
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ ZAITSEV, 2015 Ç.S. Albeverio, B. K. Driver, M. Gordina, A. M. VershikEQUIVALENCE OF THE BROWNIAN AND ENERGYREPRESENTATIONSAbstrat. We onsider two unitary representations of the in�nite-dimensional groups of smooth paths with values in a ompat Liegroup. The �rst representation is indued by quasi-invariane of theWiener measure, and the seond representation is the energy rep-resentation. We de�ne these representations and their basi prop-erties, and then we prove that these representations are unitarilyequivalent.
§1. IntrodutionThe main subjet of this paper is a study of two unitary representa-tions of the group H (G) of smooth paths in a ompat Lie group G. The�rst representation is on the Hilbert spae L2 (W (G) ; �), where W (G)is the Wiener spae of ontinuous path in G and � is the orrespondingWiener measure. This representation is indued by the quasi-invariane ofthe Wiener measure � with respet to the left (right) multipliation onW (G) by elements in H (G). The neessary preliminaries from stohastianalysis are introdued in Setion 2. We de�ne the orresponding Brow-nian representations in Setion 4. One of the questions mentioned in theprevious works suh as [1℄ is whether the onstant funtion 1 is the ylivetor for these representations. This is what we prove in Setion 3.Another representation of the the group H (G) is the energy represen-tation. The representation spae in this ase is L2 (W (g) ; �), where g isthe Lie algebra of G, and � is the standard Gaussian measure on W (g).Our main result in Setion 5 is the (unitary) equivalene of the Brownianand energy representations.Key words and phrases: quasi-invariane; stohasti di�erential equations; Liegroups; representations of in�nite-dimensional groups.Researh was supported in part by CIB, EPFL and HCM, University of Bonn.This researh was supported in part by NSF Grant DMS-0739164.Researh was supported in part by NSF Grant DMS-1007496.Researh was supported in part by RFFR Grant 14-01-00373.1



2 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIKThese representations have been studied previously in a number of arti-les inluding [1{4,9,11,12,27,28℄. We will not attempt to give a ompre-hensive review of the mathematial literature on the subjet, but ratherexplain the hoie of this partiular topi for this volume.Aknowledgment. Even though M.I. had no publiations in this �eld,the ombination of representation theory, stohasti analysis and von Neu-mann algebras appealed to him. Moreover, he introdued MG to the lattersubjet whih resulted in [13℄.
§2. NotationLet G be a ompat onneted Lie group, e ∈ G denote the identityof G; g be its Lie algebra, and d = dimR g be the dimension of G and g.Without loss of generality we may and do assume that G is a Lie subgroupof GLn(R). By identifying G with a matrix group, we are able to minimizethe di�erential geometri notation required of the reader. We assume thatthe Lie algebra g of G is identi�ed with the tangent spae at e, and g isequipped with an AdG-invariant inner produt 〈·; ·〉, whih we ould taketo be the negative of the Killing form if g is semi-simple. Assoiated to theAdG-invariant inner produt is the Laplae operator desribed below.2.1. Heat kernels. This setion reviews some basi fats about heat ker-nels on unimodular Lie groups. Let dx denote a bi-invariant Haar measureon G whih is unique up to normalization. For A ∈ g, let Ã(Â) denotethe unique left (right) invariant vetor �eld on G whih agrees with A ate ∈ G. Let g0 ⊂ g be an orthonormal basis for g. The left and right invari-ant Laplaian is then given � := ∑A∈g0 Ã2 and �′ := ∑A∈g0 Â2 respetively.Sine G is unimodular, it is easy to hek the formal adjoint, relative toL2 (G; dx), of Ã (Â) is −Ã (−Â). Hene, �=2 and �′=2 are symmetrioperators on the smooth funtions with ompat support on G. It is wellknown, see for example Robinson [22, Theorem 2.1, p. 152℄, that �=2 and�′=2 are essentially self-adjoint and the losures of �=2 and �′=2 generatestrongly ontinuous, self-adjoint ontration semigroups et�=2 and et�′=2on L2 (G; dx). Let pt = et�=2Æe, t > 0, be the fundamental solution, i.e.,�pt=�t = 12�pt with limt→0 pt = Æe: (2.1)For a proof of the following theorem see Robinson [22, Theorem 2.1, p.257℄.



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 3Theorem 2.1. Assuming the above notation, let pt denote the funda-mental solution to the left heat equation (2.1). Then pt(x) = pt(x−1) forall x ∈ G andet�=2f(x) = ∫G pt(x−1h)f(h)dh = ∫G pt(h−1x)f(h)dh:Example 2.2. In the ase we take G to be g thought of as a Lie groupwith its additive struture, we reover the standard onvolution heat kernelrelative to the Lebesgue measure given bypt (x) = ( 12�t)d=2 exp(− 12t |x|2g) :2.2. Wiener Measures. The reader is referred to [24, p. 502℄, [20, The-orem 1.4℄, [6, 7℄ and perhaps also in [8℄ for more details on the summarypresented here.Notation 2.3. Suppose 0 < T < ∞. Let us introdue the Wiener andCameron-Martin (�nite energy) spaes, and the orresponding probabilitymeasures.(1) Wiener spae will refer to the ontinuous path spaeW (G) =W ([0; T ℄; G) = { ∈ C([0; T ℄; G) : 0 = e};where we equip W (G) with the uniform metrid∞ (�; �) := maxt∈[0;T ℄ d (�t; �t) :Here d is the left invariant metri on G assoiated to the left invari-ant Riemannian metri on G indued from the AdG{invariant in-ner produt 〈 ·; · 〉 on g. [In fat, these metris are bi-invariant, i.e.,both left and right invariant.℄ Let gt : W (G) → G (for 0 6 t 6 T )be the projetion maps de�ned bygt () := t; for all  ∈W (G) :We further make W (G) into a group using pointwise multipliationby (hk)t := htkt for all h; k ∈W (G)) and � :W (G) →W (G) bethe group inversion de�ned by�() = −1 for all  ∈W (G) :



4 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIK(2) Given h ∈W (G), let
‖h‖2H;T =  ∞; if h is not absolutely ontinuous,T∫0 |h(s)−1h′(s)|2ds; if h is absolutely ontinuous:Here | · | is the norm indued by the inner produt 〈 ·; · 〉 on the Liealgebra g.(3) The Cameron{Martin (�nite energy) subgroup, H(G)⊂W(G),is de�ned byH(G) = {h ∈W (G) : ‖h‖H;T <∞} :(4) The orresponding spaes of paths with values in the Lie algebra gand starting at 0 are denoted by W (g), and H (g), and the Wienermeasure on W (g) is denoted by �.Theorem 2.4 (Wiener measures). Let B be the Borel �{algebra onW (G).There is a probability measure � on (W (G);B) uniquely determined byspeifying its �nite dimensional distributions as follows. For all k ∈ N,partitions 0 = s0 < s1 < s2 < : : : < sk−1 < sk = T of [0; T ℄, and for allbounded measurable funtions f : Gk → R�(f(gs1 ; : : : ; gsk)) = ∫Gk f(x1; : : : ; xk) k∏i=1 p�si(x−1i−1xi)dx1 · · · dxk; (2.2)where x0 := e, �si ≡ si − si−1, pt(x) is the onvolution heat kernel de-sribed in Theorem 2.1.The proess, {gt}06t6T , is a G-valued Brownian motion with respet tothe �ltered probability spae (W (G); {Bt};B; �). In more detail, {gt}06t6Tis a di�usion proess on G with generator 12� suh that g0 = e a.s.As usual, this proess has the following martingale property: for all f ∈(C∞(G)) the proessMft := f(gt)− f(g0)− 12 t∫0 �f(g� )d� (2.3)is a loal martingale. In di�erential form this an be written asdf (g) m= 12 (�f) (g) dt; (2.4)where da m= db if a− b is a loal martingale.



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 5Proof. Equation (2.3) is well known from the theory of Markov proesses,see [25℄. Indeed, using the Markovian property of � one omputes for s > t,F a bounded Bt-measurable funtion, and f ∈ C∞ (G)dds�(f(gs)F ) = dds�((e s−t2 �f)(gt)F )= 12�(e s−t2 ��f)(gt)F ) = �(12�f(gs)F ):Integrating the last expression from t to s shows that�([Mft −Mfs ℄F ) = �({f(gt)− f(gs)− t∫s 12�f(g� )d�}F) = 0;whih shows that Mf is a martingale. �Remark 2.5. Note that the martingale property (2.2) an be extendedto vetor-valued funtion. In partiular, this applies to G-valued funtionssine G is assumed to be a matrix-valued Lie group.2.3. Left and right Brownian motions.Theorem 2.6 (Quadrati variations). If u and v are smooth funtions onG thend [u (gt)℄ · d [v (gt)℄ = dMut dMvt= (∇u (gt) · ∇v (gt)) dt = ∑A∈g0 (Ãu) (gt) Ãv (gt) dt:In partiular, dgt ⊗ dgt = gt ⊗ gtCdt;where C := ∑A∈g0A⊗A.Proof. On one hand,d [uv(g)℄ m= 12� (uv) (g) dt = 12 (�uv + u�v + 2∇u · ∇v) (gt) dtwhile on the other by Itô's formula,d [u (g) v (g)℄ =du (g) · v (g) + u (g) · dv (g) + du (g) dv (g)m=12 (�uv + u�v) (gtdt+ dMudMv



6 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIKComparing these two equations showsdMudMv m= (∇u · ∇v) (gt)dtwhih gives the �rst result. More generally, suppose that u and v are vetorvalued, thend [u⊗ v℄ (g) m= 12� (u⊗ v) (g) dt= 12 (�u⊗ v+u⊗�v+2Ãu⊗ Ãv) (gt) dtwhile on the other hand by Itô's formula,d [u (g)⊗ v (g)℄ = d [u (g)℄⊗ v (g) + u (g)⊗ d [v (g)℄ + d [u (g)℄⊗ d [v (g)℄m= 12 (�u⊗ v + u⊗�v) (gt) dt+ dMu ⊗ dMvComparing these two equations showsdMu ⊗ dMv m= ∑A∈g0 (Ãu⊗ Ãv) (gt) dt:By Remark 2.5 we an take u (g) = g and v (g) = g to see thatdgt ⊗ dgt = ∑A∈g0 gA⊗ gAdt (2.5)and dg = dM + 12gCdt, where C = ∑A∈g0A2. �Remark 2.7. Note that C is independent of the hoie of the orthonormalbasis of g as was pointed out in [14, Lemma 3.1℄.De�nition 2.8 (Left and right Brownian motions). The proess {gt}06t6Tis a semi-martingale and therefore we may de�ne two g{valued proessesby BLt := t∫0 g−1� Æg� and BRt := t∫0 Æg�g−1� :We refer to BL (BR) as the left (right) Brownian motion assoiated to
{gt}06t6T . The terminology will be justi�ed by the next theorem.Theorem 2.9. BLt := t∫0 g−1� Æg� and BRt := t∫0 Æg�g−1� are standard g-va-lued Brownian motions with ovarianes determined by 〈 ·; · 〉g.



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 7Proof. Let bt := BLt := t∫0 g−1� Æg� temporarily. Thendb = g−1Æg = g−1dg + 12d [g−1] dg= g−1dM + 12Cdt− 12 dbg−1dg= g−1dM + 12Cdt− 12 dbdbbut dbdb = (g−1dg) (g−1dg) = Cdt from (2.5). This shows db is a martin-gale and thatdb⊗ db = (g−1 ⊗ g−1) dg ⊗ dg= (g−1 ⊗ g−1) ∑A∈g0 gA⊗ gAdt = ∑A∈g0A⊗Adt;and so by L�evy's riterion b is a standard g-valued Brownian motion. Wenow all b = BL. �Theorem 2.10. Let '∈H(G).The proesses {BLt }06t6T and {BRt }06t6Tare g-valued Brownian motions satisfying the following properties(1) dBRt = Adgt dBLt = Adgt ÆBLt ,(2) dBLt = Adg−1t dBRt = Adg−1t ÆBRt ,(3) BLt ('−1g) = BLt −
t∫0 Adg−1 (Æ''−1),(4) BLt (g') = t∫0 Ad'−1 dBL + t∫0 '−1Æ'(5) BRt ('−1g) = −

t∫0 '−1Æ'+ t∫0 Ad'−1 ÆBR(6) BRt (g') = BRt + t∫0 Adg (Æ''−1).Proof. For (1)ÆBRt = Ægtg−1t = gtg−1t Ægtg−1t = Adgt ÆBLt= Adgt dBLt + 12 (d [Adgt ℄) dBLt= Adgt dBLt + 12 Adg addBLdBLt = Adgt dBLt ;



8 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIKwhere we have used the fat that Æg = gÆBL implies ÆAdg = Adg adÆBL ,and addBLdBLt = 0. For (2)dBLt = g−1t Ægt = g−1t [Ægtg−1t ] gt = Adg−1t ÆBRt : (2.6)Sine Æg = ÆBRg implies that Æg−1 = −g−1ÆBR, and therefore ÆAdg−1 =
−Adg−1 adÆBR , and so the Itô form of (2.6) isdBLt = Adg−1t dBRt + 12 (d [Adg−1t ]) dBRt= Adg−1t dBRt − 12 Adg−1 adÆBRdBRt = Adg−1t dBRt :The remaining items, (3{6), follow from simple omputations in Itô's al-ulusBLt ('−1g) = t∫0 ('−1g)−1 Æ ('−1g) = t∫0 g−1' (−'−1Æ''−1g + '−1Æg)= BLt −

t∫0 Adg−1 (Æ''−1) ;BLt (g') = t∫0 (g')−1 Æ (g') = t∫0 '−1g−1 (Æg'+ gÆ')= t∫0 Ad'−1 dBL + t∫0 '−1Æ';BRt ('−1g) = t∫0 Æ ('−1g) ('−1g)−1 = t∫0 (−'−1Æ''−1g + '−1Æg) g−1'= −
t∫0 '−1Æ'+ t∫0 Ad'−1 ÆBR; andBRt (g') = t∫0 Æ (g') (g')−1 = t∫0 (Æg'+ gÆ')'−1g−1



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 9= BRt + t∫0 Adg [Æ''−1] : �Before introduing Itô maps, reall some standard de�nitions.Notation 2.11. Suppose (X;B; �) is a measurable spae with a �-�niteBorel measure �, and R is a measurable bijetion on X. Then the push-forward of � is de�ned by(R∗�) (A) := (� ◦R−1) (A) = � (R−1 (A)) ; A ∈ B:If the pushforward measure R∗� is equivalent to �, we will denote theRadon{Nikodym derivative as usual bydR∗�d� (x) ; x ∈ X:In partiular, for any A ∈ B (X) we have
∫X 1A (x) dR∗� = ∫X 1R−1(A) (x) d� = ∫X 1A (R (x)) d�:Notation 2.12. Let (X;Q1), (Y;Q2) be two measurable spaes, and letI : X → Y be a measurable map. Then for any measurable funtion f :Y → R we denote by (I∗f) (x) := f (I (x))the indued map on the set of measurable funtions on X.Proposition 2.13. The maps BL; BR : (W (G) ; �) → (W (g) ; �) are �-a.e. de�ned maps suh that BL∗ � = � = BR∗ �. In fat, these maps aremeasure-preserving isomorphisms from (W (G) ; �) to (W (g) ; �) with theinverse maps given by solving the SDEsÆw = wÆBL or Æw = ÆBRw with w0 = efor w. Moreover, we have the identitiesBL ◦� = −BR a.e. and BR ◦� = −BL a.e.; (2.7)where the inversion map � is de�ned in Notation 2.3.



10 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIKProof. Sine Æg = ÆBRg =⇒ Æg−1 = −g−1ÆBRand hene BL ◦� = BL ◦�(g)= ·∫0 (g−1)−1 Æg−1= ·∫0 g (−g−1ÆBR)= ·∫0 −ÆBR=−BR:Similarly one shows BR ◦� = −BL a.e. �Note that the maps BL and BR indue maps on measurable funtionsfrom (W (G) ; �) to (W (g) ; �) as desribed in Notation 2.12.2.4. Quasi-invariane. Our goal in this setion is to understand thequasi-invariane properties of � under left and right translations by ' ∈H (G).Theorem 2.14. For ' ∈ H (G) letZRT (') := exp−
T∫0 〈'′'−1; ÆBL〉− 12 ∫ T0 ∣∣'′'−1∣∣2 dtand ZLT (') := exp T∫0 〈'′'−1; ÆBR〉− 12 ∫ T0 ∣∣'′'−1∣∣2 dtthen LawZRT ·� (g') = Law� (g) = LawZLT ·� ('−1g) :That is, for every bounded and measurable funtion F on W (G)

∫W (G) F (g')ZRT (') d� = ∫W (G) Fd� = ∫W (G) F ('−1g)ZLT (') d�:



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 11Proof. We will only prove the assertion involving the right translationhere as the seond ase is proved similarly. To simplify notation let b := BL,Mt := −
t∫0 〈'′'−1; Æb〉 = −

t∫0 〈'′'−1; db〉and let Z solvedZ = ZdM = −Z 〈'′'−1; db〉 with Z0 = 1; (2.8)i.e., Zt := exp−
t∫0 〈'′'−1; Æb〉− 12 t∫0 ∣∣'′'−1∣∣2 dt = ZRt (') :By (4) of Theorem 2.10(g')−1 Æ (g') = Ad'−1 Æb+ '−1d':So given a smooth funtion, f : G → R, we have by Itô's lemma thatÆ (f (g')) = f ′ (g') (Ad'−1 Æb+ '−1d') ; (2.9)where for A;B ∈ gf ′ (g)A = Ãf (g) := ddt ∣∣∣∣0 f (getA) andf ′′ (g) [A⊗B℄ := (ÃB̃f) (g) = ddt ∣∣∣∣0 dds ∣∣∣∣0 f (getAesB) :Note thatf ′ (g')Ad'−1 Æb = f ′ (g')Ad'−1 db+ 12d [f ′ (g')℄ Ad'−1 db= f ′ (g')Ad'−1 db+ 12 [f ′′ (g')℄ [Ad'−1 db⊗Ad'−1 db]= f ′ (g')Ad'−1 db+ 12�f (g') dt:Now we an use the fat that

∫0 Ad'−1 db (2.10)



12 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIKis a g-valued Brownian motion by L�evy's riterion and due to the Ad-invariane of the inner produt on g. Then the Itô form of (2.9) isd [f (g')℄ = f ′ (g')Ad'−1 db+ [f ′ (g')'−1'′ + 12�f (g')] dt:So if we de�ne Nt = Nft := f (gt't)− 12 t∫0 �f (g�'� ) d�;then dN = f ′ (g')Ad'−1 db+ f ′ (g')'−1'′dt:Observe that using the orthonormal basis g0 of the Lie algebra g we have(using db⊗ db = ∑A∈g0A⊗Adt) that
(Ad'−1 db) 〈'′'−1; db〉 = ∑A∈g0 (Ad'−1 A) 〈'′'−1; A〉 dt= Ad'−1 ('′'−1) dt = '−1'′dt:Another appliation of Itô's lemma then impliesd [NZ℄ = dNZ +NdZ + dNdZm= Z [f ′ (g')'−1'′dt]− (f ′ (g')Ad'−1 db) · Z 〈'′'−1; db〉= Z [f ′ (g')'−1'′dt]− Z (f ′ (g')Ad'−1 '′'−1) dt = 0;where as in (2.4) we write dX m= dY if X and Y are two proesses suh thatY −X is a martingale. The previous omputations show NZ is martingaleand so

E [(Nt −Ns)FZT ℄ = 0for all bounded Bs{measurable funtions F . Therefore {Nft }06t6T is aZT ·�{martingale for all smooth f . Thus it follows from uniqueness to themartingale problems that LawZT ·� (g') = Law� (g). �Theorem 2.14 an be interpreted also using Notation 2.11. Namely, forX =W (G) and a measurable bijetion R on W (G) we have that for anyBorel measurable f on W (G)
ER∗�f (g) = ER�f (R (g)) :



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 13Let L'; R' be the left and right multipliation on W (G) de�ned byL'g := '−1g;R'g := g'; (2.11)where ' ∈ H (G), and g ∈ W (G), together with their ounterparts onfuntions on W (G) denoted by L'∗ and R'∗ aording to Notation 2.12.In addition, taking inverses in (W (G) ; �) indues a map on the set ofmeasurable funtions on (W (G) ; �) by(Jf) () := f ◦�() = f (−1) : (2.12)Note that by Proposition 2.13 the map J is a unitary involution onL2 (W (G) ; �).Then Theorem 2.10 an be re-written as follows. For any ' ∈ H (G)and g ∈W (G) we haveBL (L'g) = BL (g)− ·∫0 Adg−1 (d''−1) ;BL (R'g) = ·∫0 '−1d'+ ·∫0 Ad'−1 (ÆBL) ;BR (L'g) = −
·∫0 '−1d'+ ·∫0 Ad'−1 (ÆBR) ;BR (R'g) = BR (g) + ·∫0 Adg (d''−1) ; (2.13)

where we use d' to indiate that it is the usual di�erential sine ' issmooth.Then the right Radon-Nikodym density ZR (') for R'∗� with respetto � is in L1 (W (G); �) is desribed in Theorem 2.14. Similarly the Wienermeasure � is quasi-invariant under the left multipliation by elements inH(G), and the left Radon-Nikodym density for � is in L1 (W (G); �) aswell.Proposition 2.15. The left and right Radon-Nikodym densities for � sat-isfy ZR' = JZL' = ZL' ◦�



14 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIKfor �-almost every g. Here J is the map de�ned by (2.12).Proof. First proof. By Proposition 2.13 � is invariant under the takinggroup inverses, that is, for any bounded measurable f
∫W (G) f(g−1)d�(g) = ∫W (G) f(g)d�(g):Then∫W (G) f(g')d�(g) = ∫W (G) f(g−1')d�(g) = ∫W (G) f (('−1g−1)−1) d�(g)= ∫W (G) f (g−1)ZL' (g)d�(g) ∫W (G) f (g)ZL' (g−1)d�(g): �

§3. CyliityCylity is one of the basi properties of representations of H (G) weonsider later. Note that the main result of this setion, Theorem 3.1,follows from Corollary 14 in [17℄. In that paper B. Hall and A. Senguptaused the Segal{Bargmann transform to prove the yliity of 1, and alsothat the Radon{Nikodym densities are oherent states as Theorem 10 in[17℄ states. We give a more diret proof using the inverse Itô map BL andideas of L. Gross in [15℄.Theorem 3.1 (Cyliity of 1). Suppose that G is a ompat onnetedLie group, then
HG := Span{(ZR' (g))1=2 ; ' ∈ H (G)}is dense in L2 (W (G) ; �).Proof. Note that (BL)∗ (ZR' )1=2 is a funtion onW (g) sine BL is a mea-sure spae isomorphism, so we an redue the problem to the Lie algebralevel. Namely, let 0 = t0 < t1 < ::: < tn−1 < tn = T , �0 = 0; �1; :::; �n ∈ g.We assume that
|�j ||tj − tj−1| = 1; for any j = 1; 2; :::; n; (3.1)unless �j = 0. It is known that the linear span of multidimensional Hermitepolynomials in 〈�j ; w(tj) − w(tj−1)〉 is dense in L2 (W (g) ; �) (e.g. [21℄).



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 15This means that it is enough to show that the linear span of ylinder Her-mite polynomials is ontained in the L2 (W (g) ; �)-losure of (BL)∗ (HG).First we observe that HG, and therefore (BL)∗ (HG), ontains all on-stant funtions. Let 0 = t0 < t1 < ::: < tn−1 < tn = T , �0 = 0; �1; :::; �n ∈
g. We de�ne a funtion ' = '�1;:::;�n (s) reursively for j = 1; 2; :::; n by' (t0) = ' (0) = e; ' (s) = e−(s−tj−1)�j' (tj−1) ; s ∈ [tj−1; tj): (3.2)Then '′(s)'(s)−1 = −�j ; s ∈ [tj−1; tj);therefore ' ∈ H (G) and

(BL)∗ (ZR' )1=2 (wt)= n∏j=1 exp(12 〈�j ; w(tj)− w(tj−1)〉 − 14 |�j |2 (tj − tj−1)2) :Suppose x1; ::: ; xn ∈ R and de�ne '~x(s) := 'x1�1; ::: ;xn�n(s),then '′~x(s)'~x(s)−1 = xj�j . Now let a funtion F on R
n be de�ned asF (~x) := (BL)∗ (ZR'~x)1=2 then�F�xj (0) = 12〈�j ; w(tj)− w(tj−1)〉;Note that for any ~x ∈ R

n we have F (~x) ∈ (BL)∗ (HG). Therefore �F�xj (0)as well as all other partial derivatives of F at 0 are in (BL)∗ (HG), the L2-losure of (BL)∗ (HG). Indeed, this follows from the simple observationthat F (0) = 1 ∈
(BL)∗ (HG) and�F�xj (0) = limxj→0 F ((0; :::; xj ; 0; :::; 0))− 1xj :Now we would like to desribe the funtions we an get by taking partialderivatives of F . First we observe that we an write F asF (~x) = n∏j=1 eajxj−b2jx2j ; aj = 〈�j ; w(tj)− w(tj−1)〉2 ; bj = |�j ||tj − tj−1|2 = 12



16 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIKby assumption (3.1). Using [5, Lemma 1.3.2 (part (iii))℄ we an take partialderivatives of F of all orders to see that all multidimensional Hermitepolynomials in 〈�j ; w(tj)− w(tj−1)〉 are in (BL)∗ (HG). �

§4. Brownian measure representation4.1. De�nitions and notation. The unitary representations of H (G)on the Hilbert spae L2 (W (G) ; �) we de�ne in this setion are indued byquasi-invariane of the Wiener measure �. Reall that L' and R' are leftand right multipliation on W (G) by elements H (G) as de�ned in (2.11),i.e., R' = ' and L' = '−1.De�nition 4.1. Let W (G) and H(G) be as before.(1) The right Brownian measure representation UR of H(G) onL2 (W (G); �) is de�ned as
(UR' f) (g) := (ZR' (g))1=2 f (R'g)for any f ∈ L2 (W (G); �), ' ∈ H(G), g ∈W (G);(2) the left Brownian measure representation ULon L2(W(G); �)is de�ned as
(UL' f) (g) := (ZL' (g))1=2 f (L'g)for any f ∈ L2 (W (G); �), ' ∈ H(G), g ∈W (G).Reall that by Proposition 2.15 we have ZR' = JZL' , where J a unitaryinvolution on L2 (W (G); �) de�ned by (2.12). In addition, the funtions(ZR' )1=2 and (ZL' )1=2 have the norm 1 in L2 (W (G); �) for any ';  ∈H(G), whih is a onsequene of the next Proposition.Proposition 4.2. For any ';  ∈ H (G)

〈
(ZR' )1=2 ; (ZR )1=2〉 =exp(−‖'‖2H;T + ‖ ‖2H;T8 ) exp14 T∫0 〈

('−1'′
) (t) ; ( −1 ′

) (t)〉dt :Proof. This follows from Theorem 2.14. �



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 17Proposition 4.3. For any ';  ∈ H (I;G) we haveZR' ( · ) = ZR ( · ) if and only if ' =  ;and similarly ZL' ( · ) = ZL ( · ) if and only if ' =  ;where ZR (') ( · ) and ZL (') ( · ) are viewed as random variables, and theequalities hold for �-a.e. g; t ∈ [0; T ℄.Proof. If ZR' ( · ) = ZR ( · ) ;then for any t ∈ [0; T ℄,
E
(ZR' ( · ) |Ft) = E

(ZR ( · ) |Ft)and thereforet∫0 〈 −1 ′(s)− '−1'′(s); dBLs 〉 = 12 t∫0 (|'−1'′|2 − | −1 ′|2) ds:Taking expetations of this equation then shows0 = 12 t∫0 (|'−1'′|2 − | −1 ′|2) ds for all tand therefore |'−1'′|2 = | −1 ′|2 a.e. In partiular, we then have0 = E

[( t∫0 〈 −1 ′(s)− '−1'′(s); dBLs 〉)2]= t∫0 ∣∣ −1 ′(s)− '−1'′(s)∣∣2 dsfrom whih it follows  −1 ′(t) − '−1'′(t) = 0 for any t ∈ [0; T ℄. Finally,we see that for any t ∈ [0; T ℄
(' −1)′ (t) = '′ −1 (t)−' −1 ′ −1 (t) = '′ −1 (t)−''−1'′ −1 (t) = 0and therefore '−1 ≡ e. �



18 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIKProposition 4.4. For any ';  ; '1; :::; 'n;  1; ::;  n ∈ H(G),f ∈ L2 (W (G); �)
(UR'1 :::UR'n) f (g) = (ZR'n:::'1)1=2 (g) f (R'1:::'ng) ;
(UL 1 :::UL n) f (g) = (ZL n::: 1)1=2 (g) f (L 1::: ng) ;
(UR' )−1 = (UR' )∗ = UR'−1 ;
(UL )−1 = (UL )∗ = UL −1 :In partiular, this implies that UR' ; UL are unitary operators onL2 (W (G); �).Proof. For any f; h ∈ L2 (W (G); �), '; '1; '2 ∈ H (G) we have
(UR'1UR'2f) (g) = (ZR'1 (g)ZR'2 (g'1))1=2 f (g'1'2)= (ZR'2'1)1=2 (g) f (g'1'2)by the properties of the Radon{Nikodym densities, and

〈
(UR' )∗f; h〉L2(W (G);�) = 〈f; UR' h〉L2(W (G);�)= ∫W (G) f(g)h(g')h'(g)d�(g)= ∫W (G) f(g'−1)h(g) (ZR' )1=2 (g'−1)ZR'−1 (g) d�(g)= ∫W (G) f(g'−1)(ZR'−1)1=2 (g)h(g)d�(g) = 〈UR'−1f; h〉L2(W (G);�):The ase of UL an be heked similarly. �4.2. Properties of the Brownian representations.Notation 4.5. We denote by

MR := (UR' ; ' ∈ H(G))′′
ML := (UL' ; ' ∈ H(G))′′the von Neumann algebras generated by the operators UR' , UL' respetively.



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 19Theorem 4.6 ollets some basi fats about the left and right Brownianrepresentations. Most of these properties are what one expets from thelassial ase of regular representations of loally ompat groups. Butsome of the proofs are fundamentally di�erent. For example, the fat thatthe von Neumann algebras generated by the left and right representationsare ommutants of eah other has been originally proved by I. Segal in [23℄for the regular representation of a unimodular loally ompat Lie groupwith a bi-invariant Haar measure. One of the major fats he used wasexistene of an approximating identity and the one-to-one orrespondenebetween unitary representation of the group G and the non-degenerate ∗-representations of the group algebra L1 (G) (e.g. [10, Setion 3.2℄). Thesefundamental onstrutions are not available in our ase. Theorem 4.6 doesnot answer the question whether ML and MR are ommutants of eahother, whih will be addressed in another artile.Theorem 4.6. (1) the unitary operators UR' and UL ommute forany ';  ∈ H (G), and so (MR)′ ⊆ ML and (ML)′ ⊆ MR.The representations UL and UR are unitarily equivalent, and theintertwining operator is the unitary involution J de�ned by (2.12);(2) 
 = 1 is a separating yli vetor of norm 1 for both MR and MLin L2 (W (G); �). If G is abelian, then the orresponding von Neu-mann algebra MR = ML is maximal abelian in B (L2 (W (G);�)).(3) For any T ∈ MR the map T 7−→ T1 is injetive.(4) The vauum vetor 
 = 1 de�nes a faithful normal weight � on
MR (and similarly on ML) by� (m) := 〈m
;
〉L2(W (G);�) = ∫W (G) m (1) (g) d� (g) (4.1)for any m ∈ MR. In addition, �(I) is �nite, and so � is a faithfulnormal state.Proof. 1. First we observe that UL' and UR ommute. Indeed, for any';  ∈ H (G), f ∈ L2 (W (G) ; �) we have

(UL UR' f) (g) = (d� ( −1g)d� (g) )1=2(d� ( −1g')d� ( −1g) )1=2 f ( −1g')



20 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIK= (d� ( −1g')d� (g) )1=2 f ( −1g') = (UR' UL f) (g) :To see that UL and UR are unitarily equivalent we use Proposition 2.15,and the following simple observation. Using Notation 2.12 for the left andright multipliation operators on W (G), we see thatJR' ∗ = L' ∗J:Then by Proposition 2.15 for any f ∈ L2 (W (G) ; �)
(JUR' f) (g) = J (ZR' (g) (R' ∗f) (g)) = ZL' (g) J (R' ∗f (g))= ZL' (g) (L' ∗Jf (g)) = (UL' Jf) (g) :2. Theorem 3.1 shows that 1 is yli for MR, and similarly one anshow that it is yli for ML.Now suppose that G is abelian. It is lear that in this ase M = MR =

ML is abelian, and therefore M′ = M whih implies that it is maximalabelian. Note that another explanation for M being maximal abelian isthat as we know it has a yli vetor. Then by [19, Corollary 7.2.16℄ Mis maximal abelian as an abelian subalgebra with a yli vetor.3. This is a standard fat from the Tomita-Takesaki theory, but in thisase it is easy to verify and we inlude the argument for ompleteness. LetT ∈ MR be suh that T1 = 0. Then T ommutes with all operators in
ML, and therefore UL −1TUL 1 = T1 = 0;and so TUL 1 = 0for all  ∈ H (G). Sine 1 is yli for both left and right representations,we see that T = 0.4. The �rst part of this statement is a standard fat following from theGNS onstrution (e.g. [26℄). To see that � is a state, we note that theidentity operator I in MR an be represented as URe , where e(t) ≡ e fort ∈ [0; T ℄. Thus � (I) = � (URe ) = 1:



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 21The same holds for ML. �Proposition 4.7 (� is not a trae). For any ';  ∈ HT (G) ;� (UR' UR ) = � (UR UR' )if and only if T∫0 〈'−1'′;  ′ −1〉ds = T∫0 〈'′'−1;  −1 ′〉ds: (4.2)Proof. By de�nition of � and Propositions 4.2 and 4.4 we see that� (UR' UR ) = E�ZR ' (g) = exp −‖ '‖2H;T8= exp −‖'‖2H;T − ‖ ‖2H;T8 exp 14 T∫0 〈Ad' '′'−1;  ′ −1〉 dt= exp −‖'‖2H;T − ‖ ‖2H;T8 exp 14 T∫0 〈'′';  −1 ′〉 dt:Applying this omputation to � (UR UR' ) ompletes the proof. �

§5. Energy representationLet (H;W;�) be an abstrat Wiener spae, that is, H is a real separableHilbert spae densely ontinuously embedded into a real separable Banahspae W , and � is the Gaussian measure de�ned by the harateristifuntional
∫W ei'(x)d� (x) = exp(−|'|2H∗2 )for any ' ∈ W ∗ ⊂ H∗. We will identify W ∗ with a dense subspae of Hsuh that for any h ∈ W ∗ the linear funtional 〈·; h〉 extends ontinuouslyfrom H to W . We will usually write 〈';w〉 := ' (w) for ' ∈ W ∗, w ∈ W .More details an be found in [5℄.It is known that � is a Borel measure, that is, it is de�ned on theBorel �-algebra B (W ) generated by the open subsets of W. The Gaussian



22 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIKmeasure � is quasi-invariant under the translations from H and invariantunder orthogonal transformations of H . We want to be more preise here.Notation 5.1. We all an orthogonal transformation of H whih is atopologial homeomorphism of W ∗ a rotation of W ∗. The spae of allsuh rotations is denoted by O(W ∗). For any R ∈ O(W ∗) its adjoint, R∗,is de�ned by
〈';R∗w〉 := 〈R−1';w〉; w ∈ W;' ∈ W ∗:Theorem 5.2. For any R ∈ O(W ∗) the map R∗ is a B (W )-measurablemap from W to W and � ◦ (R∗)−1 = �:Proof. The measurability of R∗ follows from the fat that R is ontinuouson H . For any ' ∈W ∗

∫W ei'(x)d�((R∗)−1 x) = ∫W ei〈';x〉d�((R∗)−1 x) = ∫W ei〈';R∗x〉d� (x)= exp(−|R−1'|2H∗2 ) = exp(−|'|2H∗2 )= ∫W ei'(x)d� (x)sine R is an isometry. �Corollary 5.3. Any R ∈ O(W ∗) extends to a unitary map on L2 (W;�).The Cameron{Martin theorem states that � is quasi-invariant undertranslations by elements in H , namely, Th :W →W , Th (w) = w+h. TheRadon{Nikodym derivative is given byd (Th)∗ �d� (w) = d (� ◦ T−1h )d� (w) = d (� ◦ T−h)d� (w) = e−〈h;w〉− |h|22 ;w ∈ W; h ∈ H:Following [9℄ we onsider the Gaussian regular representation of the Eu-lidean group of transformations w 7→ R∗w + h, x ∈ H ,h ∈ H , R ∈O(W ∗) on L2 (W;�) de�ned as



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 23(UR;hf) (w) := (d (� ◦ (ThR∗))d� (w))1=2 f ((ThR∗)−1 (w))= (d (� ◦ Th)d� (w))1=2 f ((R∗)−1 (w − h))= e〈h;w〉− |h|22 f ((R∗)−1 (w − h)) ; w ∈W (5.1)whih is well-de�ned by Corollary 5.3. It is lear that this is a unitaryrepresentation.Now we need to de�ne the Fourier-Wiener transform F on L2 (W;�).This an be done in several ways, and for now we refer to De�nition 17in [9℄ with the parameter r = 1=2. In partiular, one an hek that F4 ≡ Ion L2 (W;�) by doing a omputation on Hermite funtions.The following formula is very onvenient for omputations, but someare should be taken over its appliability. One of the ways of making thisformula rigorous is to de�ne it on Hermite funtions using the Fok spae,as it is done in [16℄.(Ff) (w) = ∫W f (iw +√2u) d� (u) ; f ∈ L2 (W;�) :In partiular, identities in Proposition 5.4 follow from this formula quiteeasily.Proposition 5.4. 1. Let E := SpanC{'̂ (w) := ei〈';w〉; ' ∈ W ∗; w ∈W}.Then E is an algebra whih is dense in L2(W;�).2. For any ' ∈W ∗ we have
∫W '̂(w) d�(w) = e− |'|2H∗2 ;(F '̂) (w) = e−|'|2H∗e−〈';w〉; and (Fe〈';·〉) (w) = e|'|2H∗ '̂(w): (5.2)Proof. The �rst statement is proven in a number of referenes, one ofwhih is [18℄, Theorem 4.1, so we omit the proof for now. Identities in(5.2) follow from similar �nite-dimensional alulations using the methodsin [9℄ or approximations by Hermite funtions. �



24 S. ALBEVERIO, B. K. DRIVER, M. GORDINA, A. M. VERSHIKProposition 5.5 (Proposition 18 [9℄). If f ∈ L2 (W;�) ; R ∈ O(W ∗) ;h ∈ W ∗; then
(
FUR;hF−1f) (w) = e− i〈h;w〉2 f (R∗w) for w ∈W:Proof. By Proposition 5.4 it is enough to hek the statement for f (w) ='̂ (w). First, let us ompute F3'̂ (w) using (5.2)

(
F3'̂) (w) = e−|'|2H∗

(
F2e−〈';·〉) (w)= e−|'|2H∗e|'|2H∗

(
Fe−i〈';·〉) (w) = e−|'|2H∗e〈';w〉:Then

(
FUR;hF−1'̂) (w) = (FUI;hUR;0F3'̂) (w)= e−|'|2H∗

(
FUI;hUR;0e〈';·〉) (w)= e−|'|2H∗e− |h|24 (

Fe 〈h;·〉2 e〈R';·+h〉) (w)= e−|'|2H∗e− |h|24 e〈R';h〉 (Fei 〈−i(h+2R');·〉2 ) (w)= e− |h+2R'|2H∗4 e |h+2R'|2H∗4 ei〈h2+R';w〉= ei〈h2 ;w〉'̂ (R∗w) ;where we used the fat that |R'|H∗ = |'|H∗ . �Corollary 5.6. By taking f ≡ 1 in Proposition 5.5, we see that for anyh ∈ H
Fe〈h;w〉− |h|22 = e− i〈h;w〉2 :We now work on the measure spae (W (g) ;BW (g); �) and let ws :W (g) → g be the projetion map, ws (!) = !s for all 0 6 s 6 T and! ∈ W (g) : [Note, we may also view w as the identity map from W (g) toW (g) :℄ The energy representation is a unitary representation of H (G) onthe spae L2 (W (g) ; �). First we introdue an operator on W (g) used tode�ne the energy representation. Note that sine the inner produt on g isAd-invariant, the operator O' de�ned by



BROWNIAN AND ENERGY REPRESENTATIONS OF PATH GROUPS 25O' (w) := ·∫0 Ad' Æws; w ∈ W (g) ; ' ∈ H (G) (5.3)is well-de�ned onW (g) by L�evy's riterion as we indiated in (2.10). More-over, sine the Itô and Stratonovih integrals of deterministi integrandsare equal, we see thatO' (w) = ·∫0 Ad' Æws = ·∫0 Ad' dws:De�nition 5.7. For any ' ∈ H (G)(E'f) (w) := ei T∫0 〈'−1'′(s);dws〉f (O'−1w) :for any f ∈ L2 (W (g) ; �). Then E' is alled the energy representation ofH (G).Again using the fat that the Itô and Stratonovih integrals are equalfor deterministi integrands, we see that(E'f) (w) = ei T∫0 〈'−1'′(s);dws〉f (O'−1w) :It is easy to see that E∗' = E'−1 , so it is a unitary representation of H (G)on L2 (W (g) ; �). For our future results using Itô integrals will be moreonvenient, so this is what we will be using from now on mostly.Theorem 5.8. Both UR and UL are unitarily equivalent to the energyrepresentation E.Proof. As we noted in Theorem 4.6, UR and UL are unitarily equivalent.Using (2.13) we see that under the inverse Itô map BL the left multiplia-tion is mapped to the following operator
((BL)∗R∗') f (w) = f(O'−1w + ·∫0 '−1d'); (5.4)where f ∈ L2(W (g); �), w ∈W (g), and R∗' is the adjoint operator.Then the representation UR' orresponds to the following representationon L2 (W (g) ; �)
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(uR'f)(w) := ((BL)∗UR' f)(w) (5.5)= e 12 T∫0 〈'−1'′(s);dws〉− 14‖'‖2H;·f(O'−1w + ·∫0 '−1d'):Here we used O'−1 to denote the operator introdued by (5.3). Note that(uR'f) (w) = UR;h, where UR;h is de�ned by (5.1) with R∗ (w) = O'−1wand h = −'−1d'. The adjoint representation of G on g is unitary, andtherefore O'−1 is a ontinuous unitary transformation on H (g). Thus wean apply Proposition 5.5 to see that uR' is unitarily equivalent to E'.The intertwining operator here is the Fourier{Wiener transform F , andthe intertwining map between UL and E is then F ◦
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