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Abstract

We suggest a combinatorial method of encoding continuous symbolic dynamical systems. A con-
tinuous phase space, the infinite-dimensional cube, turns into the path space of a tree, and the shift
is mapped to a transformation which was called a “transfer.” The central problem is that of dis-
tinguishability: does the encoding separate almost all points of the space? The main result says
that the partition of the cube into Weyl simplices satisfies this property.1
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1 Introduction

In the theory of dynamical systems and, more generally, measure theory, the following question often
proves fruitful: find a cover of a given measure space by a space endowed with a product measure (i.e.,
a product of independent variables) for which a given transformation (or a group of transformations) is
a homomorphic image of the shift (respectively, are homomorphic images of the shifts) in the covering
space. If such a cover (homomorphism) exists, and even is an isomorphism, then we obtain important
information on the original object.

On the other hand, the inverse problem is not less important: how one can economically encode
a sequence of independent identically distributed continuous random variables (i.e., a Bernoulli scheme)
using finite codes? That is, can one replace a continuous scheme by a locally finite one and how can
this be done?

In both cases, it is important to find a method of economical encoding of a continuous scheme and
Bernoulli shift, or even a more general system.

We suggest a general method of combinatorial encoding of a Bernoulli scheme, and consider a sim-
plest nontrivial example of such an encoding, using the partition of the cube into Weyl simplices.
This example is related to a simplest tree (of permutations) and produces an isomorphism between
the classical Bernoulli scheme with a continuous set of states and a new type of a measure-preserving
transformation called transfer. This is a nonstationary Markov shift acting in the Cantor-like space
of paths in a graded graph (in the simplest case, in the path space of a tree).

In this context, objects of ergodic theory become related to the combinatorial theory of graded
graphs and, consequently, to combinatorics and representation theory.

The main problem arising here is the distinguishability problem: is the encoding faithful, i.e., does it
separate almost all points of the Bernoulli scheme? In other words, is the encoded system isomorphic
to the original one or is it only a homomorphic image of this system? In the example with Weyl
simplices, this problem can be stated very simply: can one recover a realization of a Bernoulli scheme
with state space [0, 1] from all pairwise inequalities between its coordinates? Quite paradoxically, the
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answer (see Section 3) is positive: this can be done with probability 1. Actually, this question is
related to the theory of equidistributed sequences, but the extensive literature on the subject seems
to contain no mention of this fact.

A much more complicated example is related to the Young graph and the RSK correspondence.
It was initiated by the old paper [3] and was resolved, also positively, in the recent papers [5, 6]. In
this case, the encoding uses Q-tableaux of the RSK correspondence. The proofs in [5, 6] are based
on a thorough analysis of the theorem on the limit shape of Young diagrams and the study of the
Schützenberger transformation.

We will return to this example in another paper, where we will apply a general method of resolv-
ing the distinguishability problem, which consists in proving certain laws of large numbers “along”
realizations. These laws can be quite complicated. For example, our proof is based on a new theorem
on the limit shape for P -tableaux; however, the approach itself, which is mentioned in the present
paper too, is universal.

It is worth noting that our notion of transfer (see Sections 4 and 5) is a far generalization of the
Schützenberger transformation (jeu de taquin) and seems to be important for the general theory of
graphs and transformations with an invariant measure. Describing all invariant measures for a transfer
and the study of its properties is a new interesting area of the theory of dynamical systems and the
combinatorics of graphs.

The main technique here is a combinatorial method of studying increasing invariant sequences
of finite measurable partitions of Lebesgue spaces, which are, according to V. A. Rokhlin, separable
complete measure spaces, or, in other words, spaces isomorphic mod 0 to an interval with the Lebesgue
measure (if the original measure is continuous). In the author’s opinion, the most important problems
in measure theory and its applications to different fields of mathematics are related to the geometry
and combinatorics of σ-algebras (= measurable partitions) and their sequences. Here we are interested
in infinite increasing sequences; the combinatorics underlying the theory of such sequences is the study
of properties of infinite trees and graded graphs. Another class of sequences of σ-algebras is that of
decreasing sequences, or filtrations (see [9]); the corresponding theories are closely related, but strongly
different.

In Section 2, we define a combinatorial encoding and state the main problems. In particular, we
define a frame, i.e., a tree endowed with a translation which is a combinatorial invariant of an in-
creasing sequence of partitions. We state and discuss the distinguishability problem, and also discuss
numerical invariants of exhausting sequences, for which the distinguishability problem has a positive
answer. The main Section 3 introduces an encoding of a Bernoulli scheme by Weyl simplices (= in-
tersections of Weyl chambers with the unit cube); it is used to establish an isomorphism between
a continuous Bernoulli shift and the transfer of a triangular compactum (= the path space of the tree
of i-permutations). Section 4 contains various problems related to this example and its generalizations.
In particular, we state a problem on different compactifications of the infinite symmetric group, one
being the compactum of virtual permutations and another one being the main example of this paper.
In Section 5, we give a general definition of transfer for a graded graph and describe problems related
to this notion.
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2 Classical and combinatorial encoding of transformations

2.1 Classical encoding and generators

We begin by recalling the method of encoding endomorphisms and automorphisms or, more generally,
arbitrary actions of groups and semigroups with an invariant measure used in symbolic dynamics, when
one defines an action of the group by shifts in the space of functions on the group with a shift-invariant
measure.

For simplicity, we consider a Bernoulli endomorphism (= one-sided Bernoulli shift) S, which is
a transformation of the space

∏
n I ≡ I∞, where I = [0, 1], with an invariant product measure m∞,

where m is the Lebesgue measure on [0, 1]. The usual method of encoding endomorphisms (and
automorphisms) in ergodic theory and information theory is to choose an I-valued measurable function
f : I∞ → I on the space of trajectories I∞ of the process (“symbolic space”) and study the family of
all its shifts {f(S−n·)}∞n=1. If these shifts (regarded as functions on I∞) separate the points of I∞,
i.e., the product of the partitions of I∞ into the preimages of points corresponding to the shifts of f
is the partition into singletons, then the partition into the level sets of the original function (and the
function itself) is called a generator. In this case, we obtain a new isomorphic model of the shift in the
same space I∞, but, in general, with another invariant measure different from m∞. To check whether
a given function is a generator is a difficult and instructive problem even for a Bernoulli scheme, and
more so in the general case. But since the product of partitions is a partition invariant under the
shift, we always have a well-defined quotient endomorphism, which may or may not be isomorphic to
the original endomorphism. This classical method of encoding endo- and automorphisms is studied in
many papers both in ergodic theory and information theory.

2.2 Combinatorial encoding

We suggest to encode an endomorphism (in particular, a Bernoulli shift) in another way: instead of
classical codes (functions or partitions), we will construct a shift-invariant increasing sequence of finite
measurable partitions on a measure space (in particular, on the infinite-dimensional cube (I∞,m∞)
with a product measure).

In more detail, let I = [0, 1] and consider the infinite-dimensional cube I∞ =
∏

n I = {{ξn}n≥1}
with the Lebesgue measure m∞ =

∏
nm where m is the Lebesgue measure on the interval [0, 1]. By S

we denote the one-sided shift, i.e., the endomorphism S({ξn}n≥1) = {ξn+1}n≥1 of the space I∞ with
the invariant measure m∞.

We consider arbitrary increasing sequences of finite cylinder partitions ηn, n = 1, 2, . . . , of the
infinite-dimensional cube I∞.

A finite partition consists of finitely many (measurable) sets of positive measure, called its ele-
ments. A sequence of finite partitions {ηn}n is increasing (notation: ηn ≺ ηn+1) if for every n every
element C ∈ ηn+1 is a subset of some element D ∈ ηn, and every element D ∈ ηn is the union of all
elements of ηn+1 belonging to it. To exclude degenerate cases, we will assume that every element of ηn
contains at least two elements of ηn+1.
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The invariance of a sequence of partitions {ηn}n under the shift S means that the images Sx, Sx′

of (almost) any two points x, x′ ∈ I∞ belonging to the same element of ηn belong to the same element
of ηn−1, for n = 2, 3 . . . .

Besides, we require {ηn}n to be cylinder partitions, with ηn being a partition into cylinders whose
bases are subsets of the finite-dimensional cube In, which is the projection of the infinite-dimensional
cube to the first n coordinates. The more general case where ηn is a cylinder partition with respect
to the cube Ikn , where kn is an increasing sequence with kn ≥ n, is no different from this one.

Hence, describing a sequence of partitions of the type under consideration reduces to describ-
ing a sequence of coherent partitions of finite-dimensional cubes, which we will denote by the same
symbols ηn.

We will assume that η1 is the trivial partition (whose unique element is a set of full measure); its
base is the trivial partition of the first cube, i.e., the interval I1 = I.

Assume that we have already constructed an increasing chain of partitions η1 ≺ η2 ≺ · · · ≺ ηn in-
variant under finitely many shifts in which the elements of ηk are cylinder sets with bases in Ik(← I∞),
for k = 1, 2, . . . , n. Consider the cube In+1. For the base of the next partition ηn+1, we can take an
arbitrary partition of the cube In+1 that is a refinement of the product η′n∨η′′n of two partitions defined
as follows: take two projections π1, π2 : In+1 → In of the cube In+1 to the cube In, the first one
along the axes {1, 2, . . . , n}, and the second one along the axes {2, 3, . . . , n + 1}; then η′n and η′′n are
the preimages of the partition ηn of In under these projections:

η′n = π−1
1 (ηn), η′′n = π−1

2 (ηn).

Continue this process; the fact that the resulting sequence of partitions is increasing and invariant
immediately follows from construction. Thus, we have obtained an infinite increasing shift-invariant
sequence of finite cylinder partitions. It is not difficult to see that this procedure allows one to construct
an arbitrary monotone invariant sequence of finite partitions. One can say that with this method of
encoding, the continuity of the state space “escapes to infinity.” This phenomenon is worth a more
detailed analysis.

Two sequences {ηn}n and {η′n}n of the type under consideration are said to be metrically isomorphic
if there exists an invertible measurable transformation T : I∞ → I∞ preserving the measure m∞ and
sending one sequence to the other one.

Note that the described procedure can be applied to an arbitrary Lebesgue space and a measure-
preserving transformation of this space defined in symbolic form, i.e., with a generator fixed before-
hand.

2.3 The frame as a combinatorial invariant of an encoding

With an increasing invariant sequence of finite cylinder partitions {ηn}n of the space (I∞,m∞) we
associate a most important combinatorial object: an infinite tree F = F ({ηn}∞n=1) with an additional
structure introduced below. The vertices of the nth level of F correspond to the elements of the
partition ηn; let C ∈ ηn be one of these elements; then it is joined by an edge with the vertex
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corresponding to the element D ∈ ηn−1 of the previous partition that contains C; we assume that this
edge is directed from D to C. Thus, we have defined an infinite, locally finite tree corresponding to
a sequence of partitions. Such a tree can be defined for every increasing sequence of finite partitions
of every Lebesgue space.

But we have also the following map defined on the vertices of F : since the sequence of parti-
tions {ηn}n is shift-invariant, to every element C ∈ ηn for n > 1 there corresponds a unique element
E ∈ ηn−1 different from D that is the image of all points of C under the shift S : I∞ → I∞; take
the edge connecting the vertices corresponding to the elements C and E and direct it from E to C.
Thus, our tree is endowed with a bijection from the set of all its vertices to the set of all vertices
except the first one, and this bijection preserves the partial order, i.e., sends a pair of vertices that
constitute an edge to a similar pair at the previous level. We will call this map a translation and
denote by ω. Using ω, we define a map from the set of all infinite paths {ti}∞1 in F to itself; namely,
given a path {ti}∞1 , the vertices of its image {t′i}∞1 are the translations of its vertices: t′i = ω(ti+1),
i = 1, 2, . . . . This map will be called a transfer on the path space of the tree, and a tree for which
a transfer is defined will be called a tree with a transfer.

Finally, recall that every element of every partition ηn has a measure, a positive number from
the interval (0, 1), and the sum of these numbers over each level of the tree is equal to 1. It is more
convenient to fix the conditional measure on the elements of the quotient partition ηn/ηn+1, i.e., fix
a probability vector for each element C ∈ ηn.

Definition 1. The frame of a combinatorial encoding of the space (I∞,m∞), i.e., of an increasing
invariant sequence of finite cylinder partitions {ηn}n, is the tree with a transfer F ({ηn}n) defined
above endowed with a coherent system of probability vectors on its levels. In the case most interesting
for our purposes, the conditional measures are uniform and determined by numbers rn(C).

The frame, being a graded tree with a transfer endowed with a system of measures, is a com-
binatorial (finite) invariant of an increasing sequence of partitions {ηn} of the space (I∞,m∞). On
the other hand, every graded tree with a transfer and a system of measures can be realized as the
frame of an increasing sequence of invariant finite measurable partitions of a Lebesgue space with
a measure-preserving transformation (which can be different from (I∞,m∞, S)).

We will say that two sequences of partitions (or two encodings) are combinatorially isomorphic if
their frames are isomorphic as graded trees with a transfer and a system of measures.

Clearly, two metrically isomorphic sequences of partitions are combinatorially isomorphic; however,
the converse is not true, since the behavior of the sequences at infinity can be different (see the
distinguishability problem below).

For the tree of Weyl simplices of type A, the frame and the corresponding transfer are considered
in Section 3.

2.4 Distinguishability problem

Consider an infinite increasing shift-invariant sequence of finite cylinder partitions ηn of the space I∞.
Recall that the limit of an increasing sequence of finite partitions ηn, n = 1, 2, . . . , is their product,
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i.e., the measurable partition η ≡
∨

n ηn whose elements are all nonempty intersections of sequences
of elements of ηn.

The fundamental question is whether the limiting partition, i.e., the product of partitions, coincides
mod 0 with the partition into singletons, i.e., whether it separates almost all, with respect to the
measure m∞, points of the space I∞. If the answer is positive, this means that our encoding loses no
information. In this case, the sequence {ηn} will be called exhausting. It is more conventional to say
that such a sequence is a basis of the measure space, since the σ-algebra spanned by all elements of
all partitions {ηn} of such a sequence is dense in the full σ-algebra.

In the classical encoding, a partition (or a function defining it) is called a generator if the product
of the shifts of the original partition (into the level sets of the function) coincides mod 0 with the
partition into singletons. In the language of information theory, this means that this encoding loses
no information.

Both in the classical and combinatorial cases, the same question arises: does the product of some
set of partitions coincide with the partition into singletons? The crucial difference is that in the
combinatorial encoding we consider a limit of finite partitions, which allows us to use combinatorial
tools for solving the problem.

Another difference is in the realization of the quotient by the limiting partition. As we will see, in
contrast to the classical case, where the quotient space is realized as the same symbolic cube I∞ with
a new measure and a shift, in the combinatorial encoding it is realized as the path space of a locally
finite graded graph, or, in other words, as a quasi-stationary (see below) topological chain with finite
sets of states, and the quotient endomorphism is realized as a generalized shift, called a transfer.

Of course, the combinatorial encoding in the form described above applies not only to a Bernoulli
endomorphism with a continuous set of states, but also to an arbitrary stationary measure in I∞;
moreover, one can start with an automorphism of an abstract Lebesgue space.

Let us state the main problem once again in the most general form.

Problem 1 (distinguishability problem). In what cases a sequence of partitions {ηn}n separates
mod 0 the points of the space I∞, or is exhausting, or, in other words, when does it solve the distin-
guishability problem? More formally: in what cases the product η ≡

∨
n ηn coincides mod 0 with the

partition into singletons (traditionally denoted by ε)?

The term “distinguishability” comes from the fact that the condition introduced above means that
almost any two trajectories {ξn}, {ξ′n} ∈ I∞ (from a set of full measure) fall into different elements of
the partition ηn for sufficiently large n.

Distinguishability is equivalent to the fact that almost every trajectory of the shift can be uniquely
recovered from the countable set of elements of the partitions ηn containing it. Since the encoding is
shift-invariant, it suffices to recover only the first coordinate, all the other coordinates can then be
recovered using the shift. The partitions ηn are finite, so the positive answer to the distinguishability
problem reduces the study of a continuous Bernoulli scheme to that of a countable encoding, i.e., to
the study of a sequence of coordinates each taking finitely many values. Recall that a continuous
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Bernoulli scheme cannot have a finite generator (in the classical sense), so our construction essentially
extends the possibilities of encoding.

2.5 Entropy estimates

Now we will consider numerical characteristics of the combinatorial encoding in the cases where the
distinguishability problem has a positive answer.

Denote by qn the number of elements in the partition ηn and by rn(C) the number of elements of
the partition ηn+1 lying in an element C ∈ ηn. Recall that rn(C) ≥ 2, and let maxC rn(C) ≡ rn; we
have qn ≥

∏n
1 rk.

It follows from the definition of the sequence {ηn} that S−kηm ≺ ηm+k. On the other hand, since
the entropy h(S) is infinite, none of the partitions ηn is a generator, whence

∨
n S
−nηm 6= ε. In fact,

our aim is to construct a “diagonal” refinement of the family of sequences {S−nηm}n>m.
If
∨

n ηn = ε, then every finite partition θ can be approximated in the entropy metric (see [4])
by a partition that is measurable with respect to ηn for sufficiently large n; hence, approximating
a sequence θk that approaches a continuous generator and using the invariance of {ηn}n, we conclude
that

lim
n

H(ηn)

n
≥ h(S) =∞.

In particular, if for every n the partition ηn is homogeneous, i.e., all its elements have the same
measure, then

lim
n

ln qn
n

=∞.

Of course, the distinguishability problem will have a positive answer if we allow qn to grow too
rapidly; for instance, it suffices to let qn = 22n (a grid with step 1/2n along all n axes of the cube In);
the distinguishability is obvious, since in this case all coordinates are approximated separately. The
question is: how slow qn can grow provided that the distinguishability holds?

On the other hand, we will give a lower entropy estimate on {qn} which provides a necessary
condition for a positive answer to the distinguishability problem in terms of the growth and can be
proved by entropy considerations.

Proposition 1. If for a sequence {ηn} the distinguishability problem has a positive answer, i.e.,∨
n ηn = ε, then

lim
n

ln qn
n

=∞,

and the rate of convergence can be arbitrarily small.

But one can give both a direct estimate and a direct construction of a required sequence of parti-
tions.

In the first nontrivial example (the “Weyl simplices”, see Section 3 below), where qn = n! and
rn = n, the estimate is as follows: ln qn

n = lnn+O(1). In the second example (the RSK correspondence),

the growth is qn ∼ (n!)1/2 and rn ∼ p(n), where p(n) is the Euler function (the number of partitions).

8



In the formal sense, the distinguishability problem in a combinatorial formulation reduces to
a purely computational problem, namely, checking that almost all conditional measures on the el-
ements of the partitions ηn converge in some metric to δ-measures, which in other terms is equivalent
to some (nonlinear) law of large numbers. From this viewpoint, the combinatorial encoding is better
adapted to the proof of distinguishability than the classical encoding to the proof that some partition
is a generator, since in the former case we deal with a limit of finite partitions.

3 The main example: encoding a Bernoulli scheme by Weyl sim-
plices and the triangular compactum M

In this paper, we will study the simplest nontrivial example of a combinatorial encoding, namely, the
combinatorial encoding of a Bernoulli scheme (I∞,m∞) by Weyl simplices. From the abstract point of
view, a special feature of the case under consideration, in terms of a notion introduced above, is that
the frame of this encoding is a homogeneous tree, in which the number of outgoing edges is the same
for all vertices of every level. In this example, i.e., in the “tree of i-permutations2,” this number is
equal to n for vertices of level n, and the number of vertices at this level, as well as the number of
paths leading to it, is equal to n!.

The main problem is to find the asymptotic behavior of the collection of Weyl chambers (more
exactly, Weyl simplices) of type An, as well as establish links to related problems.

In fact, this example can be generalized, with the same proofs, to Bernoulli schemes with arbitrary
state spaces. However, for definiteness, we will speak mainly of the interval I = [0, 1] with the Lebesgue
measure.

3.1 The partition of the cube into Weyl simplices

We will define an increasing shift-invariant sequence of finite cylinder partitions of the cube (I∞,m∞);
namely, ηn is the cylinder partition of (I∞,m∞) whose base is the partition of the finite-dimensional
cube In into open Weyl simplices, by which we mean the intersections of open Weyl chambers in the
Cartan subalgebra with the unit cube.3

We will consider the set of full measure in In consisting of the vectors with pairwise distinct
coordinates. The frame of this sequence of partitions {ηn} is shown in Fig. 1. This tree can also
be called the tree of i-permutations indexing the Weyl simplices (and chambers), or the factorial
homogeneous tree.

On the one hand, the set of vertices of level n consists of all i-permutations of n symbols, which
should not be confused with elements of the symmetric group Sn. An edge joins two i-permutations a

2We introduce the term “i-permutation” (coming from “image of a permutation”) to emphasize the difference, often
neglected, between a permutation as an element of the symmetric group Sn and as an ordering of n objects. If we fix
some order on these objects, then an i-permutation is the image of this order under the action of the corresponding
permutation.

3We assume that in Rn a correspondence is fixed between the Weyl chambers and the i-permutations of the set
n = {1, 2, . . . , n} (in other words, a root system is chosen).
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1

1<2 1<3<2

1<2<3

3<1<2

1<3<2<4
1<3<4<2
1<4<3<2

4<1<3<2

2<1 

2<1<3

3<2<1

2<3<1

Figure 1: The tree of i-permutations with the translation.

and b if a is obtained from b by removing the element n.
By definition, the translation (see Section 2.3) associates with every vertex of level n (for n > 1)

a vertex of level n − 1 following the rule according to which the simplex σxn of sequences starting
from a vector xn = (x1, x2, . . . , xn) changes when we remove after application of the shift S the
first coordinate x1, that is, pass to the vector Sxn = (x2, x3, . . . , xn). Recall that the i-permutation
(k1, k2, . . . , kn) corresponding to the simplex σxn is given by the formula

ki = #{s ∈ n : xs < xi}i = 1, 2, . . . n.

Proposition 2. The i-permutation (r1, r2, . . . , rn−1) corresponding to the simplex ΣSxn is given by
the formula

ri =

{
ki+1 if ki+1 < k1,

ki+1 − 1 if ki+1 > k1.

The proof immediately follows from definitions. Thus, we have defined a translation, which is
a map from the set of i-permutations of length n to the set of i-permutations of length n − 1. In
the next section, where we compute the transfer for this graph, we use this map and interpret it in
a slightly different way.

Using this rule, we construct the frame corresponding to the tree of Weyl simplices, see Fig. 1.
The first transition (removing n) is called passing to the smaller i-permutation, and it is natural

to say that the translation is passing to the previous i-permutation.
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It is appropriate at this point to mention the difference between the notions introduced above
and the theory of virtual permutations, see [2]: the operation that in [2] and related papers is called
passing to the derivative permutation also consists in removing n, but from a permutation rather
than an i-permutation (for example, the derivative permutation of (2413) is (231), while the smaller
i-permutation is (213)). That is why, the projective limits with respect to the operations of taking the
derivative permutation Sn → Sn−1 and taking the previous i-permutation are different spaces: in the
first case, this is the compactum of virtual permutations, while in the second case, we obtain a space
whose nature is not quite clear.

Thus, a combinatorial setting for the partition into Weyl simplices is ready. We emphasize the
importance of the notion of translation, and hence that of transfer.

An important property of the sequence of partitions of the cube into Weyl simplices follows from
the fact that the cube can be represented mod 0 as the direct product

In ∼ (Sn × Σn),

where Sn is the symmetric group acting on In by permutations of coordinates and Σ is the standard
convex open simplex: Σ = {x1, x2, . . . , xn : 0 < x1 < x2 < · · · < xn < 1}. The above decomposition
is a decomposition of measure spaces, with the normalized Lebesgue measures on In and Σ and the
uniform measure on Sn. Thus, with the partition ηn we can associate its independent complement,
which is the partition into the orbits of Sn. This direct product decomposition of the cube In can be
lifted to the infinite-dimensional cube with the Lebesgue measure; namely, the independent comple-
ment to the cylinder partition ηn is the partition of the cube I∞ into the orbits of Sn, which is no
longer a cylinder partition.

3.2 The triangular compactum of paths in the tree of i-permutations

Consider the “triangular” compactum, by which we mean the space of all infinite sequences of positive
integers in which the nth coordinate takes values in the set n:

M =
{
{tn}∞1 : tn ∈ n = {1, 2, . . . , n}

}
.

This compactum can be regarded as the set of all paths in the N-graded graph W whose nth level is
the set n = {1, 2, . . . , n} and all pairs of vertices of neighboring levels are adjacent. In other words,
two neighboring levels in this graph form a complete bipartite graph. The space of all infinite paths
of the N-graded graph W , denoted by T (W ), is M = T (W ). But the same compactum is, obviously,
the path space of the tree of Weyl simplices.

The compactum M resembles the compactum S of so-called virtual permutations (see [2]), since
both are compactifications of the infinite symmetric group, though in different senses; nevertheless,
the relation to virtual permutations and representations of the group SN is very important and will be
discussed below. Recall that the compactum S of virtual permutations was defined as the projective
limit of the symmetric groups with respect to the maps

S = lim
←
{Sn, pn},
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where pn : Sn → Sn−1 is the operation of deleting the last symbol n from a permutation; pn is not
a group homomorphism, but it commutes with the right and left actions of Sn−1. Hence, on the
projective limit space S we have a right and left actions of the infinite symmetric group SN. Of
course, a virtual permutation is an infinite path in the graph W of permutations (the graph of Weyl
simplices), or a point of the triangular compactum.

One can also define actions of the symmetric group on the triangular compactum, but here we do
not discuss this issue. However, an analog of the Haar measure is defined on S and on M in the same
way: it is the measure

µ =

∞∏
1

µn,

where µn is the uniform measure on the set n = {1, 2, . . . , n}. This is the unique measure invariant
under the left and right actions of the group SN. Besides, there is a one-parameter family of measures
µt, t ∈ R+, defined as follows: µt(1) = . . . = µt(n − 1) = 1

t+n−1 , µt(n) = t
t+n−1 . For t = 1, we have

µ1 = µ. All measures µt are invariant under the diagonal action.

3.3 An isomorphism between the cube I∞ and the triangular compactum. The
positive answer to the distinguishability problem

Weyl simplices can be used to define a simple but important isomorphism between the measure spaces
(I∞,m∞) and (M, µ).

Consider the measurable map J : [0, 1]∞ → S from the infinite-dimensional cube I∞ to the path
space T (W ) = M defined as follows: for {xn} ∈ I∞,

J({xn}) = {tn = tn(x1, . . . , xn)}∞1 , where tn = #{i : 1 ≤ i ≤ n, xi < xn};

that is, the nth coordinate of the image is equal to the number of coordinates of the preimage with
indices at most n whose values are not less than the value of the nth coordinate of the preimage.

We may assume that the map J is defined only on the set of sequences with pairwise distinct
coordinates, which has a full measure m∞ in I∞, and is not defined on the remaining set (of zero
measure). This is a cylinder map, i.e., the images and preimages of cylinder sets coincide mod 0 with
cylinders in the corresponding spaces.

Consider in more detail the map J for a finite-dimensional cube. Obviously, the J-preimage of
a point of the space

∏n
i=1 i is an open Weyl simplex, i.e., the intersection of an open Weyl chamber

with the unit cube: this is the open simplex of all vectors of the unit cube with a fixed collection of
pairwise inequalities between their (distinct) coordinates. Thus, the finite-dimensional level sets of
the map J divide (mod 0) the unit cube into the Weyl simplices.

Theorem 1. The map J is a mod 0 measure-preserving isomorphism between the spaces (I∞,m∞)
(infinite-dimensional cube) and (M, µ∞) (triangular compactum). It sends the sequence {ηn} of par-
titions of the space (I∞,m∞) defined above to the sequence τn of complete cylinder partitions of the
compactum M.

12



To make it clear, τn is the partition of M into the classes of sequences of positive numbers in which
the first n coordinates coincide,

∏
n τn = ε.

One can see from the structure of the map J that the values of the measures µ∞ and m∞ on
cylinder sets agree; indeed, both the measure of a finite-dimensional Weyl simplex of order n and the
measure of a point in a finite n-fragment of M are equal to 1

n! , which implies that the measures of
preimages and images coincide, i.e., the map J is defined almost everywhere in (I∞,m∞), is mod 0
surjective, and preserves the measure.

It remains to prove that J is mod 0 injective, i.e., separates almost all points of the preimage I∞.
This simple but remarkable statement is worth highlighting.

Lemma 1. The limiting partition η = limn ηn of the infinite-dimensional cube I∞ (the limit of the
partitions into open Weyl simplices) coincides mod 0 (with respect to the Lebesgue measure) with the
partition into singletons. In other words, the distinguishability problem for the partition into Weyl
simplices has a positive answer. Therefore, the map J is an isomorphism of measure spaces. In more
detail, there exists a set of full Lebesgue measure in I∞ such that for any two points {xn} and {x′n}
of this set there exist indices i and j for which the corresponding coordinates satisfy the opposite
inequalities:

xi > xj , but x′i < x′j .

In a somewhat paradoxical form, the lemma can be stated as follows: almost every (with respect
to the Lebesgue measure) infinite sequence of points from the interval [0, 1] can be uniquely recovered
from the list of pairwise inequalities between its coordinates.

Or, even more paradoxically: almost every infinite-dimensional Weyl simplex consists of a single
point.4

Proof. Assume that two sequences have the same inequalities for all pairs of coordinates but differ in
at least one coordinate: xn = α < β = x′n. Since the coordinates are independent, it follows that with
probability 1 there exists a number N such that

xN ∈ (α, β), x′N ∈ (α, β),

which implies a contradiction: α = xn < xN , but β = x′n > x′N .

In fact, the proof uses not the independence of coordinates, but the equidistribution of almost
every sequence {xn}n, which follows from the pointwise ergodic theorem; hence, we can replace the
Lebesgue measure with any measure in I∞ for which the coordinates are equidistributed.

Let us sketch another, more conceptual argument, which is applicable in a much more general
situation.

To prove the distinguishability of Bernoulli realizations (trajectories) for a sequence of partitions
means to prove the following: for every measurable function f (it suffices to consider only cylinder

4If, instead of the cubes In, I∞ we consider the spaces Rn,R∞ with the standard infinite-dimensional Gaussian
measures, then our statement looks as follows: almost every infinite-dimensional Weyl chamber consists of a single ray.
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functions), its average over the conditional measure on an element C of the partition ηn approaches f
for large n. This, in turn, is equivalent to the fact that the projection of the conditional measure on the
element C to the finite-dimensional simplex whose cylinder hull contains C is close to the δ-measure
at the barycenter of this simplex. But this is true by the equidistribution of almost all trajectories
and their fragments. Indeed, the equidistribution implies that the projections of long fragments of the
sequence concentrate near the barycenter, since the interval between the coordinates should be filled
uniformly. These considerations suffice to recover this proof of the theorem.

In contrast to the proof given above, the last argument does not use specific features of the partition
into Weyl simplices; it is universal, since everything reduces to equidistribution or, more generally,
to a law of large numbers. Elsewhere, we will apply the same argument to obtain a new proof of
the Romik–Sniady theorem [5, 6] (which, in our terms, is a theorem on the distinguishability of the
encoding via Q-tableaux in the RSK correspondence).

3.4 Transfer for the tree of i-permutations and the triangular compactum

Now we must write the image of the shift S under the isomorphism J in terms of sequences {tn}n ∈M,
i.e., find the corresponding transformation of the triangular compactum M:

Λ = JSJ−1 : M→M.

This is exactly the transfer of the triangular compactum regarded as the path space of the graph W .
To find it, we will use the formula we have obtained for the translation.

Denote xn = {xi}ni=1, and let dn(xn) be the number of coordinates in xn that are less than x1.
Clearly, each dn+1 is equal either to dn + 1 (if xn+1 < x1), or to dn (if xn+1 > x1). It is convenient to
use the following terminology.

For each finite fragment of a path t = {tn} in the image (i.e., in the compactum M), we define
marked positions by induction as follows. The first position t1 = 1 is marked by definition. As-
sume that the number of marked positions among the first n coordinates is equal to dn(t); then the
position tn+1 is marked if and only if tn+1 ≤ dn, i.e., tn+1 does not exceed the number of previously
marked positions.

Theorem 2. The formula for Λ = JSJ−1 is as follows: Λ({tn}) = {t′n} where

t′n =

{
tn+1 if tn+1 is marked,

tn+1 − 1 if tn+1 is not marked.

In other words, the nth coordinate t′n of the image either coincides with the (n+1)th coordinate tn+1

of the preimage, or is less by one, depending on whether the number of coordinates less than the first
one increases by 1 when we add the (n+ 1)th coordinate in the preimage.

In short, the transfer sends a virtual permutation to a new virtual permutation in which the
nth position is occupied either by the number that occupied the (n + 1)th position in the original
permutation, or by this number decreased by 1, depending on its value.
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Besides, the following relations hold:

tn+1 − t′n = 1− (dn+1(t)− dn(t)).

The proof immediately follows from the previous formulas and considerations.
Let us turn to the inversion formula. The formulas for dn directly imply the following theorem.

Theorem 3. For almost all trajectories {xn}n ∈ I∞ with respect to the measure m∞,

lim
n

dn
n

= x1.

In the same way we can find the other coordinates xn, n > 1. This and other similar formulas can
be regarded as inversion formulas for the isomorphism J .

Thus, we have completely described an isomorphism J between the triples

(I∞,m∞, S) and (S, µ,Λ).

The action of the operator Λ on the space of virtual permutations with the Haar measure (which is
isomorphic to a Bernoulli action) is of interest. One can prove the Bernoulli property for this operator
directly (i.e., without using the isomorphism J), and also present a Bernoulli generator, which is
“expelled to infinity,” as shown by the formula from Theorem 3. Here we see a remote analogy with
the boson-fermion correspondence in a combinatorial version. The operator Λ is exactly the transfer
defined in the previous section.

The map J also establishes an above-mentioned isomorphism between the sequence of parti-
tions {ηn}n of the space I∞ and the sequence of partitions {τn}n of the space S.

Let us summarize our considerations.

Theorem 4. The one-sided Bernoulli shift S on the space (I∞,m∞) is metrically isomorphic to the
transfer Λ defined on the triangular compactum (the compactum of virtual permutations) with the
Haar measure. An isomorphism J is established by the encoding of the cube with the system of Weyl
simplices, which form an exhausting increasing sequence of finite partitions.

Another model of the triangular compactum is the path space of the infinite homogeneous tree of
permutations with the transfer and the uniform central measure.

A nontrivial property of the isomorphism J is that it reverses the direction of time: the first
coordinate (as well as other cylinder functions on the cube) is mapped by this isomorphism to an
infinitely remote limiting function on the triangular compactum, which is not a cylinder function;
though some cylinder functions remain cylinder functions, but their order increases. The continuity
of the original system “escapes” to infinity.

4 Comments and remarks

Several comments are in order related to the above example.
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4.1 More on the distinguishability problem

Using the combinatorial encoding, we have obtained an example of a realization of a Bernoulli en-
domorphism as a shift in the path space of a graph or, in other words, as a shift in the space of
a nonstationary chain. This realization is a special case of the notion of transfer.

Another special, but much more complicated case of transfer is the Schützenberger transformation.
It arises when one considers a covering by a Bernoulli scheme of the space of infinite standard Young
tableaux with the Plancherel measure, which was (in the general case of ergodic central measures)
suggested in [3]. A deep analysis and a proof of the fact that this covering is an isomorphism (rather
than only a homomorphism) between the Bernoulli shift and the Schützenberger transformation, i.e.,
in our terms, a proof of distinguishability, was recently given by D. Romik and P. Sniady [5, 6]. Their
analysis is based on the study of the Schützenberger transformation from the viewpoint of what I have
called the nerve of a tableau using limit shape techniques, which allow one to obtain a complicated
inversion formula. We will consider the distinguishability problem in the general setting, in particular,
for the RSK correspondence, in another paper.

4.2 The list of isomorphisms

Let us enumerate isomorphic spaces with an invariant measure and a transfer:

• the path space of the factorial tree;

• the path space of the graph W ;

• the triangular compactum with the Lebesgue measure;

• the space (I∞,m∞) with the Bernoulli endomorphism.

This list can be extended by other graphs and their path spaces. For instance, by the Young graph
and its path space (i.e., the space of infinite standard Young tableaux) with the Plancherel measure.

4.3 The relation to matrix distributions

Consider the space M symm
N (±1) of all infinite symmetric matrices with zeros on the principal diagonal,

and the product measure σ on it such that all coordinates εi,j , i > j, are independent and have the
distribution (1/2, 1/2).

Theorem 5. Let a map T : I∞ →M symm
N (±1) be defined by the formula

εi,j =

{
+1 if xi > xj ,

−1 if xi < xj .

It is a metric isomorphism between the above spaces endowed with the measures m∞ and σ, respectively.
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The fact that T is an isomorphism of measure spaces follows from the lemma proved above saying
that the limit of the partitions ηn coincides mod 0 with the partition into singletons: limn ηn = ε.

For completeness, observe that the measure σ on the space of matrices is the matrix distribution (in
the sense of [8]) of the following measurable function on the unit square endowed with the Lebesgue
measure: φ(x, y) = sgn(x− y). It is invariant under the simultaneous action of the infinite symmetric
group on the rows and columns of matrices.

In fact, above we have established a not quite obvious isomorphism between the space of such
matrices endowed with the measure σ and the space of virtual permutations S endowed with the
Lebesgue measure µ. The measure σ has interesting properties, it has also appeared in other contexts
(universality), see [1].

4.4 Other compactifications of symmetric groups

The notion of translation of i-permutations suggests the idea of considering the projective limit of
the symmetric groups with respect to this operation. We will assume that it applies to permutations
rather than i-permutations, i.e., under the identification of i-permutations with permutations, maps
Sn onto Sn−1. This map resembles the operation of taking the derivative permutation, but is more
complicated. Namely, we remove the first element (the image of 1), and then decrease the coordinates
that are greater than the removed one by 1, leaving the other coordinates unchanged. The projective
limit of the symmetric groups Sn with respect to these operations should be regarded as a completion
of the infinite symmetric group.

It seems that apart from this operation and that of taking the derivative permutation (see [2]),
there is a whole series of reasonable operations and the corresponding projective limits. For example,
one can delete 1 in the same way as n is deleted when taking the derivative permutation; this also
results in an interesting object, a new extension of the infinite symmetric group different from the
space of virtual permutations. Here is a more detailed description of the map that deletes 1 from
a permutation and decreases all numbers by 1:

Sn 3 g =
1 2 3 ... r ... n
r1 r2 r3 ... 1 ... rn

→ Tg =
1 2 ... r − 1 ... n− 1

r2 − 1 r3 − 1 ... r1 − 1 ... rn − 1
∈ Sn−1.

Obviously, this map is defined as a map (but not a homomorphism) from the group S∞ to itself
such that every element has countably many preimages. It seems that this “nonhomomorphism” of
the group S∞ to itself has every right to exist.

4.5 Relation to C∗-algebras

From the viewpoint of the general theory, the example considered above corresponds to the Glimm
C∗-algebra

⊗∞
n=1Mn(C). Indeed, the spectrum of a finite-dimensional diagonal subalgebra of this

graded algebra is exactly a finite fragment of the triangular compactum, and the whole compactum is
the spectrum of the Gelfand–Tsetlin algebra for this C∗-algebra. The unique central measure on the
triangular compactum is the Haar measure.

17



4.6 Representations of the infinite symmetric group

The established isomorphism between the space of virtual permutations and the infinite-dimensional
cube allows one to obtain new models of representations of the infinite symmetric group. It is more
important that the result obtained above establishes an asymptotic isomorphism between the l2-space
l2(S∞) of the infinite symmetric group S∞ and a space of L2-functions on the Cartan subalgebra of
a Lie algebra of type An.

For every n, we define an embedding of the space l2(Sn) into the space of L2-functions on the
distinguished Cartan subalgebra Hn of the Lie group GLn(R) with respect to the Lebesgue measure
on the unit cube In ⊂ Hn in the chosen coordinates.5

An embedding %n : l2(Sn)→ L2
m(Xn) is defined by the formula

%n(δw) = 1∆w ,

where δw ∈ C(Sn) ⊂ l2(Sn) is the δ-function at an element w ∈ Sn and 1∆w is the characteristic
function of the Weyl simplex ∆w. This correspondence can be extended by linearity to the whole
group algebra of Sn, and we obtain a map from this algebra to the space of functions on the Cartan
subalgebra, which will be denoted by the same symbol %n.

Proposition 3. The embedding %n is an isometry with respect to the norms of the spaces l2(Sn)
and L2

m(Xn).

Note that for every n the image of the space l2(Sn) under the isometry %n is a proper finite-
dimensional subspace in L2

m(Xn).
It is natural that the l2-space on the Weyl group can be embedded into the space of functions on

the Cartan algebra, but it is by no means obvious that in the limit the image coincides with the whole
space.

It turns out that this is true by the positive answer to the distinguishability problem: in the
limit we obtain an isometry. In more detail, we assume that l2(Sn) is, in a natural sense, a subspace
in l2(S∞), and the spaces of L2-functions on the Cartan subalgebras also constitute an inductive
family, since we have embeddings of groups. Hence we can consider the limit of the isometries %n.

Corollary 1. The limit of the isometries %n : l2(Sn)→ L2
m(In) exists and is an isometry between the

spaces l2(S∞) and L2(I∞). It follows that the regular representation of the group S∞ can be realized,
in a natural way, in the L2-space over a Bernoulli scheme as the limit of actions of finite Weyl groups
on Cartan subalgebras.

This realization and its generalizations should be studied further. As we have already mentioned,
such a realization of a Bernoulli endomorphism exists for a whole series of graphs, and each of them
corresponds to a realization of the representation of the infinite symmetric group which in [10] was
called the basic representation.

5We can just as well consider the L2-space with respect to the standard Gaussian measure on Hn corresponding to
the Killing form.

18



4.7 An analog of the partition into Weyl simplices for an arbitrary Bernoulli
scheme

We conclude this section by showing that the method of encoding via Weyl simplices can be used to
encode an arbitrary sequence of independent variables, and the linear order on the interval can be
replaced by an arbitrary measurable ordering on a set of full measure.

Consider an arbitrary Lebesgue space (I,m) and divide its square I × I into a measurable set A
and its complement Ā satisfying the following condition: for every pair of points u, v ∈ I there exists
a set Xu,v ⊂ I × I of positive measure such that for every w ∈ X one of the pairs (w, u), (w, v) lies
in A and the other one lies in Ā.

Theorem 6. Consider a Bernoulli scheme with the state space (I,m) and assume that we have chosen
a set A ⊂ I×I of measure 1/2 satisfying the condition stated above. Construct an increasing invariant
sequence of finite measurable partitions {ηn} as follows: an element C of the partition ηn is a cylinder
with base In consisting of all collections (x1, x2, . . . , xn), xi ∈ I, for which every pair (xi, xj) ∈ I × I
for i, j = 1, 2, . . . , n lies in a fixed one of the sets A or Ā. Then

1. The sequence {ηn} has the same frame as the sequence of Weyl simplices and is metrically
isomorphic to it. In particular,

2. The distinguishability problem for this sequence of partitions {ηn} has a positive answer.

The proof is exactly the same as for Weyl simplices. Thus, from the metric point of view, the
linear order on the interval has no specific features.

4.8 Distinguishability of random matrices

The statement of the distinguishability problem and its analysis suggested above can be used in a large
number of problems similar to those considered in the paper. Let us give an example from the theory
of random Gaussian matrices (GOE). Consider the space MN(R) of all infinite symmetric real matri-
ces endowed with the standard Gaussian measure µ. Here we consider the measure space (MN(R), µ)
instead of (I∞,m∞). Define a (no longer increasing) sequence of (no longer finite) measurable parti-
tions {ηn}n of this space: an element of ηn is the set of all matrices for which the n×n principal minors
have the same spectrum. The parameter of C is an n-vector λn(C) of eigenvalues of the corresponding
submatrix.

We obtain the distinguishability problem for the sequence {ηn}n: does there exist a set of matrices
of full measure µ that can be uniquely recovered from the collection of parameters {λn(C)}C,n? Cf.
Lemma 1 on the distinguishability of points {ξn} ∈ I∞ by the collection of pairwise inequalities.

5 Graded graphs, transfer, and quasi-stationary processes

5.1 Why not only trees

The combinatorial encoding of a sequence of random variables involves the study of increasing invariant
sequences of finite partitions, and the combinatorial counterpart of the problem reduces to the study of
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trees with a transfer. However, in some natural settings of the distinguishability problem, the original
object is not necessarily an increasing sequence of partitions.

Assume that we have a sequence of finite partitions ζn of a Lebesgue space (X,m). If we regard
the set of all elements of all partitions as the set of vertices of a graph to be constructed, and assume
that an element C of ζn does not necessarily lie in one element of ζn−1, but may intersect several
elements D of this partition, then we obtain a graph with edges connecting elements of neighboring
partitions (i.e., vertices of neighboring levels) C and D if and only if the measure of their intersection
is positive. Thus, we obtain a graded graph in which for each vertex there is a probability vector
on the set of edges entering this vertex (i.e., an equipped graph in the terminology of [9]). The tree
defined in Section 2 as the frame of an increasing sequence is a special case of this construction.

If we pass from the partitions ζn to their products
∨n

k=1 ζk = ηn, then we obtain an increasing
sequence of partitions {ηn}n, which reduces the problem to the case of a tree considered above;
moreover, in terms of the graph constructed above, this tree is nothing else than the tree of finite
paths in the original graph leading from the initial vertex to all the other vertices, and the graph itself
is a natural quotient of this tree.

However, this reduction does not at all mean that there is no benefit from considering the graph
itself, which can be illustrated by the example of encoding a sequence of independent variables by
the Young graph and the RSK correspondence, as in [3, 6, 5]. In other words, the distinguishability
problem can be analyzed in terms of the graph itself without passing to the tree of paths.

5.2 Definition of transfer for a graded graph

Let us sketch the main idea of applying the theory of graded graphs to ergodic problems of the type
under consideration. The key role here is played by the notion of transfer in the path space of a graded
graph which we introduce below.

Consider an arbitrary Bratteli diagram, i.e., an N-graded locally finite graph (or even a multi-
graph) Γ. An infinite tree is an example of such a graph. A path in Γ is an infinite maximal sequence
of edges in which the beginning of each edge coincides with the end of the previous edge. Denote the
space of all paths by T (Γ); this is a Cantor-like compactum in the inverse limit topology. A transfor-
mation

Λ : T (Γ)→ T (Γ)

is called a transfer if it is continuous, decreases the level of each edge by 1, and satisfies the following
locality (Markov) property: for every n, the rule according to which an edge between levels n + 1
and n+2 in a path is mapped to an edge between levels n and n+1 in the image of this path depends
only on the fragment of the path between levels n and n+2. This means that a transfer is determined
by a set of local rules for the translation of an edge to the previous level.

For stationary graphs, in which the sets of vertices of all levels (except the first one) are isomor-
phic and these isomorphisms are fixed, the translation rule depends on nothing: an edge connecting
vertices a and b of levels n+ 1 and n+ 2 goes to the edge connecting the vertices a′ and b′ of levels n
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and n + 1 identified with the vertices a and b, respectively. In this case, the transfer is an ordinary
shift.

For trees regarded as graded graphs, the definition of transfer coincides with that from Section 2.3.

Definition 2. A graded graph is said to be quasi-stationary if a “transfer” operation, corresponding to
some translation of edges in the sense described above, is defined on its path space. The path space of
a quasi-stationary graph, regarded as a topological Markov compactum, will be called a quasi-stationary
Markov compactum.

Thus, we have described a new type of realizations of automorphisms and endomorphisms with
infinite entropy as transfers on quasi-stationary Markov compacta.

According to our definition, a transfer is a shift of sequences of edges, and not of sequences
of vertices as in the stationary case. Thus, this notion opens new possibilities for realizations of
transformations.

A transfer defines an additional structure on the graph and, in general, is not uniquely determined
by the graph itself, though in some cases there exists a distinguished transfer. For example, in the
important special case of graphs in which every 2-interval contains either one or two intermediate
vertices (this is the case for Hasse diagrams of arbitrary distributive lattices, in particular, for the
Young graph and other examples), a translation of edges between adjacent vertices is determined in
a natural way by the very structure of the graph, see Fig. 2.

Proposition 4. For the Young graph, a transfer on the path space (i.e., on the space of infinite
standard Young tableaux) is defined automatically in the sense described above, since the Young graph
is the Hasse diagram of the distributive lattice of finite ideals of the lattice Z2. In this case, it coincides
with the well-known Schützenberger transformation, which is a special case of transfer.

The proof follows from a detailed analysis of the definition of transfer. (For the Schützenberger
transformation, see [7, 3, 6, 5].)

If a transfer is defined on the path space of a graded graph, then this space should be regarded as
a nonstationary (or quasi-stationary) Markov chain, meaning that the transfer is an analog of the shift.
If we have a central measure on the path space that is invariant under the transfer, then we obtain
a quasi-stationary Markov chain with an invariant measure. Hence the theory of transfer becomes
part of ergodic theory, as a nonconventional realization of measure-preserving transformations. A more
detailed exposition of the theory of transfer will be presented elsewhere.

The author is grateful to P. P. Nikitin for preparing the figures, P. B. Zatitskii for reviewing the
literature and G.M.Zukerman for creative attitude to the text.

Translated by N.V.Tsilevich.
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