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Abstract. Let K(Rd) denote the cone of discrete Radon measures on
Rd. The gamma measure G is the probability measure on K(Rd) which
is a measure-valued Lévy process with intensity measure s−1e−s ds on
(0,∞). We study a class of Laplace-type operators in L2(K(Rd),G).
These operators are defined as generators of certain (local) Dirichlet
forms. The main result of the papers is the essential self-adjointness of
these operators on a set of ‘test’ cylinder functions on K(Rd).
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1. Introduction

Handling and modeling complex systems have become an essential part of
modern science. For a long time, complex systems have been treated in
physics, where e.g. methods of probability theory are used to determine their
macroscopic behavior by their microscopic properties. Nowadays, complex
systems, including ecosystems, biological populations, societies, and finan-
cial markets, play an important role in various fields, like biology, chemistry,
robotics, computer science, and social science.

A mathematical tool to study complex systems is infinite dimensional
analysis. Such studies are often related to a probability measure µ defined on
an infinite dimensional state space. The most ‘traditional’ example of a mea-
sure µ is Gaussian (white noise) measure, which is defined on the Schwartz
space of tempered distributions, S ′(Rd), see e.g. [3,4,9]. Another example of
measure µ is Poisson random measure on Rd. This is a probability measure
on the configuration space Γ(Rd) consisting of all locally finite subsets of Rd.
A configuration γ = {xi} ∈ Γ(Rd) may be interpreted either as a collection
of indistinguishable physical particles located at points xi, or as a population
of a species whose individuals occupy points xi, or otherwise depending on
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the type of the problem. The Poisson measure corresponds to a system with-
out interaction between its entities. In order to describe an interaction, one
introduces Gibbs perturbations of the Poisson measure, i.e., Gibbs measures
on Γ(Rd).

In papers [1,2], some elements of analysis and geometry on the configu-
ration space Γ(Rd) were introduced. In particular, for each γ = {xi} ∈ Γ(Rd),
a tangent space to Γ(Rd) at point γ was defined as

Tγ(Γ) := L2(Rd → Rd, γ),

where we identified γ with the Radon measure
∑
i δxi . A gradient of a differ-

entiable function F : Γ(Rd)→ R was explicitly identified as a function

Γ(Rd) 3 γ 7→ (∇ΓF )(γ) ∈ Tγ(Γ).

This, in turn, led to a Dirichlet form

EΓ(F,G) =

∫
Γ(Rd)

〈(∇ΓF )(γ), (∇ΓG)(γ)〉Tγ(Γ) dµ(γ),

where µ is either Poisson measure or a Gibbs measure. Denote by −LΓ the
generator of the Dirichlet form EΓ. Then, in the case where µ is Poisson
measure, the operator LΓ can be understood as a Laplace operator on the
configuration space Γ(Rd).

Assume that the dimension d of the underlying space Rd is ≥ 2. By
using the theory of Dirichlet forms, it was shown that there exists a diffusion
process on Γ(Rd) which has generator LΓ, see [1, 2, 19, 22, 32]. In particular,
this diffusion process has µ as an invariant measure. (For d = 1, in order to
construct an associated diffusion process an extension of Γ(Rd) is required.)

A further fundamental example of a probability measure on an infinite
dimensional space is given by the gamma measure [5, 28, 30, 31]. This mea-
sure, denoted in this paper by G, was initially defined through its Fourier
transform as a probability measure on the Schwartz space of tempered dis-
tributions, S ′(Rd). White noise analysis related to the gamma measure was
initiated by Kondratiev, da Silva, Streit, and Us in [14], and further devel-
oped in [12, 16, 17]. Note that the gamma measure belongs to the class of
five Meixner-type Lévy measures (this class also includes Gaussian and Pois-
son measures). Each measure µ from this Meixner-type class admits a ‘nice’
orthogonal decomposition of L2(µ) in orthogonal polynomials of infinitely
many variables. In particular, in the case of the gamma measure G, these or-
thogonal polynomials are an infinite dimensional counterpart of the Laguerre
polynomials on the real line [14].

A more delicate analysis shows that the gamma measure is concentrated
on the smaller space M(Rd) of all Radon measures on Rd. More precisely,
G is concentrated on the cone of discrete Radon measures on Rd, denoted
by K(Rd). By definition, K(Rd) consists of all Radon measures of the form
η =

∑
i siδxi . It should be stressed that, with G-probability one, the countable

set of positions, {xi}, is dense in Rd. As for the weights si, with G-probability
one, we have η(Rd) =

∑
i si =∞, but for each compact set A ⊂ Rd, η(A) =
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∑
i: xi∈A si < ∞. Elements η ∈ K(Rd) may model, for example, biological

systems, so that the points xi represent location of some organisms, and the
values si are a certain attribute attached to these organisms, like their weight
or height.

A very important property of the gamma measure is that it is quasi-
invariant with respect to a natural group of transformations of the weights
si [28], see also [15]. Note also that an infinite dimensional analog of the
Lebesgue measure is absolutely continuous with respect to the gamma mea-
sure [28,29].

In paper [13], which is currently in preparation, we introduce elements
of differential structure on the space of Radon measures, M(Rd). More pre-
cisely, for a differentiable function F : M(Rd) → R, we define its gradient
(∇MF )(η) as a function of η ∈ M(Rd) taking value at η in a tangent space
Tη(M) to M(Rd) at point η. Furthermore, we identify a class of measure-
valued Lévy processes µ which are probability measures on K(Rd) and which
admit an integration by parts formula. This class of measures µ includes the
gamma measure G as an important example. We introduce and study the
corresponding Dirichlet form

EM(F,G) =

∫
K(Rd)

〈(∇MF )(η), (∇MG)(η)〉Tη(M) dµ(η).

In particular, we find an explicit form of the generator −LM of this Dirichlet
form on a proper set of ‘test’ functions on K(Rd). Note that the operator
LM can, in a certain sense, be thought of as a Laplace operator on K(Rd),
associated with the measure µ.

In this paper, we will discuss a class of Laplace-type operators associated
with the gamma measure G. More precisely, we will consider a Dirichlet form

EM(F,G) =

∫
K(Rd)

〈(∇MF )(η), c(η)(∇MG)(η)〉Tη(M) dG(η),

where c(η) is a certain coefficient (possibly equal identically to one). We prove
that this bilinear form is closable, its closure is a Dirichlet form and derive the
generator −LM of this form. The main result of the paper is that, under some
assumption on the coefficient c(η), the operator LM is essentially self-adjoint
on a proper set of ‘test’ functions on K(Rd).

Unfortunately, our result does not yet cover the case where c(η) is iden-
tically equal to one. The open problem here is to prove the essential self-
adjointness of a certain differential operator on Rd × (0,∞).

Let us briefly discuss the structure of the paper. In Section 2, we recall
basic notions related to differentiation on M(Rd), like a tangent space and
a gradient of a function on M(X), see [13]. As intuitively clear, we have
two types of such objects: one related to transformations of the support of
a Radon measure, which we call intrinsic transformations, and one related
to transformations of masses, which we call extrinsic transformations. We
also combine the two types of tangent spaces/gradients into a full tangent
space/gradient.
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In Section 3, we explicitly construct the gamma measure G on K(Rd). In
Section 4, we construct and study the respective Dirichlet forms on the space
L2(K(Rd),G). These Dirichlet forms are related to the intrinsic, extrinsic, and
full gradients. We carry out integration by parts with respect to the measure
G and derive generators of these bilinear forms.

Finally, in Section 5, we prove the essential self-adjointness in L2(K(Rd),G)
of the generators of the Dirichlet forms on a proper set of ‘test’ functions on
K(Rd). To this end, we construct a unitary isomorphism between L2(K(Rd),G)
and the symmetric Fock space F(H) over the space

H = L2(Rd × (0,∞), dx s−1e−s ds)).

We show that the semigroup (Tt)t≥0 in L2(K(Rd),G) which corresponds to
the Dirichlet form is unitary isomorphic to the second quantization of a re-
spective semigroup (Tt)t≥0 in H. It can be shown that this semigroup (Tt)t≥0

generates a diffusion on Rd × (0,∞). In particular, in the extrinsic case, the
respective diffusion on Rd× (0,∞) is related to a simple space-time transfor-
mation of the square of the 0-dimensional Bessel process on [0,∞).

In the forthcoming paper [7], by using the theory of Dirichlet forms, we
will prove the existence of a diffusion on K(Rd) with generator LM. We will
also explicitly construct the Markov semigroup of kernels on K(Rd) which
corresponds to this diffusion. Furthermore, we plan to study equilibrium dy-
namics on K(Rd) for which a Gibbs perturbation of the gamma measure
(see [8]) is a symmetrizing (and hence invariant) measure.

2. Differentiation on the space of Radon measures

In this section, we briefly recall some definitions from [13].

Let X denote the Euclidean space Rd, d ∈ N, and let B(X) denote
the Borel σ-algebra on X. Let M(X) denote the space of all (nonnegative)
Radon measures on (X,B(X)). The space M(X) is equipped with the vague
topology, i.e., the coarsest topology making all mappings

M(X) 3 η 7→ 〈ϕ, η〉 :=

∫
X

ϕdη, ϕ ∈ C0(X),

continuous. Here C0(X) is the space of all continuous functions on X with
compact support. It is well known (see e.g. [11, 15.7.7]) that M(X) is a Polish
space. Let B(M(X)) denote the Borel σ-algebra on M(X).

Let us now introduce an appropriate notion of a gradient ∇M of a differ-
entiable function F : M(X)→ R. We start with transformations of the sup-
port, which we call intrinsic transformations. We fix any v ∈ C∞0 (X → X),
a smooth, compactly supported vector field over X. Let (φvt )t∈R be the cor-
responding one-parameter group of diffeomorphisms of X which are equal to
the identity outside a compact set in X. More precisely, (φvt )t∈R is the unique
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solution of the Cauchy problem
d

dt
φvt (x) = v(φvt (x)),

φv0(x) = x.
(2.1)

We naturally lift the action of this group to the space M(X). For each η ∈
M(X), we define φvt (η) ∈ M(X) as the pushforward of η under the mapping
φvt . Hence, for each f ∈ L1(X, η),

〈f, φvt (η)〉 = 〈f ◦ φvt , η〉. (2.2)

For a function F : M(X) → R, we define the intrinsic derivative of F in
direction v by

(∇int
v F )(η) :=

d

dt

∣∣∣
t=0

F (φvt (η)), η ∈M(X), (2.3)

provided the derivative on the right hand side of formula (2.3) exists. As an
intrinsic tangent space to M(X) at point η ∈M(X) we choose the space

T int
η (M) := L2(X → X, η),

i.e., the space of X-valued functions on X which are square integrable with
respect to the measure η. The intrinsic gradient of F at point η is, by defini-
tion, the element (∇intF )(η) of T int

η (M) satisfying

(∇int
v F )(η) = ((∇intF )(η), v)T int

η (M)

=

∫
X

〈(∇intF )(η, x), v(x)〉X dη(x), v ∈ C∞0 (X → X). (2.4)

(In the above formula, 〈·, ·〉X denotes the usual scalar product in X.)

We will now introduce transformations of the masses, which we call
extrinsic transformations. We fix any h ∈ C0(X). We consider the one-
parameter group of transformations of M(X) given through multiplication
of each measure η ∈ M(X) by the function eth(x), t ∈ R. Thus, for each
η ∈M(X), we define Mth(η) ∈M(X) by

dMth(η)(x) := eth(x) dη(x). (2.5)

The extrinsic derivative of a function F : M(X)→ R in direction h is defined
by

(∇ext
h F )(η) :=

d

dt

∣∣∣
t=0

F (Mth(η)), η ∈M(X), (2.6)

provided the derivative on the right hand side of (2.6) exists. As an extrinsic
tangent space to M(X) at point η ∈M(X) we choose

T ext
η (M) := L2(X, η).
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The extrinsic gradient of F at point η is defined to be the element (∇extF )(η)
of T ext

η (M) satisfying

(∇ext
h F )(η) = ((∇extF )(η), h)T ext

η (M)

=

∫
X

(∇extF )(η, x)h(x) dη(x), h ∈ C0(X). (2.7)

We finally combine the intrinsic and extrinsic differentiation. For any
η ∈M(X), the full tangent space to M(X) at point η is defined by

Tη(M) := T int
η (M)⊕ T ext

η (M).

We define the full gradient ∇M := (∇int,∇ext).
For example, let us consider the set FC∞b (D(X),M(X)) of all functions

F : M(X)→ R of the form

F (η) = g(〈f1, η〉, . . . , 〈fN , η〉), (2.8)

where g ∈ C∞b (RN ) (an infinitely differentiable function on RN which, to-
gether with all its derivatives, is bounded), f1 . . . , fN ∈ D(X), and N ∈ N.
Here D(X) := C∞0 (X) is the space of all smooth, compactly supported func-
tions on X. An easy calculation shows that

(∇intF )(η, x) =

N∑
i=1

(∂ig)(〈f1, η〉, . . . , 〈fN , η〉)∇fi(x), (2.9)

(∇extF )(η, x) =

N∑
i=1

(∂ig)(〈f1, η〉, . . . , 〈fN , η〉)fi(x), (2.10)

so that

(∇MF )(η, x) =

N∑
i=1

(∂ig)(〈f1, η〉, . . . , 〈fN , η〉)(∇fi, fi).

Here ∂ig denotes the partial derivative of g in the i-th variable.

3. Gamma measure

In this section, following [13, 28], we will recall a construction of the gamma
measure. Recall that we denote by K(X) the cone of discrete Radon measures
on X:

K(X) :=

{
η =

∑
i

siδxi ∈M(X) | si > 0, xi ∈ X

}
.

Here, δxi is the Dirac measure with mass at xi, the atoms xi are assumed to
be distinct and their total number is at most countable. By convention, the
cone K(X) contains the null mass η = 0, which is represented by the sum
over the empty set of indices i. We denote τ(η) := {xi}, i.e., the set on which
the measure η is concentrated. For η ∈ K(X) and x ∈ τ(η), we denote by
s(x) the mass of η at point x, i.e., s(x) := η({x}). Thus, each η ∈ K(X) can
be written in the form η =

∑
x∈τ(η) s(x)δx.
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As shown in [8], K(X) ∈ B(M(X)). We denote by B(K(X)) the trace
σ-algebra of B(M(X)) on K(X).

Proposition 3.1. There exists a unique probability measure G on (K(X),
B(K(X))), called the gamma measure, which has Laplace transform∫

K(X)

e〈ϕ,η〉 dG(η) = exp

[
−
∫
X

log(1− ϕ(x)) dx

]
, ϕ ∈ C0(X), ϕ < 1.

(3.1)

We will present a constructive proof of this statement, as it will be used
throughout the paper.

Proof of Proposition 3.1. Denote R∗+ := (0,∞) and define a metric on R∗+ by

dR∗
+

(s1, s2) := |log(s1)− log(s2)| , s1, s2 ∈ R∗+.

Then R∗+ becomes a locally compact Polish space, and any set of the form

[a, b], with 0 < a < b <∞, is compact. We denote X̂ := X × R∗+ and define

the configuration space over X̂ by

Γ(X̂) :=
{
γ ⊂ X̂ | |γ ∩ Λ| <∞ for each compact Λ ⊂ X̂

}
.

Here |γ∩Λ| denotes the number of points in the set γ∩Λ. One can identify a

configuration γ ∈ Γ(X̂) with Radon measure
∑

(x,s)∈γ δ(x,s) from M(X̂). The

space Γ(X̂) is endowed with the vague topology, i.e., the weakest topology

on Γ(X̂) with respect to which all maps

Γ(X̂) 7→ 〈f, γ〉 :=

∫
X̂

f(x, s) dγ(x, s) =
∑

(x,s)∈γ

f(x, s), f ∈ C0(X̂),

are continuous. Let B(Γ(X̂)) denote the Borel σ-algebra on Γ(X̂). We denote

by π the Poisson measure on (Γ(X̂),B(Γ(X̂))) with intensity measure

dκ(x, s) := dx dλ(s), (3.2)

where

dλ(s) :=
1

s
e−s ds. (3.3)

The measure π can be characterized as the unique probability measure on
Γ(X̂) which satisfies the Mecke identity: for each measurable function F :

Γ(X̂)× X̂ → [0,∞], we have∫
Γ(X̂)

dπ(γ)

∫
X̂

dγ(x, s)F (γ, x, s)

=

∫
Γ(X̂)

dπ(γ)

∫
X̂

dκ(x, s)F (γ ∪ {(x, s)}, x, s). (3.4)

Denote by Γp(X̂) the set of so-called pinpointing configurations in X̂.

By definition, Γp(X̂) consists of all configurations γ ∈ Γ(X̂) such that if
(x1, s1), (x2, s2) ∈ γ and (x1, s1) 6= (x2, s2), then x1 6= x2. Thus, a configura-

tion γ ∈ Γp(X̂) can not contain two points (x, s1) and (x, s2) with s1 6= s2. As
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easily seen, Γp(X̂) ∈ B(Γ(X̂)). Since the Lebesgue measure dx is non-atomic,
the set {

(x1, s1, x2, s2) ∈ X̂2 | x1 = x2

}
is of zero κ⊗2-measure. Denote by Bc(X̂) the set of all Borel measurable sets

in X̂ which have compact closure. Fix any Λ ∈ B0(X̂). Using the distribution
of the configuration γ ∩ Λ under π (see e.g. [11]), we conclude that

π
(
γ ∈ Γ(X̂) | ∃(x1, s1), (x2, s2) ∈ γ ∩ Λ : x1 = x2, s1 6= s2

)
= 0.

Hence, π(Γp(X̂)) = 1.

For each γ ∈ Γp(X̂) and A ∈ Bc(X), we define a local mass by

MA(γ) :=

∫
X̂

χA(x)s dγ(x, s) =
∑

(x,s)∈γ

χA(x)s ∈ [0,∞]. (3.5)

Here χA denotes the indicator function of the set A. The set of pinpointing
configurations with finite local mass is defined by

Γpf (X̂) :=
{
γ ∈ Γp(X̂) |MA(γ) <∞ for each A ∈ Bc(X)

}
.

As easily seen, Γpf (X̂) ∈ B(Γ(X̂)) and we denote by B(Γpf (X̂)) the trace σ-

algebra of B(Γ(X̂)) on Γpf (X̂). For each A ∈ Bc(X), using the Mecke identity
(3.4), we get∫

Γp(X̂)

MA(γ) dπ(γ) =

∫
Γp(X̂)

dπ(γ)

∫
A

dκ(x, s) s =

∫
A

dx <∞.

Therefore, π(Γpf (X̂)) = 1 and we can consider π as a probability measure

on (Γpf (X̂),B(Γpf (X̂))).

We construct a bijective mapping R : Γpf (X̂) → K(X) by setting, for

each γ = {(xi, si)} ∈ Γpf (X̂), Rγ :=
∑
i siδxi ∈ K(X). By [8, Theorem 6.2],

we have

B(K(X)) =
{
RA | A ∈ B(Γpf (X̂))

}
.

Hence, both R and its inverse R−1 are measurable mappings. We define G to
be the pushforward of the measure π under R. One can easily check that G
has Laplace transform (3.1) and this Laplace transform uniquely characterizes
this measure. �

Corollary 3.2. For each measurable function F : K(X)×X → [0,∞], we have∫
K(X)

dG(η)

∫
X

dη(x)F (η, x) =

∫
K(X)

dG(η)

∫
X̂

dx ds e−sF (η + sδx, x).

(3.6)
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Proof. By the proof of Proposition 3.1 (in particular, using the Mecke iden-
tity), we see that the left hand side of (3.6) is equal to∫

Γpf (X̂)

dπ(γ)

∫
X̂

dγ(x, s) sF (Rγ, x)

=

∫
Γpf (X̂)

dπ(γ)

∫
X̂

dκ(x, s) sF (R(γ ∪ {(x, s)}), x),

which is equal to the right hand side of (3.6). �

Remark 3.3. In fact, identity (3.6) uniquely characterizes the gamma measure
G, i.e., if a probability measure µ on K(X) satisfies identity (3.6) with G being
replaced by µ, then µ = G. See [8, Theorem 6.3] for a proof of this statement.

Remark 3.4. By using either the Laplace transform of the gamma measure
(formula (3.1)) or formula (3.6), one can easily show that the gamma measure
has all moments finite, that is, for each A ∈ Bc(X) and n ∈ N, we have∫

K(X)

〈χA, η〉n dG(η) =

∫
K(X)

η(A)n dG(η) <∞. (3.7)

4. Dirichlet forms

Having arrived at notions of both a gradient and a tangent space to M(X),
we would like to construct a corresponding Dirichlet form on the space
L2(K(X),G). This, in turn, should lead us, in future, to a diffusion process
on K(X). In fact, we will consider different types of Dirichlet forms, corre-
sponding to the intrinsic gradient ∇int, extrinsic gradient ∇ext, and the full
gradient ∇M. Furthermore, in the case of the intrinsic gradient (full gradient,
respectively), we will use a coefficient in the Dirichlet form which depends on
masses only. The sense of this coefficient will become clear below.

A natural candidate for the domain of these bilinear forms (before the
closure) seems to be the set FC∞b (D(X),M(X)), see (2.8). However, as we
learnt in [13], the gamma measure does not allow, on this set, an integration
by parts formula with respect to intrinsic differentiation. In view of this, we
will now introduce an alternative set of test functions on K(X).

Denote by D(X̂) the space of all infinitely differentiable functions on

X̂ which have compact support in X̂. In particular, the support of each
ϕ ∈ D(X̂) is a subset of some set A × [a, b], where A ∈ Bc(X) and 0 < a <

b < ∞. We denote by FC∞b (D(X̂),Γ(X̂)) the set of all cylinder functions

F : Γ(X̂)→ R of the form

F (γ) = g(〈ϕ1, γ〉, . . . , 〈ϕN , γ〉), γ ∈ Γ(X̂), (4.1)

where g ∈ C∞b (RN ), ϕ1 . . . , ϕN ∈ D(X̂), and N ∈ N. Next, we define

FC∞b (D(X̂),K(X))

:=
{
F : K(X)→ R | F (η) = G(R−1η) for some G ∈ FC∞b (D(X̂),Γ(X̂))

}
.
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For ϕ ∈ D(X̂) and η ∈ K(X), we denote

〈〈ϕ, η〉〉 := 〈ϕ,R−1η〉 =
∑

x∈τ(η)

ϕ(x, s(x))) =

∫
X

ϕ(x, s(x))

s(x)
dη(x).

Then, each function F ∈ FC∞b (D(X̂),K(X)) has the form

F (η) = g
(
〈〈ϕ1, η〉〉, . . . , 〈〈ϕN , η〉〉

)
, η ∈ K(X), (4.2)

with g, ϕ1 . . . , ϕN and N as in (4.1).

We note that FC∞b (D(X̂),Γ(X̂)) is a dense subset of L2(Γ(X̂), ζ) for

any probability measure ζ on Γ(X̂). Hence, FC∞b (D(X̂),K(X)) is a dense
subset of L2(K(X), µ) for any probability measure µ on K(X), in particular,

FC∞b (D(X̂),K(X)) is dense in L2(K(X),G).
For a function F of the form (4.2), v ∈ C∞0 (X → X), h ∈ C0(X), and

η ∈ K(X), we easily calculate:

(∇int
v F )(η)

=

N∑
i=1

(∂ig)
(
〈〈ϕ1, η〉〉, . . . , 〈〈ϕN , η〉〉

) ∑
x∈τ(η)

〈∇y
∣∣
y=x

ϕi(y, s(x)), v(x)〉X

=

N∑
i=1

(∂ig)
(
〈〈ϕ1, η〉〉, . . . , 〈〈ϕN , η〉〉

)
×
∫
X

1

s(x)
〈∇y

∣∣
y=x

ϕi(y, s(x)), v(x)〉X dη(x),

(∇ext
h F )(η)

=

N∑
i=1

(∂ig)
(
〈〈ϕ1, η〉〉, . . . , 〈〈ϕN , η〉〉

) ∑
x∈τ(η)

∂

∂u

∣∣∣
u=s(x)

ϕ(x, u)s(x)h(x)

=

N∑
i=1

(∂ig)
(
〈〈ϕ1, η〉〉, . . . , 〈〈ϕN , η〉〉

) ∫
X

∂

∂u

∣∣∣
u=s(x)

ϕ(x, u)h(x) dη(x).

Hence,

(∇intF )(η, x) =

N∑
i=1

(∂ig)
(
〈〈ϕ1, η〉〉, . . . , 〈〈ϕN , η〉〉

) 1

s(x)
∇y
∣∣
y=x

ϕi(y, s(x)),

(4.3)

(∇extF )(η, x) =

N∑
i=1

(∂ig)
(
〈〈ϕ1, η〉〉, . . . , 〈〈ϕN , η〉〉

) ∂
∂u

∣∣∣
u=s(x)

ϕ(x, u). (4.4)

Let F : K(X)→ R, η ∈ K(X), and x ∈ τ(η). We define

(∇Xx F )(η) :=∇y
∣∣
y=x

F (η − s(x)δx + s(x)δy), (4.5)

(∇R∗
+
x )(η) :=

d

du

∣∣∣
u=s(x)

F (η − s(x)δx + uδx), (4.6)
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provided the derivatives on the right hand side of (4.5) and (4.6) exist. Here
the variable y is from X, ∇y is the usual gradient on X in the y variable,
and the variable u is from R∗+. The following simple result is proven in [13].

Lemma 4.1. For each F ∈ FC∞b (D(X̂),K(X)), η ∈ K(X), and x ∈ τ(η), we
have

(∇intF )(η, x) =
1

s(x)
(∇Xx F )(η), (4.7)

(∇extF )(η, x) = (∇R∗
+
x F )(η). (4.8)

We fix a measurable function c : R∗+ → [0,∞) which is locally bounded.
We define symmetric bilinear forms on L2(K(X),G) by

E int(F,G) :=

∫
K(X)

〈(∇intF )(η), c(s(·))(∇intG)(η)〉T int
η (M) dG(η),

=

∫
K(X)

dG(η)

∫
X

dη(x)
〈
(∇intF )(η, x), c(s(x))(∇intG)(η, x)〉X , (4.9)

Eext(F,G) :=

∫
K(X)

〈(∇extF )(η), (∇extG)(η)〉T ext
η (M) dG(η), (4.10)

EM(F,G) := E int(F,G) + Eext(F,G), (4.11)

where F,G ∈ FC∞b (D(X̂),K(X)). It follows from formulas (4.3) and (4.4)

that, for each F ∈ FC∞b (D(X̂),K(X)), there exist a constant C1 > 0, a set
A ∈ Bc(X) and an interval [a, b] with 0 < a < b <∞ such that

max{‖∇intF (η, x)‖X , |∇extF (η, x)|} ≤ C1 χA(x)χ[a,b](s(x)),

η ∈ K(X), x ∈ τ(η). (4.12)

Since the function c is locally bounded, there exists a constant C2 > 0 such
that

c(s(x))χ[a,b](s(x)) ≤ C2, η ∈ K(X), x ∈ τ(η). (4.13)

Therefore, by (3.7), (4.12), and (4.13), the integrals in (4.9) and (4.10) indeed

make sense and are finite for any F,G ∈ FC∞b (D(X̂),K(X)).
Using Lemma 4.1, we may also give an equivalent representation of the

bilinear forms E int, Eext.

Lemma 4.2. For any F,G ∈ FC∞b (D(X̂),K(X)),

E int(F,G) =

∫
K(X)

dG(η)

∫
X̂

dx ds e−s
c(s)

s2

〈
∇xF (η + sδx),∇xG(η + sδx)

〉
X
,

(4.14)

Eext(F,G) =

∫
K(X)

dG(η)

∫
X̂

dx ds e−s
(
d

ds
F (η + sδx)

)(
d

ds
G(η + sδx)

)
.

(4.15)

Proof. Formulas (4.14), (4.15) directly follow from Corollary 3.2, Lemma 4.1,
and formulas (4.9), (4.10). �
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The lemma below shows that the introduced symmetric bilinear forms
are well defined on L2(K(X),G).

Lemma 4.3. Let F,G ∈ FC∞b (D(X̂),K(X)) and let F = 0 G-a.e. Then
E](F,G) = 0, ] = int, ext,M.

Proof. For each A ∈ Bc(X), making use of Corollary 3.2, we get∫
K(X)

dG(η)

∫
X̂

dx ds e−s|F (η + sδx)|χA(x) =

∫
K(X)

dG(η) |F (η)| η(A) = 0.

Hence F (η+sδx) = 0 dG(η) dx ds-a.e. on K(X)×X̂. From here and Lemma 4.2,
the statement easily follows. �

Lemma 4.4. For ] = int, ext,M, the bilinear form (E],FC∞b (D(X̂),K(X))) is
a pre-Dirichlet form on L2(K(X),G) (i.e., if it is closable, then its closure is
a Dirichlet form).

Proof. The assertion follows, by standard methods, directly from [18, Chap. I,
Proposition 4.10] (see also [18, Chap. II, Exercise 2.7]). �

Analogously to (4.5), (4.6), we define, for a function F : K(X) → R,
η ∈ K(X), and x ∈ τ(η),

(∆X
x F )(η) := ∆y

∣∣
y=x

F (η − s(x)δx + s(x)δy), (4.16)

(∆
R∗

+
x F )(η) :=

(
d2

du2
− d

du

) ∣∣∣
u=s(x)

F (η − s(x)δx + uδx). (4.17)

Here and below, ∆ denotes the usual Laplacian on X (∆y denoting the Lapla-

cian in the y variable). Explicitly, for a function F ∈ FC∞b (D(X̂),K(X)) of
the form (4.2), we get

(∆X
x F )(η) =

N∑
i,j=1

(∂i∂jg)(〈〈ϕ1, η〉〉, . . . , 〈〈ϕN , η〉〉)

× 〈∇y
∣∣
y=x

ϕi(y, s(η, x)),∇y
∣∣
y=x

ϕj(y, s(x))〉X

+

N∑
i=1

(∂ig)(〈〈ϕ1, η〉〉, . . . , 〈〈ϕN , η〉〉)∆y

∣∣
y=x

ϕi(y, s(x)), (4.18)

and similarly, we calculate (∆
R∗

+
x F )(η).

Proposition 4.5. For each F ∈ FC∞b (D(X̂),K(X)), we define

(LintF )(η) :=

∫
X

dη(x)
c(s(x))

s(x)2
(∆X

x F )(η), (4.19)

(LextF )(η) :=

∫
X

dη(x) (∆
R∗

+
x F )(η), η ∈ K(X), (4.20)

LMF := Lint
1 F + Lext

1 F. (4.21)
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Then, for ] = int, ext,M, (L],FC∞b (D(X̂),K(X))) is a symmetric operator
in L2(K(X),G) which satisfies

E](F,G) = (−L]F,G)L2(K(X),G) , F,G ∈ FC∞b (D(X̂),K(X)).

The bilinear form (E],FC∞b (D(X̂),K(X))) is closable on L2(K(X),G) and
its closure, denoted by (E], D(E])), is a Dirichlet form. The operator

(−L],FC∞b (D(X̂),K(X)))

has Friedrichs’ extension, which we denote by (−L], D(L])).

Proof. We first note that, for a fixed F ∈ FC∞b (D(X̂),K(X)), there exist
A ∈ Bc(X) and an interval [a, b] with 0 < a < b <∞ such that the functions

X̂ 3 (x, s) 7→ ∇xF (η + sδx), X̂ 3 (x, s) 7→ d

ds
F (η + sδx)

vanish outside the set A×[a, b]. Let ] = int and let F,G ∈ FC∞b (D(X̂),K(X)).
Using Lemma 4.2 and integrating by parts in the x variable, we get

E int(F,G) =

∫
K(X)

dG(η)

∫
X̂

dx ds e−s
c(s)

s2

(
−∆xF (η + sδx)

)
G(η + sδx).

(4.22)
Note that, for F of the form (4.2), we have

(∆xF )(η + sδx)

=

N∑
i,j=1

(∂i∂jg)
(
〈〈ϕ1, η〉〉+ ϕ1(x, s), . . . , 〈〈ϕN , η〉〉+ ϕN (x, s)

)
(4.23)

× 〈∇xϕi(x, s),∇xϕj(x, s)〉X

+

N∑
i=1

(∂ig)
(
〈〈ϕ1, η〉〉+ ϕ1(x, s), . . . , 〈〈ϕN , η〉〉+ ϕN (x, s)

)
∆xϕi(x, s).

(4.24)

Hence, the function under the sign of integral on the right hand side of (4.22)
is integrable. By Corollary 3.2, (4.18), (4.19), (4.22), and (4.24), we get

E int(F,G) =

∫
K(X)

dG(η)

∫
X̂

dη(x)
c(s(x))

s(x)2
(−∆X

x F )(η, x)G(η)

=

∫
K(X)

(−LintF )(η)G(η) dG(η). (4.25)

By (4.18) and the local boundedness of the function c, there exist C3 > 0
and A ∈ B0(X) such that

c(s(x))

s(x)2
|(∆xF )(η)| ≤ C3χA(x), η ∈ K(X), x ∈ τ(η).

Hence, by (3.7) and (4.19), we get LintF ∈ L2(K(X),G). Thus, the bilinear

form (E int,FC∞b (D(X̂),K(X))) has L2-generator. Hence, the statement of
the proposition regarding ] = int holds.
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The proof for ] = ext (and so also for ] = M) is similar. �

Remark 4.6. Let us quickly note some natural choices of the coefficient func-
tion c(s). Choosing c(s) = 1, the intrinsic Dirichlet form becomes the closure
of the bilinear form

E int(F,G) :=

∫
K(X)

〈(∇intF )(η), (∇intG)(η)〉T int
η (K) dG(η).

The choice of c(s) = s yields, in fact, the Dirichlet form which is associated
with a diffusion process on K(X) of the type η(t) =

∑∞
i=1 siδxi(t), where

(xi(t))
∞
i=1 are independent Brownian motions on X, see [7]. When we choose

c(s) = s2, the generator of the intrinsic Dirichlet form becomes (see (4.19))

(LintF )(η) =

∫
X

dη(x) (∆X
x F )(η).

Below we denote by FC∞b (D(X),K(X)) the set of the functions on K(X)
which are restrictions of functions from FC∞b (D(X),M(X)) to K(X), i.e.,
they have the form (2.8) with η ∈ K(X). We note that FC∞b (D(X),K(X))
is a dense subset of L2(K(X), µ) for any probability measure µ on K(X)
(see [6, Corollary 6.2.8] for a proof of this rather obvious statement). In
particular, FC∞b (D(X),K(X)) is dense in L2(K(X),G). We finish this section
with the following proposition.

Proposition 4.7. Assume that the function c satisfies∫
R∗

+

c(s)e−s ds <∞. (4.26)

For ] = int, ext,M, we have

FC∞b (D(X),K(X)) ⊂ D(E]), (4.27)

and for any F,G ∈ FC∞b (D(X),K(X)), E](F,G) is given by the respective
formula in (4.9)–(4.11).

Proof. For F ∈ D(E]), denote E](F ) := E](F, F ). On D(E]) we consider the
norm

‖F‖D(E]) := E](F )1/2 + ‖F‖L2(K(X),G) . (4.28)

Let F ∈ FC∞b (D(X),K(X)), and for simplicity of notation, assume that F
is of the form F (η) = g(〈f, η〉), where g ∈ C∞b (R) and f ∈ D(X). For each
n ∈ N, we fix any function un ∈ C∞(R) such that

χ[1/n,∞) ≤ un ≤ χ[1/(2n),∞) (4.29)

and

|u′n(t)| ≤ 4nχ[1/(2n), 1/n](t), t ∈ R. (4.30)

For n ∈ N, let vn ∈ C∞(R) be such that

χ(−∞,n+1] ≤ vn ≤ χ(−∞,n+2] (4.31)

and

|v′n(t)| ≤ 2χ[n+1, n+2](t), t ∈ R. (4.32)
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We define

hn(s) := sun(s)vn(s), s ∈ R∗+, n ∈ N, (4.33)

and

ϕn(x, s) := f(x)hn(s), (x, s) ∈ X̂, n ∈ N. (4.34)

Note that hn ∈ C∞0 (R∗+) and ϕn ∈ D(X̂). Let

Fn(η) := g(〈〈ϕn, η〉〉), η ∈ K(X), n ∈ N, (4.35)

each Fn being an element of FC∞b (D(X̂),K(X)). For each η ∈ K(X),

〈〈ϕn, η〉〉 =
∑

x∈τ(η)

f(x)s(x)un(s(x))vn(s(x))→ 〈f, η〉 as n→∞. (4.36)

Hence, by the dominated convergence theorem, Fn → F in L2(K(X),G).
Note that

Fn(η + sδx) = g(〈〈ϕn, η〉〉+ ϕn(x, s)), η ∈ K(X), (x, s) ∈ X̂. (4.37)

Using Lemma 4.2 and formulas (4.29)–(4.37), one can easily show that

E](Fn − Fm)→ 0 as n,m→∞. (4.38)

Since (E], D(E])) is a closed bilinear form on L2(K(X),G), we therefore have
F ∈ D(E]), and furthermore E](Fn) → E](F ) as n → ∞. From here, analo-
gously to the proof of (4.38), we conclude that E](F ) is given by the respective
formula in (4.9)–(4.11) with G = F .

The statement of the proposition about E](F,G) for general F,G ∈
FC∞b (D(X),K(X)) follows from the above statement about E](F ) and the
polarization identity. �

Remark 4.8. Let ] = int, ext,M. For ] = int,M, assume that condition (4.26)
is satisfied and the dimension d of the underlying space X is ≥ 2. In the
forthcoming paper [7], for ] = int, ext,M, we will prove the existence of a
conservative diffusion process on K(X) (i.e., a conservative strong Markov
process with continuous sample paths in K(X)) which is properly associated
with the Dirichlet form (E], D(E])), see [18] for details on diffusion processes
properly associated with a Dirichlet form. In particular, this diffusion process
is G-symmetric and has G as an invariant measure.

Remark 4.9. Let ] = int, ext,M. Consider the Dirichlet form (E], D1(E]))
which is defined as the closure of the bilinear form (E],FC∞b (D(X),K(X))).
By Proposition 4.7, the Dirichlet form (E], D(E])) is an extension of the
Dirichlet form (E], D1(E])), i.e., D1(E]) ⊂ D(E]). So, there is a natural
question whether these Dirichlet forms coincide, i.e., D1(E]) = D(E]), or,
equivalently, whether the set FC∞b (D(X),K(X)) is dense in in the space
D(E]) equipped with norm (4.28). We do not expect a positive answer to
this question. Furthermore, we do not expect the existence of a conservative
diffusion process on K(X) which is properly associated with the Dirichlet
form (E], D1(E])).
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5. Essential self-adjointness of the generators

In this section, for ] = int, ext,M, we will discuss the essential self-adjointness
of the operator (L], D(L])) on the domain FC∞b (D(X̂),K(X)).

Theorem 5.1. Let ] = int, ext,M. Let the function c : R∗+ → [0,∞) be mea-
surable and locally bounded. For ] = M, assume additionally that

c(s) = a1s+ a2s
2 + a3s

3 (5.1)

for some ai ≥ 0, i = 1, 2, 3, max{a1, a2, a3} > 0. Then the operator (L],

FC∞b (D(X̂),K(X))) is essentially self-adjoint on L2(K(X),G).

Proof. Fix any F ∈ FC∞b (D(X̂),Γ(X̂)) and γ ∈ Γ(X̂). Consider the function

X̂ \ γ 3 (x, s) 7→ F (γ + δ(x,s)).

It is evident that this function admits a unique extension by continuity to the
whole space X̂. We denote the resulting function by F (γ + δ(x,s)), although

γ + δ(x,s) is not necessarily an element of Γ(X̂). Note that F (γ + δ(x,s)) is a

smooth functions of (x, s) ∈ X̂.
We preserve the notation (E], D(E])) for the realization of the respective

Dirichlet form on Γpf (X̂). Thus, (E], D(E])) is the closure of the bilinear form

(E],FC∞b (D(X̂),Γ(X̂)))

on L2(Γ(X̂), π). Furthermore, by the counterpart of Lemma 4.2 for the do-
main
FC∞b (D(X̂),K(X)), we get, for any F,G ∈ FC∞b (D(X̂),Γ(X̂)),

E int(F,G)

=

∫
Γpf (X̂)

dπ(γ)

∫
X̂

dx ds e−s
c(s)

s2

〈
∇xF (γ + δ(x,s)),∇xG(γ + δ(x,s))

〉
X
,

Eext(F,G)

=

∫
Γpf (X̂)

dπ(γ)

∫
X̂

dx ds e−s
(
d

ds
F (γ + δ(x,s))

)(
d

ds
G(γ + δ(x,s))

)
,

EK(F,G) = E int(F,G) + Eext(F,G). (5.2)

We keep the notation (L], D(L])) for the generator of the closed bilinear
form (E], D(E])) on L2(Γpf , π). We easily conclude from Proposition 4.5 that

FC∞b (D(X̂),Γ(X̂)) ⊂ D(L])

and for each F ∈ FC∞b (D(X̂),Γ(X̂)) and γ ∈ Γ(X̂)

(LintF )(γ) =

∫
X̂

dγ(x, s)
c(s)

s
(∆X

x F )(γ), (5.3)

(LextF )(γ) =

∫
X̂

dγ(x, s) s (∆
R∗

+
x F )(γ), (5.4)

(LKF )(γ) = (LintF )(γ) + (LextF )(γ), (5.5)
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with

(∆X
x F )(γ) :=∆y

∣∣
y=x

F (γ − δ(x,s) + δ(y,s)),

(∆
R∗

+
x F )(γ) :=

(
d2

du2
− d

du

)∣∣∣
u=s

F (γ − δ(x,s) + δ(x,u)).

We equivalently have to prove that the symmetric operator (L],

FC∞b (D(X̂),Γ(X̂))) is essentially self-adjoint on L2(Γ(X̂), π). Denote by

(H], D(H])) the closure of this symmetric operator on L2(Γ(X̂), π). So we
have to prove that the operator (H], D(H])) is self-adjoint.

It is not hard to check by approximation that, for each ϕ ∈ D(X̂)
and n ∈ N, F = 〈ϕ, ·〉n ∈ D(H]) and (H]F )(γ) is given by the right hand
sides of formulas (5.3)–(5.5), respectively. Hence, by the polarization identity
(e.g. [3, Chap. 2, formula (2.17)]), we have

〈ϕ1, ·〉 · · · 〈ϕn, ·〉 ∈ D(H]), ϕ1, . . . , ϕn ∈ D(X̂), n ∈ N, (5.6)

and again the action of H] onto a function F as in (5.6) is given by the right
hand side of formulas (5.3)–(5.5), respectively. Let P denote the set of all

functions on Γ(X̂) which are finite sums of functions as in (5.6) and constants.

Thus, P is a set of polynomials on Γ(X̂), and P ⊂ D(H]). Furthermore,

(−H]F,G)L2(Γ(X̂),π) = E](F,G), F,G ∈ P, ] = int, ext,M. (5.7)

In formula (5.7), E](F,G) is given by formulas (5.2).
For a real separable Hilbert space H, we denote by F(H) the symmetric

Fock space over H. Thus, F(H) is the real Hilbert space

F(H) =

∞⊕
n=0

F (n)(H),

where F (0)(H) := R, and for n ∈ N, F (n)(H) coincides with H�n as a set,
and for any f (n), g(n) ∈ F (n)(H)

(f (n), g(n))F(n)(H) := (f (n), g(n))H�n n! .

Here � stands for symmetric tensor product.

Recall the measure κ on X̂ defined by formulas (3.2), (3.3). Let

I : L2(Γ(X̂), π)→ F(L2(X̂,κ)) (5.8)

denote the unitary isomorphism which is derived through multiple stochastic
integrals with respect to the centered Poisson random measure on X̂ with
intensity measure κ, see e.g. [27]. Denote by P̃ the subset of F(L2(X̂,κ))
which is the linear span of vectors of the form

ϕ1 � ϕ2 � · · · � ϕn, ϕ1, . . . , ϕn ∈ D(X̂), n ∈ N

and the vacuum vector Ψ = (1, 0, 0, . . . ). For any ϕ ∈ D(X̂), denote by Mϕ

the operator of multiplication by the function 〈ϕ, ·〉 in L2(Γ(X̂), π). Using
the representation of the operator IMϕI

−1 as a sum of creation, neutral, and
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annihilation operators in the Fock space (see e.g. [27]), we easily conclude

that IP = P̃.

We define a bilinear form (Ẽ], P̃) by

Ẽ](f, g) := E](I−1f, I−1g), f, g ∈ P̃

on F(L2(X̂,κ)).

For each (x, s) ∈ X̂, we define an annihilation operator at (x, s) as
follows:

∂(x,s) : P̃ → P̃

is the linear map given by

∂(x,s)Ψ := 0, ∂(x,s)ϕ1�ϕ2�· · ·�ϕn :=

n∑
i=1

ϕi(x, s)ϕ1�ϕ2�· · ·�ϕ̌i�· · ·�ϕn,

(5.9)
where ϕ̌i denotes the absence of ϕi. We will preserve the notation ∂(x,s) for

the operator I∂(x,s)I
−1 : P → P. This operator admits the following explicit

representation:

∂(x,s)F (γ) = F (γ + δ(x,s))− F (γ)

for π-a.a. γ ∈ Γ(X̂), see e.g. [10, 20]. Note that

∇xF (γ + δ(x,s)) = ∇x
(
F (γ + δ(x,s))− F (γ)

)
,

d

ds
F (γ + δ(x,s)) =

d

ds

(
F (γ + δ(x,s))− F (γ)

)
.

Hence, by (5.2), for any F,G ∈ P,

E int(F,G) =

∫
Γ(X̂)

dπ(γ)

∫
X̂

dx ds e−s
c(s)

s2

〈
∇x ∂(x,s)F (γ),∇x ∂(x,s)G(γ)

〉
X
,

Eext(F,G) =

∫
Γ(X̂)

dπ(γ)

∫
X̂

dx ds e−s
(
∂

∂s
∂(x,s)F (γ)

)(
∂

∂s
∂(x,s)G(γ)

)
,

EM(F,G) = E int(F,G) + Eext(F,G).

Hence, for any f, g ∈ P̃,

Ẽ int(f, g) =

∫
X̂

dκ(x, s)
c(s)

s

d∑
i=1

(
∂

∂xi
∂(x,s)f,

∂

∂xi
∂(x,s)g

)
F(L2(X̂,κ))

,

Ẽext(f, g) =

∫
X̂

dκ(x, s) s

(
∂

∂s
∂(x,s)f,

∂

∂s
∂(x,s)g

)
F(L2(X̂,κ))

,

ẼM(f, g) = Ẽ int(f, g) + Ẽext(f, g). (5.10)
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Consider the bilinear forms

Eint(ϕ,ψ) :=

∫
X̂

dκ(x, s)
c(s)

s

〈
∇xϕ(x, s),∇xψ(x, s)

〉
X
,

Eext(ϕ,ψ) :=

∫
X̂

dκ(x, s) s

(
∂

∂s
ϕ(x, s)

)(
∂

∂s
ψ(x, s)

)
,

EM(ϕ,ψ) := Eint(ϕ,ψ) + Eext(ϕ,ψ), ϕ, ψ ∈ D(X̂), (5.11)

on L2(X̂,κ). We easily calculate the L2-generators of these bilinear forms:

E](ϕ,ψ) = (−L]ϕ,ψ)L2(X̂,κ), ϕ, ψ ∈ D(X̂), (5.12)

where for ϕ ∈ D(X̂)

(Lintϕ)(x, s) =
c(s)

s
∆xϕ(x, s),

(Lextϕ)(x, s) = s

(
∂2

∂s2
− ∂

∂s

)
ϕ(x, s),

LMϕ = Lintϕ+ Lextϕ =
c(s)

s
∆xϕ(x, s) + s

(
∂2

∂s2
− ∂

∂s

)
ϕ(x, s). (5.13)

Let us now recall the notion of a differential second quantization. Let
(A,D) be a densely defined symmetric operator in a real, separable Hilbert
space H. We denote by Falg(D) the subset of the Fock space F(H) which is
the linear span of the vacuum vector Ψ and vectors of the form ϕ1�ϕ2�· · ·�
ϕn, where ϕ1, . . . , ϕn ∈ D and n ∈ N. The differential second quantization
dExp(A) is defined as the symmetric operator in F(H) with domain Falg(D)
which acts as follows:

dExp(A)Ψ := 0,

dExp(A)ϕ1 � ϕ2 � · · · � ϕn :=

n∑
i=1

ϕ1 � ϕ2 � · · · � (Aϕi)� · · · � ϕn.

(5.14)

By e.g. [3, Chap. 6, subsec. 1.1], if the operator (A,D) is essentially self-
adjoint on H, then the differential second quantization (dExp(A),Falg(D))
is essentially self-adjoint on F(H).

Now, we note that P̃ = Falg(D(X̂)). By (5.9)–(5.14) (see also [3, Chap. 6,
Sect. 1]), an easy calculation shows that

Ẽ](f, g) = (dExp(−L])f, g)F(L2(X̂,κ)) , f, g ∈ P̃, ] = int, ext,M.

Hence, by (5.7),

H̃]f = dExp(L])f, f ∈ P̃, ] = int, ext,M. (5.15)

Here H̃] := IH]I−1. To prove the theorem, it suffices to show that the
operator (H],P) is essentially self-adjoint on L2(K(X),G), or equivalently

the operator (H̃], P̃) is essentially self-adjoint on F(L2(X̂,κ)). By (5.15),
the theorem will follow from the lemma below. �
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Lemma 5.2. Under the assumptions of Theorem 5.1, the operator (L],D(X̂))

is essentially self-adjoint on L2(X̂,κ), ] = int, ext,M.

Proof. We will only discuss the hardest case ] = M. We denote by (LM, D(LM))

the closure of the symmetric operator (LM,D(X̂)) on L2(X̂,κ). We denote
by S(X) the Schwartz space of real-valued, rapidly decreasing functions on
X (see e.g. [23, Sect. V.3]).

Claim. For each f ∈ S(X) and k ∈ N, the function ϕ(x, s) = f(x)sk

belongs to D(LM), and LMϕ is given by the right hand side of (5.13).
Indeed, for any functions f ∈ D(X) and g ∈ C∞0 (R∗+), we have f(x)g(s) ∈

D(X̂) ⊂ D(LK). Hence, by approximation, we can easily conclude that, for
any functions f ∈ S(X) and g ∈ C∞0 (R∗+), we have f(x)g(s) ∈ D(LK).

Fix any function u ∈ C∞(R) such that χ[1,∞) ≤ u ≤ χ[1/2,∞). Let

C4 := max
t∈[1/2, 1]

max{ |u′(t)|, |u′′(t)| } <∞.

For n ∈ N, let un(t) := u(nt), t ∈ R. Then

χ[1/n,∞) ≤ un ≤ χ[1/(2n),∞) (5.16)

and

|u′n(t)| ≤ C4 nχ[1/(2n), 1/n](t), |u′′n(t)| ≤ C4 n
2χ[1/(2n), 1/n](t), t ∈ R, n ∈ N.

(5.17)
We also fix any function v ∈ C∞(R) such that χ(−∞, 1] ≤ v ≤ χ(−∞, 2]. For
n ∈ N, set vn(t) := v(t− n), t ∈ R. Hence

χ(−∞, n+1] ≤ vn ≤ χ(−∞, n+2], (5.18)

and for some C5 > 0

max{ |v′n(t)|, |v′′n(t)| } ≤ C5 χ[n+1, n+2], t ∈ R, n ∈ N. (5.19)

We fix any k ∈ N and set

gn(s) := skun(s)vn(s), s ∈ R∗+, n ∈ N. (5.20)

Clearly, gn ∈ C∞0 (R∗+). We fix f ∈ S(X) and set

ϕn(x, s) := f(x)gn(s), (x, s) ∈ X̂, n ∈ N. (5.21)

Thus, ϕn ∈ D(LK). By the dominated convergence theorem,

ϕn(x, s)→ ϕ(x, s) := f(x)sk in L2(X̂,κ) as n→∞. (5.22)

We fix any ψ ∈ D(X̂). Then

(−LMϕn, ψ)L2(X̂,κ) = EM(ϕn, ψ), n ∈ N. (5.23)

It is easy to see that

lim
n→∞

EM(ϕn, ψ) = EM(ϕ,ψ). (5.24)

In (5.23) and (5.24) , EM(·, ·) is given by the formulas in (5.11). Hence

lim
n→∞

(LMϕn, ψ)L2(X̂,κ) = (LMϕ,ψ)L2(X̂,κ). (5.25)
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We stress that, in (5.25), the function LMϕ ∈ L2(X̂,κ) is given by formulas
in (5.13), however we do not yet state that ϕ ∈ D(LM).

By using (5.16)–(5.21), it can be easily shown that

sup
n∈N
‖LMϕn‖L2(X̂,κ) <∞.

Hence, by the Banach–Alaoglu and Banach–Saks theorems (see e.g. [18, Ap-
pendix, Sect. 2]), there exists a subsequence (ϕnj )

∞
j=1 of (ϕn)∞n=1 such that

the sequence (LMξi)
∞
i=1 converges in L2(X̂,κ). Here

ξi :=
1

i

i∑
j=1

ϕnj , i ∈ N.

We note that, for each i ∈ N, ξi ∈ D(X̂), and by (5.22)

ξi → ϕ in L2(X̂,κ) as i→∞. (5.26)

Furthermore, by (5.25),

lim
i→∞

(LMξi, ψ)L2(X̂,κ) = (LMϕ,ψ)L2(X̂,κ), ψ ∈ D(X̂).

Hence
LMξi → LMϕ in L2(X̂,κ) as i→∞. (5.27)

By (5.26) and (5.27), we conclude that ξi → ϕ in the graph norm of the
operator (LM, D(LM)). Thus, the claim is proven.

We next note that

L2(X̂,κ) = L2(X, dx)⊗ L2(R∗+, λ) (5.28)

(recall (3.2)). Evidently, S(X) is a dense subset of L2(X, dx). Furthermore,
the functions {sk}∞k=1 form a total set in L2(R∗+, λ) (i.e., the linear span of
this set is dense in L2(R∗+, λ)). Indeed, consider the unitary operator

L2(R∗+, λ) 3 g(s) 7→ g(s)

s
∈ L2(R∗+, se−s ds).

Under this unitary operator, the set {sk}∞k=1 goes over into the set {sk}∞k=0.
But the measure χR∗

+
(s)se−s ds on (R,B(R)) has Laplace transform which is

analytic in a neighborhood of zero, hence the set of polynomials is dense in
L2(R∗+, se−s ds). Therefore, the set

Υ := l. s.{f(x)sk | f ∈ S(X), k ∈ N}

is dense in L2(X̂,κ). Here l. s. denotes the linear span. By the Claim, the set
Υ is a subset of D(LM). Note also that the operator LM maps the set Υ into
itself.

Since the symmetric operator (LM, D(LM)) is an extension of the oper-
ator (LM,Υ), to prove that (LM, D(LM)) is a self-adjoint operator, it suffices
to prove that the operator (LM,Υ) is essentially self-adjoint.

We denote by L2
C(X̂,κ) the complex Hilbert space of all complex-valued

κ-square-integrable functions on X̂. Let ΥC denote the complexification of
Υ, i.e., the set of all functions of the form ϕ1 + iϕ2, where ϕ1, ϕ2 ∈ Υ.
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Analogously, we define L2
C(X, dx) and SC(X), the Schwartz space of complex-

valued, rapidly decreasing functions on X. We extend the operator LM by
linearity to ΥC.

Recall that the Fourier transform determines a unitary operator

F : L2
C(X, dx)→ L2

C(X, dx).

This operator leaves the Schwartz space SC(X) invariant, and furthermore

F : SC(X)→ SC(X)

is a bijective mapping. Under F, the Laplace operator ∆ goes over into the
operator of multiplication by −‖x‖2X , see e.g. [24, Sect. IX.1]. Using (5.28),
we obtain the unitary operator

F⊗ 1 : L2
C(X̂,κ)→ L2

C(X̂,κ).

Here 1 denotes the identity operator. Clearly F⊗ 1 : ΥC → ΥC is a bijective
mapping. We define an operator RM : ΥC → ΥC by

RM := (F⊗ 1)LM(F⊗ 1)−1.

Explicitly, for each ϕ ∈ ΥC,

(RMϕ)(x, s) = −c(s)
s
‖x‖2X ϕ(x, s) + s

(
∂2

∂s2
− ∂

∂s

)
ϕ(x, s). (5.29)

It suffices to prove that the operator (RM,ΥC) is essentially self-adjoint on

L2
C(X̂,κ).

Since the operator (RM,ΥC) is non-positive, by the Nussbaum theorem
[21], it suffices to prove that, for each function

ϕ(x, s) = f(x)sk (5.30)

with f ∈ D(X) and k ∈ N,

∞∑
n=1

‖(RM)nϕ‖−1/2n

L2
C(X̂,κ)

=∞. (5.31)

For a function ϕ(x, s) of the form (5.30), by virtue of (5.1) and (5.29), we get

(RMϕ)(x, s)

= −(a1s
k + a2s

k+1 + a3s
k+2)‖x‖2X f(x) + (k(k − 1)sk−1 − ksk)f(x)

= (RM
−1ϕ)(x, s) + (RM

0 ϕ)(x, s) + (RM
1 ϕ)(x, s) + (RM

2 ϕ)(x, s). (5.32)

Here

(RM
−1ϕ)(x, s) = k(k − 1)sk−1f(x),

(RM
0 ϕ)(x, s) = (−a1‖x‖2X − k)skf(x),

(RM
1 ϕ)(x, s) = −a2‖x‖2Xsk+1f(x),

(RM
2 ϕ)(x, s) = −a3‖x‖2Xsk+2f(x). (5.33)
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For l ∈ N, denote

ml :=

∫
R∗

+

sl dλ(s) =

∫ ∞
0

sl−1e−s ds. (5.34)

Since the Laplace transform of the measure χR∗
+

(s)e−s ds on R is analytic in

a neighborhood of zero, there exists a constant C6 ≥ 1 such that

ml ≤ Cl6 l! , l ∈ N. (5.35)

Consider a product RM
i1
· · ·RM

in
ϕ, where i1, . . . , in ∈ {−1, 0, 1, 2}. Denote

by lj the number of the RM
j operators among the operators RM

i1
, . . . ,RM

in
.

Thus, l−1 + l0 + l1 + l2 = n. Note that the function f(x) has a compact
support in X, hence the function ‖x‖2X is bounded on supp(f). Recall also
the estimate

(2j)! ≤ 4j (j!)2, j ∈ N. (5.36)

Hence, by (5.32)–(5.36), we get:

‖RM
i1 · · ·R

M
inϕ‖L2(X̂,κ) ≤ C

n
7 (k−l−1+l1+2l2)! (k−l−1+l1+2l2)2l−1+l0 (5.37)

for some constant C7 > 0 which is independent of l−1, l0, l1, l2, n. Since j! ≤
jj , we get from (5.37)

‖RM
i1 · · ·R

M
inϕ‖L2(X̂,κ) ≤ C

n
7 (k − l−1 + l1 + 2l2)k−l−1+l1+2l2+2l−1+l0

= Cn7 (k − l−1 + l1 + 2l2)k+l−1+l0+l1+2l2

≤ Cn7 (k + 2n)k+2n.

Therefore,

‖(RM)nϕ‖L2
C(X̂,κ) ≤ (4C7)n(k + 2n)k+2n.

From here (5.31) follows. �

Let us recall the notion of a second quantization in a symmetric Fock
space. LetH be a real separable Hilbert space, and let F(H) be the symmetric
Fock space over H. Let B be a bounded linear operator in H, and assume
that the operator norm of B is ≤ 1. We define the second quantization of
B as a bounded linear operator Exp(B) in H which satisfies Exp(B)Ψ := Ψ
(Ψ being the vacuum vector in F(H)) and for each n ∈ N, the restriction of
Exp(B) to F (n)(H) coincides with B⊗n.

Let the conditions of Theorem 5.1 be satisfied. For ] = int, ext,M, recall
the non-positive self-adjoint operator (L], D(L])) in L2(X̂,κ). By Lemma 5.2,

this operator is essentially self-adjoint on D(X̂) and, for each ϕ ∈ D(X̂), L]ϕ
is given by (5.13). Recall the unitary operator I in formula (5.8). In view of

the bijective mapping R : Γpf (X̂) → K(X), we can equivalently treat the
operator I as a unitary operator

I : L2(K(X),G)→ F(L2(X̂,κ)) (5.38)

(recall that the Poisson measure π is concentrated on Γpf (X̂)).
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Corollary 5.3. Let the conditions of Theorem 5.1 be satisfied. Then, for ] =
int, ext,M, we have

IetL
]

I−1 = Exp(etL
]

), t ≥ 0,

i.e., under the unitary isomorphism (5.38), the semigroup (etL
]

)t≥0 with gen-

erator (L], D(L])) goes over into the semigroup (Exp(etL
]

))t≥0 — the second

quantization of the semigroup (etL
]

)t≥0 with generator (L], D(L])).

Proof. It follows from the proof of Theorem 5.1 that

IL]I−1f = dExp(L])f, f ∈ Falg(D(X̂)),

and the operator dExp(L]) is essentially self-adjoint on Falg(D(X̂)). From
here the result immediately follows (cf. e.g. [3, Chap. 6, subsec. 1.1]). �

Remark 5.4. Consider the operator (Lext, D(Lext)). We define the linear op-
erator

Lext
R∗

+
u(s) := s

(
∂2

∂s2
− ∂

∂s

)
u(s), u ∈ C∞0 (R∗+).

It follows from the proof of Lemma 5.2 that this operator is essentially self-
adjoint on L2(R∗+, λ), and we denote by (Lext

R∗
+
, D(Lext

R∗
+

)) the closure of this

operator. Recall that L2(X̂,κ) = L2(X, dx) ⊗ L2(R∗+, λ). Using (5.13), it is
easy to show that

Lext = 1⊗ Lext
R∗

+
.

Using e.g. [25, Chap. XI], we easily conclude that (Lext
R∗

+
, D(Lext

R∗
+

)) is the gen-

erator of the Markov process Y (t) on R+ = [0,∞) given by the following
space-time transformation of the square of the 0-dimensional Bessel process
Q(t):

Y (t) = e−2tQ((e2t − 1)/2).

Note that, for each starting point s > 0, the process Y (t) is at 0 (so that it
has exited R∗+) with probability exp(−s/(1 − e−t)), and once Y (t) reaches
zero it stays there forever (i.e., does not return to R∗+).
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