R0+-character, since
the increments are i.i.d. (Theorem 3.1). Conversely, if a functional f on DS(G)
is a normalized R0+-character, then the restriction of f to S gives a precentral
distribution, so f = fν for the ergodic central measure ν corresponding to this
distribution.

A character is called trivial if it vanishes at all elements of the semi-
group except the identity element. As one can easily see, the set of nontrivial
R0+-characters forms a fiber bundle over the set of normalized R0+-characters
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with fiber (0,+∞). Thus the problem of describing the absolute of commuta-
tive semigroups is essentially equivalent to the problem of describing the set of
R0+-charactes of commutative branching monoids. Correspondingly, assertions
about the absolute of commutative semigroups can be translated into assertions
about characters of branching semigroups. For instance, Theorem 4.2 gives the
following.

6.2. Corollary. For a commutative cancellative branching semigroup, the
space of nontrivial R0+-characters endowed with the weak topology is homeo-
morphic to the direct product of a closed disk of certain dimension and an open
interval.

In the case of commutative and nilpotent groups, there is a correspondence
between the R+-characters of the group and the main part of the absolute.
This correspondence is known, it has been studied from the point of view of
eigenfunctions of Laplacians. We discuss it in more detail in [13].
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