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1. INTRODUCTION

The problem studied in this paper can be briefly
formulated as follows: what class of representations of
countable groups is a natural extension of the class of
representations with finite traces, i.e., representations
determined by finite characters? Recall that a charac�
ter of a group G is a positive definite central (i.e., such
that χ(gh) = χ(hg) for all g, h ∈ G) function on e ∈ G
whose value at the group identity is equal to one.
According to the GNS construction, an indecompos�
able character (which cannot be written as a nontrivial
convex combination of other characters) determines a
factor representation of finite type In, n < ∞, or II1.
Conversely, a factor representation of finite type
uniquely determines a character. For many (though
not all) countable groups, the set of all factor represen�
tations of type II1 has the structure of a standard Borel
space. At the same time, for countable groups that
have no Abelian subgroup of finite index, the set of
classes of pairwise nonequivalent irreducible represen�
tations is not tame. In particular, it has no standard
Borel structure. Hence for these groups, there is no
reasonable classification of irreducible representa�
tions. Moreover, there exist representations that have
several different decompositions into irreducible com�
ponents. Such groups are usually called wild. The infi�
nite symmetric group ��, which consists of all finite
permutations of the set of integers �, is a typical
example of a wild group. However, its factor represen�
tations of type II1 are completely classified in [1, 2, 6]
and are used for constructing harmonic analysis. A
similar situation holds for the infinite�dimensional
unitary group �(∞). At the same time, important

classes of countable groups, in particular, the infinite
general linear group over a finite field GL(∞, �q), have
too few finite characters for constructing a nontrivial
harmonic analysis. For instance, the characters of
GL(∞, �q) do not separate points. These consider�
ations lead to the need for an extension of the class of
representations of finite type, i.e., for a generalization
of the notion of a character.

But the class of all representations of type II∞ is too
wide: e.g., for the infinite symmetric group ��, it is as
wild (and in the same sense) as the set of classes of irre�
ducible representations. Therefore, a putative exten�
sion must include some reasonable restrictions on rep�
resentations of type II∞. An attempt to construct such
an extension was made in [2], where a class of repre�
sentations determined by semifinite traces on the
group algebra was introduced. But this class turned out
to be too narrow, it does not even cover all representa�
tions of �� of type II∞ associated with admissible rep�
resentations of �� × ��.

In this paper, we introduce the class of stable repre�
sentations, which is a natural extension of the class of
representations of finite type. It turns out that stable
representations of �� are of type I or II. We also give
a complete classification of stable factor representa�
tions up to quasiequivalence. At the same time, we
obtain an answer to the question posed by the first
author [3] in connection with Olshanski’s [4] theory of
admissible representations of the group �� × ��, that
of identifying the components of an admissible repre�
sentation. Namely, we prove that the set of stable fac�
tor representation coincides with the class of represen�
tations that can be obtained as the restrictions of
admissible irreducible representations of �� × �� to
the left and right components (�� × e and e × ��,
respectively).

2. BASIC NOTIONS

We introduce a new notion of stability for a positive
definite function on a group and the corresponding
representation. Typical groups for which this notion is
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meaningful and amenable to study are inductive limits
of compact groups.

2.1. Topology on Groups of Automorphisms 
of a Group

Let G be a countable group and C*(G) be its group
C*�algebra. We identify G with its natural image in
C*(G), and positive functionals on C*(G) with the cor�
responding positive definite functions on G. A positive
functional is called a state if it is equal to one at the
group identity. Let AutG be the group of all automor�
phisms of G. An element g ∈ G determines an inner
automorphism Adg ∈ AutG: Ad g(x) = gxg–1, x ∈ G.
The group IntG of inner automorphisms is a normal
subgroup in AutG.

We endow AutG with the strong topology, in which
a base of neighborhoods of the identity automorphism
consists of the sets

(1)

Now we introduce the strong topology on AutG for an
arbitrary locally compact group. Let AutC*(G) be the
group of all automorphisms of the algebra C*(G). We
identify AutG and IntG with the corresponding sub�
groups in AutC*(G). A base of the strong topology on
AutC*(G) is determined by the neighborhoods �a, �,
� > 0 of the identity automorphism, where

(2)

Then AutG is a closed subgroup in AutC*(G). Denote

by  the completion of IntG.

Let G = limGi be the inductive limit of a sequence
of locally compact groups {Gi}i ∈ �, where Gi is a closed
subgroup in Gi + 1 for all i. A base of the strong topology
on AutG is determined by the neighborhoods Un, a, �,
a ∈ C*(Gn), where

(3)

1. Our basic example is as follows. Let � be the set
of positive integers. A bijection s : � → � is called
finite if the set {i ∈ �| s(i) ≠ i} is finite. We define ��

as the group of all finite bijections � → � and set �n =
{s ∈ ��| s(i) = i for all i > n}. Denote by ��\n the sub�
group in �� consisting of the elements leaving the
numbers 1, 2, …, n fixed (n < ∞).

If  is the group of all bijections of �, then

�� ⊂ , and for every s ∈ , the map �� � x �
sxs–1 ∈ �� is an automorphism Ads of ��, which can
be naturally extended to an automorphism of the
group C*�algebra C*(��) of ��. One can easily

check that Ad  coincides with Aut�� and is the
closure of Int�� in each of the topologies (1), (2), and

�g θ AutG: θ g( ) g=∈{ }, g G.∈=

�a �, θ AutC* G( ): θ a( ) a– �<∈{ },=

a C* G( ).∈

IntG

�n a �, , θ IntG: θ Gn( )∈{ Gn,= =

θ a( ) a– C* Gn( ) � }.<

��

�� ��

��

(3), which are equivalent. In particular, �� is a dense

normal subgroup in .
2. Consider the infinite�dimensional unitary group

U(∞), which is the inductive limit U(∞) = limU(n) of
the finite�dimensional unitary groups with respect to

the natural embeddings. If Ad ∈ �n, a, �,  ∈ U(∞),
then g = g(n) · g∞(n), where g(n) ∈ U(n) and g∞(n) · u =
u · g∞(n) for all u ∈ U(n). It is not difficult to show that

g(n) – zIn|| → 0 as � → 0 and IntU(∞) ≠

(∞).

2.2. Characters and Representations of 

Let G be a countable group, and let Π be the bireg�
ular representation2 of the group G × G. Then it follows

from (2) that the map IntG � Adg  Π((g, g)) ∈ �(l2)

can be extended by continuity to . This continu�
ity is preserved if we replace the biregular representa�
tion of G by a representation corresponding to a char�
acter.

On the other hand, in the next section we will
describe a construction of a unique, up to unitary
equivalence, representation of G × G, which plays the
role of the biregular representation, for an arbitrary
positive definite function on G. But the corresponding
representation of IntG is, in general, no longer contin�
uous. Hence it cannot be extended by continuity to

. However, there is a class of states on G, contain�
ing finite characters, for which this continuity persists.
This is exactly the class of stable states.

2.3. The Canonical Construction of Representations
of G × G and IntG

Let π be the representation of a group G corre�
sponding to a state ϕ and M be the w*�algebra gener�
ated by the operators from π(G). Let M ' be the com�

mutant of M,  be the set of weakly continuous pos�

itive functionals on M,  ∈  be a faithful state, and
θ be the representation of M corresponding to  in a

Hilbert space  with a bicyclic vector . Since  is

faithful, the map M  θ(M) =  is an isomorphism
(see [5]).

Denote by  the antilinear isometry from the polar

decomposition of the closure of the map  � m  

m*  ∈ m ∈ . Set  =  ° π. Since  =

, the map 

2 Given by the formula Π(g, h)η = η(g–1xh), η ∈ l2(G).

��

g

||
z �: z 1=∈

min

IntU

IntG

��

IntG

IntG

M*
+

ϕ̃ M*
+

ϕ̃

H̃ ξ̃ ϕ̃

�θ M̃

�̃

M̃ξ̃ ξ̃ �S̃

ξ̃ M̃ξ̃ M̃ π̃ θ̃ �̃M̃�̃
1–

M '˜
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is a representation.

Since m  = m* for all m from the center of the

algebra  (see [5]), a representation �π of the group
IntG is well defined by analogy with Section 2.2:

IntG � Adg  ((g, g)).

2.4. Stable States and Representations; 
Admissible Representations

Let G be a locally compact group, � = C*(G), and
�* be the dual space to �. Given a state ϕ ∈ �*,

denote by oϕ the map IntG � θ  ϕ ° θ ∈ �*.

Definition 1. A state ϕ is called stable if the map oϕ is
continuous in the strong topology on IntG (see (2)) and
in the norm topology of the dual space on �*.

Remark 1. For every ψ ∈ �*, the map oψ is contin�
uous in the weak topology of the dual space on �*.

The representation of G corresponding to a stable
state will also be called stable. 

To define a stable positive definite function on an
inductive limit G =  of locally compact groups,

consider the cone  of positive definite functions on
G with the topology defined by the metric ρ(ψ, ϕ) =

, ϕ, ψ ∈ , where ||·||n stands for the

norm of the dual space C*(Gn)*.
Definition 2. A positive definite function ϕ on G is

called stable if the map Int G � θ  ϕ ° θ ∈  is
continuous in the topology on Int G defined accord�
ing to (3).

Remark 2. If G is a free group, then the topology (1)
on AutG is discrete. Hence all positive definite func�
tions on G are stable.

Now we introduce the notion of an admissible rep�
resentation of G × G, which extends the corresponding
notion from [4] to the case of an arbitrary group.

Definition 3. Let G be a locally compact group or an
inductive limit of locally compact groups. A unitary
representation Π of the group G × G in a Hilbert space
H is called admissible if the map IntG � Adg �
Π((g, g)) ∈ �(H) is continuous in the strong topology
on IntG (see (2), (3)) and in the strong operator topol�
ogy on �(H).

Theorem 1. If the representation  from Section 2.3

corresponds to a stable representation π of G, then  is
an admissible representation of the group G × G. The

restriction of  to �� × e is quasi�equivalent to π, the

center � of the algebra (�� × ��)'' coincides with

the center of , and the components of the decomposi�

G G � g h,( ) � Π̃ g h,( )( )× π̃ g( )�̃π̃ h( )�̃
1–

=

�̃ �̃
1–

M̃

�
�

π Π̃

�
o
ϕ

Gn
n

lim

CG
+

ψ ϕ– n
n

sup CG
+

�
o
ϕ

CG
+

Π̃

Π̃

Π̃

Π̃

M̃

tion of  with respect to � are irreducible representa�
tions.

3. STABLE REPRESENTATIONS 
OF THE GROUP �� AND THEIR 

CLASSIFICATION

In this section, we formulate results on the classifi�
cation of stable representations of �� up to quasi�
equivalence.

With a stable factor representation π of the group
�� we associate an invariant χπa, called an asymptotic
character. Let M = π(��)''.

Proposition 1. Let π be a stable factor representation
of ��. For every g ∈ �� there exists a sequence

 ⊂ �� such that g( )–1 ∈ ��\n and

( )–1 ∈ ��\n. If ψ ∈ , then the limit

exists and does not depend on ψ and . The

function χπa is an indecomposable character of ��

(see [4]). If  is quasi�equivalent to π, then χπa = .

Theorem 2. Fix a representation π of ��, and let

(n) = {φ ∈ : φ(π(s)x) = φ(xπ(s)) for all ∀x ∈ M,
s ∈ ��\n}. The following conditions are equivalent:

(i) the representation π is stable;

(ii) the union (n) is dense in the norm topology

of the dual space on .

We define the central depth cd(π) of a representa�

tion π as min{n: (n) ≠ 0}. Clearly, cd(π) is a quasi�
equivalence invariant.

Theorem 3. Let π be a stable factor representation,

n = cd(π), and ψ ∈ (n). If E is the support3 of ψ,
then E ∈ π(�n��\n)' and Eπ(s)E = 0 for all s ∉ �n��\n.
In particular, the representation πE of the group �n��\n

determined by the operators Eπ(s)E has the form Tλ ⊗
παβ, where λ � n is a Young diagram, Tλ is the corre�
sponding irreducible representation of �n, and παβ is the
representation of ��\n corresponding to a Thoma char�
acter χαβ. Hence π is quasi�equivalent to the representa�

tion  = Tλ ⊗ παβ.

The next result describes the dependence of cd(π)
on the Thoma parameters α, β of the asymptotic char�
acter χπa.

3 That is, E is the smallest projection from π(��)'' such that ψ(I –
E) = 0.

Π̃

σn
g{ }n �∈ σn

g σn
g

σn 1+
g σn

g M*
+

ψ π σn
g g σn

g( )
1–

( )( )
n ∞→
lim ψ I( ) 1–⋅ χπa g( )=

σn
g{ }n �∈

π̃ χπ̃a

M*
+ M*

+

M*
+

n
∪

M*
+

M*
+

M*
+

Παβ

λ
Ind�n��\n

��
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Theorem 4. Let n ≥ 1, and let λ, Tλ, παβ be as in

Theorem 3. Then  is a f.r. of type II∞ if  +

 = 1, and a f.r. of type II1 if  +  < 1.

Theorem 5. Let  +  = 1. The representa�

tions  and  are quasi�equivalent if and only if

αi = , βi = , and λ = .

Now we describe a bijection between the set of
quasi�equivalence classes of stable factor representa�
tions and the set “partially central” states on ��.

Theorem 6. Let π be a stable factor representation of
�� and n = cd(π). If a state f on �� determines a rep�
resentation quasi�equivalent to π and satisfies the condi�
tion f(tst–1) = f(s) for all s ∈ �� and t ∈ �n��\n, then

where λ � n is a diagram, χλ is the normalized character
of the corresponding irreducible representation of �n,

and α, β are the Thoma parameters of the asymptotic
character χπa (see Proposition 1).
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