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Abstract

We suggest a combinatorial classification of metric filtrations in measure spaces; a complete
invariant of such a filtration is its combinatorial scheme, a measure on the space of hierarchies of
the group Z. In turn, the notion of combinatorial scheme is a source of new metric invariants of
automorphisms approximated via basic filtrations. We construct a universal graph endowed with
an adic structure such that every automorphism can be realized in its path space.
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1 Introduction

1.1 Metric filtrations and their applications

This paper deals with applications of the theory of metric filtrations (see [16] and the references
therein) to uniform approximation of automorphisms of measure spaces and the analysis of adic
transformations in path spaces of graphs. Conceptually, it is closely related to the first author’s
work on dyadic and homogeneous sequences of measurable partitions (= filtrations), standardness,
the “scale” metric invariant, etc. (see [8, 9, 10, 12, 11, 15, 17]). Essentially, we pass from homoge-
neous filtrations to arbitrary ones, pose a number of problems on so-called combinatorially definite
(standard) filtrations, and relate them to properties of automorphisms being approximated. On the
other hand, the main example of filtrations is provided by so-called tail filtrations in path spaces of
graded graphs, or, equivalently, spaces of realizations of Markov chains, so we arrive at a realization
of automorphisms as adic transformations (see [13, 14]).

It is characteristic of numerous classification problems in ergodic theory that the most important
objects (automorphisms, group actions) have no nontrivial finite invariants, i.e., metric invariants
arising from finite approximations or finite projections. This means that classification problems are
of purely asymptotic nature. An illustration of this point is, for example, the classical Rokhlin’s
lemma, which says that every aperiodic automorphism (more exactly, every free action of the
group Z with invariant measure) can be approximated with any accuracy in all reasonable metrics
by periodic automorphisms. Hence, to obtain nontrivial invariants of automorphisms, one should
consider infinite sequences of periodic approximations and their invariants.

There are two theories of infinite approximations by periodic transformations: the theory of
weak approximations, in the weak (operator) topology, successfully developed in the 1960s–1970s
by A. Katok, A. Stepin, and others (see [6, 4, 7]), and the theory of uniform approximations,
in the uniform metric, initiated by the first author in the 1960s simultaneously with the theory
of filtrations, i.e., decreasing sequences of σ-algebras or measurable partitions, see the references
above. The theory of uniform approximations and orbit theory were the main applications of the
theory of filtrations. Another important area of application for the theory of filtrations, which
we do not touch upon in this paper, is the theory of stationary filtrations arising as decreasing
sequences of σ-algebras of “pasts” of stationary random processes, or, which is the same, sequences
of preimages of the full σ-algebra under powers of faithful endomorphisms.

In this paper, we explain that a monotone sequence of uniform approximations of an auto-
morphism in a measure space determines, in a natural way, a filtration whose partitions are orbit
partitions of periodic automorphisms. This filtration is special in the sense that it is endowed
with an order and is semihomogeneous; in other words, it inherits two approximation structures:
a coherent ordering of points in almost all elements of all partitions (a linear order in the group Z)
and semihomogeneity, i.e., the uniformness of almost all conditional measures, which follows from
the invariance of the measure under the automorphism. In terms of the theory of graded graphs,
this means that the graph is endowed with a structure of a linear order on the edges entering each
vertex (an “adic structure”), and that the measure on the path space is central, i.e., the conditional
measure on initial segments of paths is uniform. Moreover, a semihomogeneous filtration endowed
with such an order uniquely determines the corresponding automorphism (without order, one can-
not recover the automorphism from the filtration up to isomorphism). From this viewpoint, the
filtration approach and uniform approximation are related to the problem of metric isomorphism
more closely than weak approximation. The study and construction of invariants of automorphisms
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and groups of automorphisms is preceded by the study of invariants of filtrations.
All metric invariants of filtrations fall into two classes: combinatorial (finite) invariants and

transfinite ones. Combinatorial invariants are invariants of all finite fragments of filtrations, i.e.,
invariants of periodic approximations; they are described below and represent some measures on
the space of hierarchies on the group Z. The prospect of obtaining an efficient combinatorial
classification of filtrations described below was observed in [16], but the fact that this classification
problem has indeed turned out to be tame gives hope for further classifications.

Transfinite invariants, whose existence is not obvious, are not combinatorial; their study requires
considering deeper properties of filtrations, related to the notion of standardness or combinatorial
definiteness. Standard, or combinatorially definite, filtrations are filtrations that are uniquely
determined up to metric isomorphism by the combinatorial invariants. For example, a dyadic
standard filtration is a Bernoulli filtration, it is combinatorially definite and can be recovered from
its one-dimensional distribution.

By the lacunary theorem (see [8, 16] and Section 4), every filtration contains a “thinning” that
is already a combinatorially definite filtration; thus, every automorphism becomes combinatorially
definite with respect to some “thinning.” So, we obtain a chain of invariants also for filtrations
that are not combinatorially definite, and for general automorphisms.

The adic dynamics (see [13, 14]), i.e., a special transformation of the path space of a graded
graph, has already given many new nontrivial examples of dynamical systems. For instance, the
Pascal automorphism (whose spectrum is still unknown) is combinatorially definite in the sense of
this paper. In general, adic transformations are of great interest both from theoretical and practical
point of view. Here we suggest constructions of universal graphs on which every automorphism
can be realized as an adic shift. The study of specific automorphisms has already begun (see the
survey [1], and also [2]), but, according to the conclusion of the paper [16] (see also below), the
problem of classification of combinatorially definite filtrations is tame, i.e., there is a manageable
space of classes, or orbits, or complete metric invariants of such filtrations (see the definition of
combinatorial schemes of hierarchies below). This gives a chance to obtain a reasonable combina-
torial classification of measure-preserving automorphisms. One may hope that such an approach
is also possible for actions of other (amenable) groups, primarily for locally finite groups, such
as

∑
Zp, and for the lattices Zd.

1.2 Rokhlin’s lemma, a sequence of uniform approximations, basic fil-
trations

Recall, in a form suitable for our purposes, the well-known Rokhlin’s lemma on approximation of
a measure-preserving aperiodic automorphism by periodic automorphisms in the uniform metric.
The uniform metric on the space of transformations of a space X preserving a measure µ is defined
as follows: given transformations T and T̃ ,

ρ(T, T̃ ) ≡ µ{x ∈ X : Tx 6= T̃ x}.

Lemma 1 (Rokhlin’s lemma). For every ε > 0, every positive integer n ∈ N, and every measure-
preserving aperiodic automorphism T in a Lebesgue space (X,µ) there exists a periodic automor-
phism Tn with period n such that

ρ(T, Tn) <
1

n
+ ε.
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In what follows, it is useful to drop the condition that Tn has period n almost everywhere
and assume that the periods pn(x) of Tn can be different at different points x ∈ X but uniformly
bounded on a subset of full measure. This weaker assertion is even slightly easier to prove than
the classical Rokhlin’s lemma. Denote by ORB(Tn) the measurable partition of the space (X,µ)
into the orbits of Tn; we may assume that almost all elements of this partition are finite sets of
the form {x, Tx, . . . , T kx} endowed with the uniform conditional measure and a linear order such
that the resulting ordered space is isomorphic to an arbitrary interval of the line (we set y < Ty
for every y).

Greater freedom in choosing approximations is needed to construct a coherent sequence of
approximations satisfying the following properties: ρ(Tn, T ) → 0, and the partitions ORB(Tn)
become coarser, i.e., almost every orbit of Tn+1 consists of several orbits of Tn. Besides, for every n
the quotient of ORB(Tn+1) by ORB(Tn) is endowed with a linear order. Let us introduce an
abstract definition for the resulting structure.

Definition 1. A filtration in a Lebesgue space (X,µ) with continuous measure is a decreasing
sequence of measurable partitions Ξ = {ξn}n≥0 with ξ0 = ε being the partition into singletons.
A filtration is said to be ergodic if the measurable intersection

∧
n ξn is the trivial partition, which

is usually denoted by ν.

We introduce the following special properties of filtrations. A filtration is said to

• be locally finite if for every n almost all elements of ξn are finite sets, and the number of
different types of conditional measures on elements of ξn is finite (depending on n);

• be semihomogeneous if the conditional measures on the elements of ξn are uniform for all n;

• induce an order if every element of the quotient partition ξn+1/ξn is endowed with a mea-
surable linear order (measurability means that the set of all points with a given number in the
elements of ξn+1/ξn is measurable); these orders induce a coherent order on the elements of
the partitions ξn, and hence on the classes of the limiting partition

⋂
n ξn (which is in general

not measurable); we assume that the order type is Z for almost all classes.

Filtrations satisfying all these properties are said to be basic.

Definition 2. Let T be an aperiodic automorphism of a Lebesgue space (X,µ). We say that
a basic filtration Ξ = {ξn} of (X,µ) is basic for T if the corresponding order is induced by T and
the limit of ξn is the partition into the orbits of T mod 0.

Of course, for every aperiodic automorphism T there are many basic filtrations. If T is ergodic,
then its basic filtrations are also ergodic. Given a basic filtration for T , one can construct a coherent
sequence of automorphisms Tn approximating T in the sense described above. So, the language of
basic filtrations and that of coherent sequences of approximating automorhisms are equivalent.

2 Invariants of the combinatorial equivalence of filtrations
and combinatorial definiteness of automorphisms

2.1 Combinatorial definiteness of automorphisms

Let A be an arbitrary finite set and {ηi}ni=0 be an ordered finite filtration on this set, the last
partition ηn being trivial (consisting of a single nonempty class). We construct an ordered graded
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tree corresponding to this finite filtration as follows. The vertices of level i in this tree correspond
to the elements of ηi. A vertex of level i + 1 is joined by an edge with a vertex of level i if the
corresponding elements of partitions are nested. The nth level contains a single vertex, while the
vertices of level 0 are the elements of A. The set A is endowed with a linear order: the order from
the definition of a filtration determines an order on the edges joining every vertex with vertices
of the previous level. The obtained graded tree will be called the filtration tree on the set A (see
Fig. 1). The set of all ordered graded finite trees will be denoted by OT . Besides, we will consider
trees with a marked vertex (leaf). The set of all ordered graded finite trees with a marked leaf will
be denoted by OT P.

• • •︸ ︷︷ ︸ • •︸︷︷︸︸ ︷︷ ︸
�︸︷︷︸ • •︸︷︷︸ •︸︷︷︸

︸ ︷︷ ︸︸ ︷︷ ︸

1

Figure 1: A finite filtration and its tree with a marked vertex

Let Ξ = {ξn}n≥0 be a basic filtration on a space (X,µ). For n ≥ 0 and x ∈ X, consider the
ordered graded tree otpn(x) ∈ OT P corresponding to the restriction of the finite filtration {ξi}ni=0

on the element of ξn containing x with the marked leaf corresponding to x. By otn(x) we denote
the same ordered tree without marked vertex. Consider the partition ξ̄n of the space (X,µ) into
the preimages of points under the map otpn. We say that the sequence Ξ̄ of refining partitions
{ξ̄n}n≥0 is associated with the basic filtration Ξ.

Definition 3 (see [9, 16]). We say that a basic filtration Ξ on a space (X,µ) is combinatorially
definite if the sequence of partitions ξ̄n, n ≥ 0, is a basis in the space (X,µ), that is, it converges to
the partition into singletons mod 0 (in more detail, this means that there exists a subset X̃ ⊂ X of
full measure such that for any two points x, y ∈ X̃ there exists n such that x and y lie in different
elements of the partition ξ̄n).

Essentially, this definition singles out a class of basic filtrations that are completely determined,
up to metric isomorphism, by the collection of invariants of their finite fragments. These invariants
are of combinatorial nature, which explains the name. The definition is inspired by another one
(see [16]), which singles out a class of arbitrary (not necessarily basic) filtrations called standard.
The latter definition is, in turn, a generalization of earlier work on standard dyadic and homogeneous
filtrations [9, 15]. The important question of the relation between the notions of combinatorial
definiteness and standardness will be considered later.
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2.2 Combinatorial equivalence of filtrations and the canonical quotient

Definition 4 (see [16]). We say that two basic filtrations Ξ1 = {ξ1n}n≥0 and Ξ2 = {ξ̃2n}n≥0 on
Lebesgue spaces (X1, µ1) and (X2, µ2), respectively, are combinatorially equivalent, or have the
same combinatorial type, if for every n ≥ 0 the finite filtrations {ξ1k}nk=0 of (X1, µ1) and {ξ2k}nk=0 of
(X2, µ2) are metrically isomorphic.

It is clear from the previous definition that for combinatorially definite basic filtrations, combi-
natorial equivalence coincides with metric isomorphism.

Let Ξ be a basic filtration on a space (X,µ). Consider the equivalence relation on X determined
by the associated sequence of measurable partitions Ξ̄: points x and y lie in the same equivalence
class if and only if otpn(x) = otpn(y) for all n ≥ 0. This equivalence relation is measurable and
respects the order, hence we can take the corresponding quotient. The resulting filtration will be
called the canonical quotient of the basic filtration Ξ.

Remark 1. The canonical quotient of a combinatorially definite basic filtration Ξ coincides with Ξ
itself. The canonical quotient of an arbitrary basic filtration Ξ is combinatorially equivalent to Ξ,
but, in general, not metrically isomorphic to Ξ.

Remark 2. If Ξ is a basic filtration for an automorphism T , then the canonical quotient of Ξ
determines a quotient of T . However, unlike the quotient filtration, this quotient automorphism is
not canonical, since it depends on the choice of an approximation.

The canonical projection turns the space of all basic filtrations into a bundle over the space of
all combinatorially definite basic filtrations. A very important and interesting question is whether
the fibers of this bundle are isomorphic in some sense, i.e., whether the bundle is isomorphic to
a direct product.

2.3 Random hierarchies on Z and classification of combinatorially defi-
nite filtrations

Definition 5. A hierarchy on Z is a filtration on the space Z endowed with the counting measure
that is basic for the left shift in the sense of Definition 2. By I we denote the set of all hierarchies
on Z; this is a compact space in the natural topology.

In other words, a hierarchy on Z is a coarsening sequence of partitions of Z such that every
element of every partition is a finite interval of consecutive integers and any two integers lie in the
same element of some partition with a sufficiently large number.

Let Ξ be a basic filtration on a space (X,µ). With almost every point x ∈ X we associate the
hierarchy I(x) on Z determined by the restriction of Ξ to the orbit of x identified with Z in a natural
way (the point Tnx, n ∈ Z, is identified with n). Note that the hierarchy I(x) can be understood
as the inductive limit as n→∞ of the ordered graded trees otpn(x) with marked vertices.

The image of the measure µ under the map I is a shift-invariant measure on the space I. Thus,
a basic filtration Ξ determines an invariant random hierarchy on Z. This measure will be called the
combinatorial scheme of Ξ. A basic filtration Ξ is combinatorially definite if and only if the map I
is injective mod 0. Given an invariant measure ν on the space I, there exists a space (X,µ) and
a basic combinatorially definite filtration Ξ on this space such that ν is the combinatorial scheme
of Ξ.
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Theorem 1. In the class of combinatorially definite filtrations, the combinatorial scheme is a com-
plete metric invariant.

We illustrate the introduced notion with a simplest example. A measure on the space I of
hierarchies is determined by its values on the cylinders, i.e., sets of hierarchies having a fixed
structure on a given element of the partition of level n containing 0. In the case where Ξ is a dyadic
filtration on a Lebesgue space (X,µ), the hierarchies I(x) corresponding to points x of X are
also dyadic. The only shift-invariant measure concentrated on dyadic hierarchies is uniform: all
cylinders determined by elements of the partition of level n have equal probabilities.

Definition 6. We say that an automorphism T of a space (X,µ) is combinatorially definite with
respect to a combinatorial scheme if there is a combinatorially definite basic filtration of T with
this combinatorial scheme.

Theorem 2. Every automorphism is combinatorially definite with respect to some combinatorial
scheme.

The proof of this theorem essentially follows from an analog of the lacunary theorem, see
Section 4, Corollary 1.

The collection of combinatorial schemes with respect to which an automorphism T is combina-
torially definite will be called the combinatorial scheme of T . Some characteristics of this scheme
are metric invariants of the automorphism.

It is of interest to study the behavior of the combinatorial scheme of an automorphism with
respect to various operations (taking a derivative or integral automorphism, the product of auto-
morphisms, etc.).

One can easily see a similarity between this definition and that of the scale of an automorphism
(see [12]), which is exactly one of the invariant characteristics of the combinatorial scheme and the
automorphism itself. In more detail this relation will be discussed elsewhere.

The most interesting class consists of automorphisms with the simplest possible combinatorial
scheme, the dyadic one; it is this scheme that is related to the notion of a measure-preserving
automorphism with complete scale (see [12, 16]). In a later paper [5], the notion of a standard
automorphism was defined (the term is chosen by analogy with the notion of a standard dyadic
filtration introduced in [9]); the definition involves the notion of monotone equivalence in the sense
of Kakutani. Apparently, the standardness of an automorphism in the sense of [5] is close to our
combinatorial definiteness of an automorhism with respect to the dyadic scale.

The concept of the combinatorial scheme of an automorphism also covers substitutional ergodic
theorems related to the scale, see [12].

3 Realization of colored filtrations as tail filtrations on path
spaces of graphs

As already mentioned, adic shifts on path spaces of graded graphs are important examples of
automorphisms of measure spaces. On the other hand, in [13, 14] the first author proved that every
ergodic automorphism has an adic realization.

Theorem 3 ([14]). For every ergodic automorphism T of a Lebesgue space there is a graded graph Γ
endowed with an adic structure and a central measure µ on the path space T (Γ) of Γ such that the
adic shift (T (Γ), µ) is isomorphic to T .
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The language of graded graphs is closely related to the language of basic filtrations. Let Γ be
a graded graph endowed with an adic structure; the space T (Γ) of infinite paths in Γ is equipped
with the tail filtration Ξ = {ξn} determined by the structure of the graph: two paths lie in the
same element of the partition ξn if they coincide starting from the nth level. Let µ be a central
measure on T (Γ) such that almost every path has a successor and a predecessor in the sense of
the adic order; in what follows, such a measure is said to be an essential central measure. Then Ξ
is a basic filtration on the space (T (Γ), µ), the corresponding order being determined by the adic
structure.

Let Γ be a graded graph endowed with an adic structure. With each vertex v of Γ we associate
an ordered graded tree ot(v) ∈ OT according to the following rule. With the vertex of level 0 we
associate the tree consisting of a single vertex. Then we apply the following recursive (on n, where
n ≥ 0) procedure. Let w be a vertex of level n + 1 in Γ, and let (v1, w), . . . , (vk, w) be all edges
leading to w from vertices of level n in the adic order (some vertices vi may be repeated). The
graded tree ot(w) is defined as follows: its root corresponds to the vertex w itself; there are k edges
joining it with the vertices corresponding to v1, . . . , vk (counting multiplicities), the ordered graded
tree ot(vi), i = 1, . . . , k, already defined at the previous step hanging from each of these vertices
as a root. An order on the edges leading from the root is determined by the adic structure of the
graph Γ.

The leaves of the constructed tree ot(w) are in a one-to-one correspondence with the paths
in Γ leading to w from the vertex of level 0, and the order on them corresponds to the adic order.
The graded tree ot(w) in which the leaf corresponding to a path x to w is marked will be denoted
by ot(x).

Thus we have defined a map ot from the set of vertices of the graph Γ to the set OT of ordered
graded trees; we have also defined a map, denoted by the same symbol, that sends finite paths
starting at the vertex of level 0 in Γ to ordered graded trees with marked vertices.

Definition 7. Let Γ be a graded graph endowed with an adic structure. We say that Γ is minimal
if for any two vertices v, w of the same level, the trees ot(v) and ot(w) are different.

Let µ be an essential central measure on the space T (Γ) of infinite paths in Γ. We say that the
measure µ is minimal if almost all infinite paths differ in the graded trees corresponding to their
initial segments (i.e., there exists a subset of full measure in T (Γ) such that for any two paths x
and y from this subset there is n ≥ 1 such that ot(x[n]) 6= ot(y[n]), where x[n] and y[n] are the
initial segments of length n of x and y, respectively).

Proposition 1. A basic filtration Ξ on a space (X,µ) is combinatorially definite if and only if it
is isomorphic to the tail filtration of a minimal graded graph endowed with an adic structure and
an essential central measure on the path space.

Proof. Let Ξ be a combinatorially definite basic filtration. We construct a graded graph in which
the vertices of level n, n ≥ 0, correspond to the different types of ordered trees otn(x), x ∈ X.
Two vertices of neighboring levels are joined by an edge if they correspond to nested ordered trees;
an order on the edges entering each vertex is determined in a natural way by the order of the
corresponding tree. With each point x ∈ X we associate the infinite path in the constructed graph
that passes through the vertices corresponding to the trees otn(x), n ≥ 0, and edges corresponding
to the embeddings of otpn(x) into otpn+1(x). Since Ξ is combinatorially definite, the resulting
map is injective mod 0, and it sends the order of Ξ to the adic order on the graph. It follows that
the pullback of µ under this embedding is a central measure. It is an essential central measure,
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since the filtration is basic. Obviously, the tail filtration of the constructed graph endowed with
this measure and the adic order is isomorphic to the original basic filtration Ξ. The minimality of
the graph follows from the construction: one can easily check that for every vertex v the ordered
graded tree ot(v) is exactly the tree with which v is associated in the construction.

Conversely, assume that we have a minimal graded graph endowed with an adic structure and
Ξ is its tail filtration. If x is a path in this graph, then otn(x) = ot(x[n]), where x[n] is the
initial segment of x of length n. Since the graph is minimal, every path is uniquely determined
by the collection of graded trees otpn(x), n ≥ 0, which means exactly that Ξ is combinatorially
definite.

Remark 3. Let Γ be a graded graph and Ξ be the tail filtration of Γ. If µ is an essential
central measure on the path space T (Γ), then Ξ is a combinatorially definite basic filtration of
the space (T (Γ), µ).

Proposition 1 shows that only a combinatorially definite basic filtration can have an adic real-
ization on a minimal graph. In the case of a basic filtration that is not combinatorially definite,
the construction described in the proof of Proposition 1 determines a quotient of this filtration
isomorphic to the tail filtration of a minimal graph; essentially, this is exactly the canonical quo-
tient. To construct an adic realization of a basic filtration that is not combinatorially definite, it is
convenient to use the language of colored filtrations.

Definition 8. Let ξ be a measurable partition of a space (X,µ). We say that ξ is a colored partition
if the quotient space X/ξ is endowed with a finite measurable partition c[ξ], called a coloring, which
assigns colors to the elements of ξ.

A basic filtration Ξ = {ξn}n≥0 is called a colored filtration if each partition ξn is endowed with
a coloring c[ξn].

Let Ξ be a colored basic filtration of a space (X,µ). For every n ≥ 0 and almost every point
x ∈ X, the ordered trees otpn(x) considered above also become colored: the color of a vertex of
level i is defined as the color of the corresponding element of the partition ξi. Let cotpn(x) be the
colored tree otpn(x) with a marked vertex. The measurable partition of the space (X,µ) into the
preimages of points under the map cotpn will be denoted by c(ξn).

Definition 9. We say that a colored basic filtration Ξ of a space (X,µ) is combinatorially definite
if the sequence of partitions c(ξn), n ≥ 0, is a basis of (X,µ).

Let Γ be a graded graph endowed with an adic structure and Ξ be the tail filtration on the
path space T (Γ). Let µ be an essential central measure on T (Γ), not necessarily minimal. Then
Ξ is a basic filtration on the space (T (Γ), µ). A natural coloring of the elements of the partition
ξn, n ≥ 0, is determined by the vertices of level n in Γ: assign a color to each such vertex, and
define the color of an element of ξn as the color of the vertex of level n lying on the paths from this
element. The colored basic filtration thus defined will be called the canonical colored filtration of
the graph Γ.

Proposition 2. Let Γ be a graded graph endowed with an adic structure and an essential central
measure. Then its canonical colored filtration is combinatorially definite. Conversely, if a Lebesgue
space (X,µ) is endowed with a combinatorially definite colored basic filtration Ξ, then there exists
a graded graph Γ and an essential central measure µ̃ on its path space T (Γ) such that the canonical
colored filtration of Γ is isomorphic to Ξ.
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Proof. The proof reproduces the proof of Proposition 1.

Proposition 3. For every basic filtration on a Lebesgue space there is a coloring such that the
resulting colored basic filtration is combinatorially definite.

Proof. Let Ξ = {ξn}n≥0 be a given basic filtration on a Lebesgue space (X,µ). Fix a sequence
{ζn}n≥0 of finite partitions of the space (X,µ) that separates points mod 0. Since Ξ is a basic
filtration, for every n ≥ 0 every element of the partition ξn is a finite ordered set of size bounded by
a constant an depending only on n. Let us regard ζn as a coloring of the points of X into a finite
number, say bn, colors. Then every element of ξn is a finite ordered colored set; in total, there
are at most

∑an

k=1 b
k
n possible colorings. Thus we have defined a coloring of the partition ξn. The

filtration colored in this way is combinatorially definite. Indeed, for almost any two points x, y ∈ X
there is n such that x, y lie in different elements of the partition ζn. But then the colored trees
otpn(x) and otpn(y) are different.

Propositions 2 and 3 essentially describe the proof of Theorem 3. The question about a real-
ization of a periodic ergodic automorphism is meaningless, hence we may assume that the auto-
morphism is aperiodic. In this case, we can construct a basic filtration, which is not necessarily
combinatorially definite, but, according to Proposition 3, can be colored in such a way as to be-
come combinatorially definite. Proposition 2 gives a construction of an adic realization of a colored
filtration, completing the proof of Theorem 3.

4 The universal adic graph

In this section, we prove a strengthening of Theorem 3. Namely, we prove that all (aperiodic)
automorphisms of a Lebesgue space can be realized on a single special graph endowed with an adic
structure; it suffices to vary only a central measure µ on its path space. Earlier, a similar result
was obtained for the class of automorphisms having the dyadic odometer as a quotient: all such
automorphisms can be realized on the so-called graph of ordered pairs (for details, see [18]).

4.1 Construction of the uniadic graph

Consider the following graded graph. Level 0 contains a single vertex. Having a set Vn of vertices
of level n, we define a set Vn+1 of vertices of level n + 1 as Vn+1 = V 2

n t copy(Vn). Every vertex
w ∈ V 2

n is understood as an ordered pair (u, v) of vertices of level n, and we draw edges from u
and v to w, endowing them with a natural order: the edge (v, w) is greater than (u,w). Every
vertex w ∈ copy(Vn) is understood as a copy of a vertex u of level n, and we draw a unique edge
from u to w. The resulting graph endowed with an adic structure will be called the uniadic graph
and denoted by UA (see Fig. 2).

Recall the definition of a telescoping of a graded graph.

Definition 10. Let Γ be a graded graph and {kn}n≥0 be a strictly increasing sequence of non-
negative integers with k0 = 0. We define a telescoping of Γ as follows. The vertices of level n in
the new graph correspond to the vertices of level kn in Γ, and two vertices of neighboring levels
in the new graph are joined by an edge of multiplicity equal to the number of paths in Γ between
the corresponding vertices. An adic order on the edges of the new graph is determined by the adic
order on the corresponding paths in the original graph.

10



Figure 2: Several first levels of the uniadic graph UA

Definition 11. We say that a graded graph Γ1 is an induced subgraph of a graded graph Γ if the
set of vertices and the set of edges of Γ1 are subsets of the set of vertices and and the set of edges
of Γ, respectively, and, besides, if v is a vertex of Γ1, then Γ1 contains all edges of Γ coming to v
from vertices of the previous level. An order on the edges is inherited in a natural way.

The following properties are clear from definitions.

Remark 4. If a graded graph Γ1 is an induced subgraph of a graded graph Γ, then the space of
infinite paths in Γ1 is a subset of the space of infinite paths in Γ invariant under the adic shift on Γ.

Remark 5. If a graded graph Γ1 is a telescoping of a graded graph Γ, then the adic shifts on these
graphs are isomorphic.

4.2 The universality theorem

The uniadic graph UA is universal in the following sense.

Proposition 4. Let Γ be a graded graph endowed with an adic structure such that every vertex has
at least two edges entering it from above. Then there exists an induced subgraph Γ1 of UA such
that some telescoping of Γ1 is isomorphic to Γ (with the isomorphism respecting the adic order).1

Proof. To prove this, it suffices to realize that for every n ≥ 0, the bipartite graph formed by the nth
and (n+ 1)th level of Γ can be extended by several intermediate levels so that the resulting graded
graph (with finitely many levels) satisfies the following two properties: every vertex of every level
(except the topmost one) has either one edge or an ordered pair of edges entering it from above,
and no two vertices have the same ancestors (taking into account the order); a telescoping of this
graph coincides with the original bipartite graph.

The existence of such a thinning of the bipartite graph can be proved as follows. First, by
an appropriate thinning, we ensure that no level contains two vertices with the same ancestors.
The rest can be easily proved by induction on the number of edges in the bipartite graph. If some
vertex w of the bottom level has more than two incoming edges, say from vertices v1, . . . , vk (taking
into account the order), then insert an intermediate level consisting of a copy of the top level with
one additional vertex (v1, v2). Join this vertex by two upward edges with v1 and v2, exactly in this
order. Join all vertices of the bottom level except w with copies of vertices of the top level as in the

1Proposition 4 is, in a sense, akin to the lacunary theorem (see [8, 16]): an appropriately thinned filtration becomes
combinatorially definite (in the lacunary theorem, standard).
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original bipartite graph. Finally, join w with the vertex (v1, v2) and the copies of the other vertices
vi, i = 3, . . . , k (see Fig. 3). The path space of the new graph is isomorphic to the path space of
the original graph, but now it remains to construct a thinning of a bipartite graph with one edge
less.

Figure 3: Thinning a bipartite graph

It is not difficult to see that in Theorem 3, given an aperiodic ergodic automorphism T , one
can require that the constructed graded graph Γ satisfies the conditions of Proposition 4 (see [14]
and [19]). This proposition allows one to embed the path space T (Γ) of such a graph into T (UA),
and thus we arrive at the following theorem.

Theorem 4 (metric universality of the uniadic graph). For every ergodic automorphism T of
a Lebesgue space there is a central measure µ on the path space T (UA) of the uniadic graph UA
such that the adic shift on the space (T (UA), µ) is isomorphic to T .

Corollary 1. For every ergodic automorphism T of a Lebesgue space (X, ν) there is a combinato-
rially definite basic filtration Ξ on (X, ν).

Proof. Use Theorem 4 to find a central measure µ on the path space T (UA) of the uniadic graph UA
such that the adic shift on the space (T (UA), µ) is isomorphic to T . The graph UA is minimal in
the sense of Definition 7, hence, by Proposition 1, its tail filtration is combinatorially definite for
the adic shift isomorphic to T .

Theorem 4 essentially states that for every aperiodic automorphism T of a Lebesgue space
(X, ν) there is a measurable mod 0 injective map f from X to the path space T (UA) of the uniadic
graph that sends T to the adic shift. If we fix the space X and the transformation T and vary the
invariant measure ν, then the map f described above will, in general, vary, since the construction
of an adic realization of a given automorphism depends on the measure (see [14]). But can one
make the map f independent of the measure ν?

Arguing in this way, we arrive at the following “Borel” question, which was raised in [18]. Let
X be a standard Borel space and T be an (aperiodic) Borel automorphism of X. Does there exist
a graded graph Γ endowed with an adic structure and a Borel-measurable embedding f of X into
the path space T (Γ) that sends T to the adic shift?
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It turns out that the answer to this question is positive. If T is an aperiodic Borel automorphism
of a separable metric space X, then one can construct such a graph Γ and such an embedding f .
Moreover, by Proposition 4, the same uniadic graph UA can serve as a Borel universal graph.

Theorem 5 (Borel universality of the uniadic graph, [19]). Let T be an aperiodic Borel automor-
phism of a separable metric space X. Then there exists a Borel subset X̂ ⊂ X such that µ(X̂) = 1
for every T -invariant Borel measure on X and a Borel-measurable injective map f from X̂ to the
path space of the uniadic graph that sends T to the adic shift.

A complete proof of this theorem will be published separately (see [19]). Here we give only
a sketch of the proof. It essentially follows the proof of Theorem 3, except that all steps of the
construction should now be Borel, i.e., independent of the measure.

The first step of the proof, as in the case of Theorem 3, is a weakening of Rokhlin’s lemma.
A Borel version of Rokhlin’s lemma, unlike the classical one, seems far from being a trivial problem.
For example, if we consider the shift T on the space {0, 1}Z, it says that for every ε > 0 there is
a Borel subset B ⊂ {0, 1}Z such that B ∩ TB = ∅ and for every T -invariant aperiodic measure µ
on {0, 1}Z, we have µ(B ∪TB) > 1− ε. The problem of finding a measure-free proof of the lemma,
i.e., proving its Borel version, was posed by V. A. Rokhlin in a conversation with the first author.

A Borel version of Rokhlin’s lemma was proved by B. Weiss and E. Glasner [3, p. 628, Propo-
sition 7.9].

Lemma 2. Let T be a homeomorphism of a Polish space (X, ρ). Let n ∈ N and ε > 0. Then there
exists a Borel subset B ⊂ X such that the sets B, TB, . . . , Tn−1B are pairwise disjoint and

µ(B ∪ TB ∪ · · · ∪ Tn−1B) > 1− ε

for every T -invariant aperiodic measure µ on X.

To prove Theorem 5, as in the case of Theorem 3, one should first weaken this version of the
lemma by dropping the periodicity condition for approximating automorphisms, and then apply it
repeatedly, passing after each iteration to the derivative automorphism on the constructed set B.
In the language of filtrations, the proof consists in constructing a Borel basic filtration of the
automorphism T , coloring it, and embedding the colored filtration into the path space of the
uniadic graph. For details, see [19].
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