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Integral models of representations of
the current groups of simple Lie groups

A.M. Vershik and M. I. Graev

Abstract. For the class of locally compact groups P that can be written
as the semidirect product of a locally compact subgroup P0 and a one-
parameter group R∗

+ of automorphisms of P0, a new model of representa-
tions of the current groups P X is constructed. The construction is applied
to the maximal parabolic subgroups of all simple groups of rank 1. In
the case of the groups G = SO(n, 1) and G = SU(n, 1), an extension
is constructed of representations of the current groups of their maximal
parabolic subgroups to representations of the current groups GX . The key
role in the construction is played by a certain σ-finite measure (the infinite-
dimensional Lebesgue measure) in the space of distributions.
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1. Introduction

1.1. The construction of an invariant multiplicative integral of representations,
that is, an irreducible representation of the group L∞(X;G) ≡ GX of currents,
bounded measurable functions on a measure space (X,m) with values in a semisim-
ple Lie group G, was described in the early 1970s in [1] and [2]. Later it turned
out that this construction can be embedded in a general scheme described several
years earlier by Araki in terms of the Fock space (see [3]). However, as the author
of [3] himself observes, this scheme was applied only to solvable and nilpotent Lie
groups, and semisimple groups were not considered. Formally, the question is about
a non-commutative analog of infinitely divisible measures, that is, semigroups of
states on groups, and an analogue of the Lévy–Khinchin formulae, but of a very
special form. The key point is to find non-trivial cohomologies of the group with
values in an appropriate unitary representation. The construction suggested in [1]
of an integral of representations for the group SL(2,R) implicitly contained such
a cocycle. An explicit description of the cohomology for SL(2,R) and other simple
Lie groups is given in [4].

The existence of an irreducible unitary representation π of G with H1(G;π) 6= 0
is a sufficient (and in Araki’s scheme, that is, for the Fock factorization, also neces-
sary) condition for the existence of a multiplicative integral of representations. In
turn, this condition means that the group G must not satisfy the Kazhdan prop-
erty (T) [5] (see the book [6] and the bibliography therein), that is, the trivial
representation must not be isolated in the space of unitary representations with
the Fell topology. Indeed, as proved in [7], a representation π with non-zero group
H1(G;π) must be ‘glued’ to the trivial representation (in the terminology of [7], it
must be infinitesimal). Among the classical simple Lie groups G, only SO(n, 1) with
n > 1 and SU(n, 1) with n > 1 have such representations, and only these groups
admit an invariant multiplicative integral of representations in the Fock model.

An analysis of the original papers [1], [2], [8]–[10] showed that there is an alter-
native approach to the description of Fock representations. At first it appeared
as a mere result of the diagonalization of the representations considered in [1] for
the group SL(2,R) with respect to the unipotent subgroup [11], [12]. A neces-
sary consequence of this diagonalization was the definition of a remarkable σ-finite
measure in the space of discrete measures on X. However, the true essence and
the depth of the alternative description of the multiplicative integral of representa-
tions became clear only after a study in [13]–[16] of the general case of the groups
SO(n, 1) with n > 1 and SU(n, 1) with n > 1. In the present paper we summarize
the results obtained in this series of papers; we regard it as a preparatory step
towards a monograph devoted to representations of current groups. In contrast to
the Fock model, the alternative model, which for certain reasons was called the
integral model, essentially uses specific properties of simple groups of rank 1 (more
precisely, of their maximal parabolic subgroups) and the invariance of a certain
σ-finite measure with respect to the continual Cartan group. That is why it is not
as general as the Fock model, and the isomorphism between the integral and Fock
models is very involved. But first, it allows one to give a much simpler proof of
the irreducibility and other properties of the representation, and second, it leads
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to a new explicit interpretation of the notion of continuous tensor product, which
undoubtedly will be useful in the future.

1.2. A brief introduction to the Fock and the integral models.

1.2.1. Let us first describe the original (Fock) model in full generality. It is based
on the construction of the exponential of a Hilbert space, which is a formalization,
on the one hand, of the Fock space, and on the other hand, of the L2 space with
respect to a Gaussian measure (the Wiener–Itô space).

The exponential of a Hilbert space H is defined via the decomposition

H ≡ EXPH = C⊕H ⊕ 1√
2!
S2H ⊕ 1√

3!
S2H ⊕ · · · ,

where SnH is the nth symmetric tensor power of H, and one defines a map
exp: H → EXPH by

exph = 1⊕ h⊕ 1√
2!
h⊗ h⊕ 1√

3!
h⊗ h⊗ h⊕ · · · ∈ H for h ∈ H.

The following relations hold:

EXP(H1 ⊕H2) = EXPH1 ⊗ EXPH2,

〈exph1, exph2〉 = e(h1,h2), exp(h1 + h2) = exph1 ⊗ exph2.

The exponentials exph form a total set in H , that is, their linear span is dense
in H . Using these exponentials, one defines the whole structure of the Fock space:
the decomposition into multi-particle subspaces, the creation and annihilation oper-
ators, and so on. Unitary operators that act in the space H and preserve its struc-
ture are said to be factorized. They are parameterized by triples (A, b, c), where A
is a unitary operator on H, b ∈ H, and c ∈ C with |c| = 1, and they form the group
A = {(A, b, c) : A ∈ Unit(H), b ∈ H, c ∈ C, |c| = 1} with the multiplication law

(A1, b1, c1) (A2, b2, c2) =
(
A1A2, b1 +A1b2, c1c2 exp(i Im 〈b1, A1b2〉)

)
.

The action of this group on exponentials is defined as follows:

(A, b, c)(exph) = c exp(i Im〈b, h〉) · exp(Ah+ b).

Thus, the group A , which is sometimes called the Bogolyubov group, is a central
extension of the group of isometric motions of the space H (that is, the semidirect
product of the group Unit(H) and the group of translations P ).

It is easy to see that a representation of the current group GX = L∞(X,G)
determines a factorization in the representation space. If we assume that this is
a Fock factorization, then the representation can be factored through the group of
factorized operators (the Bogolyubov group). Under the assumption that the rep-
resentation is invariant under the group of all measure-preserving transformations
of the space X, we see immediately that this representation is parameterized by
a unitary representation π of the group G itself on H and by a 1-cocycle β : G→ H
of G with values in H. For the representation of GX to be irreducible it is sufficient
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that the representation π be irreducible and that the cocycle β not be cohomolo-
gous to zero (see [2], [12], [17], [18]). This general scheme does not use any specific
features of the groups under consideration. The problem reduces to finding appro-
priate pairs π, β for a given group or proving that such pairs do not exist. It is
this fact that leads to the above-mentioned answer for the simple Lie groups, since
among these groups special representations with non-trivial H1(G;π) exist only for
SO(n, 1) with n > 1 and SU(n, 1) with n > 1.

For convenience the groups SO(n, 1) and SU(n, 1) are replaced by their extensions
O(n, 1) and U(n, 1) in all constructions.

Note that the special representations of the groups SO(n, 1) and SU(n, 1), as
well as of their extensions O(n, 1) and U(n, 1), are trivial on their centres, so that
they reduce to representations of the projectivizations of these groups. Accordingly,
the Fock representations of the current groups GX reduce to representations of the
projectivizations of GX .

1.2.2. The integral model of representations of current groups, which we study in
what follows for the groups G = O(n, 1) with n > 1 and G = U(n, 1) with n > 1, is
essentially based on the structure of the groups G. We do not use the existence of
representations of the current groups and do not consider their cohomology groups,
but on the contrary obtain all this information along the way. The following two
fundamental facts about the groups G = O(n, 1) with n > 1 and U(n, 1) with n > 1
are of importance for us.1

(A) The irreducible special representations of these groups remain irreducible
when restricted to the maximal parabolic subgroup.

(B) The maximal parabolic subgroup P of each of these groups is the semidirect
product of the multiplicative group R+ and a certain subgroup P0 having
a one-parameter family of irreducible unitary representations Tr, r > 0,
on which there is a transitive action of the group R+ of automorphisms; the
family Tr, r > 0, is a deformation of the trivial representation (corresponding
to r = 0).

The first fact reduces the problem of constructing a representation of the current
groupGX to that of constructing a representation of the current group PX , where P
is the maximal parabolic subgroup of G. The latter problem can in turn be solved
due to the second fact and, principally, to the existence of a remarkable σ-finite
measure in the space of distributions, about which we will say several words at
the end of the Introduction. The aim of our paper is to describe this solution in
detail. The authors hope to give a more detailed treatment of the whole circle
of problems related to representations of current groups in the book which is now
under preparation.

The measure, which in [19]–[21] was called the infinite-dimensional Lebesgue
measure and which is denoted by L in what follows, appeared in [11], [12] as
the measure whose Laplace transform occurred naturally in the diagonalization
of a representation of the group of SL(2,R)-currents. Later, it was discovered
that this measure, as well as the one-parameter family Lθ, θ > 0, in which it

1All the techniques used in what follows apply also to the two infinite-dimensional groups
O(∞, 1) and U(∞, 1), and this enables us to construct the desired representation of the corre-
sponding current groups.
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is included (for θ = 1), has a number of remarkable relations and properties. It
is related to the Poisson–Dirichlet measure, the gamma process, and the Lévy
processes corresponding to stable laws. The fundamental property of this measure
is its invariance with respect to the continual analog of the Cartan group and its
uniqueness under some natural assumptions; for more detail, see [21]. See also [22]
for a detailed study of the quasi-invariance of the Lévy measure of the gamma
process and its equivalence to Lθ.

In conclusion, we would like to note that up to now the possibilities of using
other factorizations have not been studied at all from the viewpoint of constructing
a multiplicative integral of representations. We mean, first, non-Fock type I factor-
izations whose existence was proved in [23] and, second, factorizations of types II
and III. The latter appear in projective representations of current groups on the
circle, that is, in Kac–Moody modules. These representations are totally different
from those described above; they essentially rely on the positivity of the energy,
the one-dimensionality of the base X, and the projectivity. It may well happen
that bringing in non-Fock factorizations will extend the class of groups for which
a multiplicative integral does exist, as well as the class of representations that can
be obtained in this way. One should also remember that there may also exist
non-unitary analogues of this theory, which also have not been studied.

1.3. Let us briefly describe the contents of the paper. In § 2 we describe the
infinite-dimensional Lebesgue measure L , which is the basis for the construction
of integral models of representations of the groups GX , and we compute some
integrals with respect to this measure.
§ § 3 and 4 are devoted to constructing and studying integral models of repre-

sentations of the current groups PX for the class of locally compact groups P that
can be written in the form P = R∗

+ i P0. This class includes, in particular, the
maximal parabolic subgroups of simple Lie groups of rank 1, that is, of the groups
SO(n, 1), SU(n, 1), and Sp(n, 1).

The elements r ∈ R∗
+ induce the automorphisms g 7→ gr of the subgroup P0 and

thus assign to every representation T of P0 a one-parameter family of representa-
tions that act as Tr(g) = T (gr). We consider representations T of P0 satisfying the
following condition: the space H of T contains a vector h of norm ‖h‖ = 1 such
that the estimate

‖Tr(g)h− h‖ < c(g) r for every g ∈ P0

holds for sufficiently small r. It follows from this condition that the family of repre-
sentations Tr is a deformation of the identity representation of P0, that is, it tends
to the identity representation in the Fell topology as r → 0. We call such a rep-
resentation canonical. We observe that this notion of a canonical representation is
stronger than that introduced in other papers (see, for example, [1], [12], [24]).

The direct integral T̃ of the representations Tr with respect to the multiplicative
measure d∗r = r−1 dr, that is, ∫ ∞

0

Tr d
∗r,
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can be naturally extended to a representation T̃ of the whole groupP = R∗
+ i P0:

(T̃ (r0)f)(r) = f(r0r) for r0 ∈ R∗
+. The representation obtained has a non-trivial

1-cocycle.
The construction of the integral model of representation of the group PX is

similar to the construction of a representation T̃ of the group P from a repre-
sentation T of the group P0. In this construction, P0 is replaced by the current
group PX0 , and the representations Tr of P0 are replaced by the representations
Tξ(g(·)) =

⊗∞
k=1 Trk

(xk) of PX0 on countable tensor powers of the space H. Here ξ
runs over the points of the cone

l1+(X) =
{
ξ =

∞∑
k=1

rkδxk

∣∣∣ rk > 0,
∑
k

rk <∞, xk ∈ X
}
,

on which the infinite-dimensional Lebesgue measure L is concentrated. To obtain
the desired representation of the current group PX we consider the direct integral
of these representations of PX0 with respect to the measure L and, using the
properties of this measure, construct an extension of this representation of PX0 to
a representation of PX . The representation of PX thus obtained will be called the
integral model and denoted by INTT .

We prove that the representations obtained in this way are irreducible, and we
establish their relation to Fock representations.

The subsequent sections are devoted to the integral models of representations
of the current groups PX , where P is the maximal parabolic subgroup of the Lie
group O(n, 1), U(n, 1), or Sp(n, 1) (§§ 5, 7, and 8, respectively). The case

P ⊂ SL(2,R) ∼= SU(1, 1)

is treated in a separate section (§ 6). These groups P can be written as the semidi-
rect products P = R∗

+ i P0, and the subgroups P0 have canonical representations.
In each of these cases we give a description of the canonical representations of P0

and thus, according to the general construction, a description of the corresponding
integral models of representations of the current groups PX .

The main problem here is to get representations of the current groups O(n, 1)X

and U(n, 1)X as extensions of the integral models of representations INTT of the
corresponding current groups PX . To this end we consider canonical representa-
tions T of P0 such that the associated special representations of P can be extended
to representations of the corresponding simple Lie group. For them we explicitly
construct an extension of the integral model INTT to a representation of the current
group of the corresponding simple Lie group. The models obtained are compared
with the Fock models of representations of these groups constructed in [12], [25].
Simultaneously, this construction leads to new models of the special representations
of the groups O(n, 1) and U(n, 1), models which are of independent interest.

2. The measure L in the space of distributions

2.1. The definition of the measure L . We consider an arbitrary manifold X
with a fixed continuous non-negative finite Borel measure m. The construction
of the integral models of representations of the current groups GX is based on the
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existence, in the spaceD(X) of Schwartz distributions onX, of a certain measure L
which is an infinite-dimensional analogue of the Lebesgue measure. This measure
appeared in [11], [12] and was investigated in the series of papers [19]–[21]. Here we
only give the definition of L and present its main properties used in what follows.

With each finite partition of X into measurable sets,

α : X =
n⋃
k=1

Xk, m(Xk) = λk, k = 1, . . . , n,

we associate the cone Fα = Rn+ of piecewise constant positive functions of the form

f(x) =
n∑
k=1

fkχk(x), fk > 0,

where χk is the characteristic function of Xk, and we denote by Φα = (Rn+)′ the
dual cone in the space of distributions.

We define a measure Lα on Φα by

dLα(x1, . . . , xn) =
n∏
k=1

xλk−1
k dxk
γ(λk)

, where λk = m(Xk). (2.1)

Let D+(X) ⊂ D(X) be the set (cone) of non-negative Schwartz distributions
on X, and let l1+(X) ⊂ D+(X) be the subset (cone) of discrete finite (non-negative)
measures on X, that is,

l1+(X) =
{
ξ =

∞∑
k=1

rkδxk

∣∣∣ rk > 0,
∑
k

rk <∞, xk ∈ X
}
.

There is a natural projection D+(X) → Φα.

Theorem-definition. There is a σ-finite (infinite) measure L on the cone D+(X)
that is finite on compact sets, concentrated on the cone l1+(X), and such that for
every partition α of the space X its projection on the subspace Φa has the form (2.1).

This measure is uniquely determined by its Laplace transform

F (f) ≡
∫
l1+(X)

exp
(
−

∑
k

rkf(xk)
)
dL (ξ) = exp

(
−

∫
X

log f(x) dm(x)
)
, (2.2)

where f is an arbitrary non-negative measurable function on (X,m) which satisfies∫
X

log f(x) dm(x) <∞.

Elements of l1+(X) will be briefly denoted by ξ = {rk, xk}∞k=1, or even just
ξ = {rk, xk} (sequences that differ only by the order of elements are regarded as
identical).

Remark. The Laplace transform is well defined for a wide class of σ-finite mea-
sures L for which there are sufficiently many linear functionals with non-infinite
distribution, and there is a uniqueness theorem for measures with a given Laplace
transform.
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As in the case of the classical Laplace transform, the formula (2.2) for the char-
acteristic functional of the measure L makes sense for every complex-valued func-
tion f(x) with positive real part and with

∫
X

log f(x) dm(x) < ∞. Hereafter, log
stands for the branch of the logarithm with log 1 = 0 on the complex plane cut
along the negative real axis.

The following characteristic definition of the measure L is important for our
purposes. Let A(X) be the group (with respect to multiplication) of all non-negative
measurable functions a(x) on X with convergent integral

∫
X

log a(x) dm(x) = c,
and let A0(X) be the subgroup of functions a(x) with c = 0. With each function
a ∈ A(x) we associate the operator Ma that multiplies elements ξ =

∑
k rkδxk

of
the cone l1+(X) by a(x):

Ma

∑
k

rkδxk
=

∑
k

a(xk)rkδxk
.

Theorem 2.1. The measure L on the cone l1+(X) is uniquely determined by the
following two properties.

1) Projective invariance with respect to the group M of multipliers Ma: for every
function a ∈ A(X) the operator Ma multiplies the measure L by exp c, that is,

dL (a(·)ξ) = exp
( ∫

X

log a(x) dm(x)
)
dL (ξ). (2.3)

In particular, the measure L is invariant with respect to the subgroup M0 of mul-
tipliers Ma with a ∈ A0(X).

2) Invariance and ergodicity with respect to the group of all measure-preserving
transformations of (X,m).2

The fact that L satisfies these properties follows from the formula (2.2) for its
Laplace transform. For the uniqueness, see [20], [21].

It follows from Theorem 2.1 that the measures L thus defined depend only on
the one parameter θ = m(X), and that under convolution they form a multiplicative
semigroup with respect to θ > 0.

In the construction of integral models it suffices to consider only one of these
measures, so in what follows we assume that θ = 1, that is, m is a probability
measure. It is natural to call L the infinite-dimensional Lebesgue measure, since
it generalizes the invariance properties of finite-dimensional Lebesgue measure on
the non-negative octant. The novelty of the infinite-dimensional case is that L
is ergodic with respect to the group of multipliers. We will formulate this fact
separately.

Theorem 2.2. The group M of multipliers acts ergodically on the cone l1+(X)
equipped with the measure L .3

2As shown in [20], property 2) is a corollary of 1).
3In the finite-dimensional case this group is SDiag+ (the positive part of the Cartan group),

and it acts transitively on each of the hyperspheres x1x2 · · ·xn = const, xi > 0, i = 1, 2, . . . , n,
that is, the action of SDiag+ on the cone Rn

+ is not ergodic.
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2.2. Computation of some integrals with respect to the measure L . Let
us apply the properties of the measure L to computing the integral

I =
∫
l1+(X)

( ∞∏
k=1

ϕ(rk, xk)
)
dL (ξ), (2.4)

where ϕ(r, x) is a function on R∗
+ ×X satisfying the conditions

ϕ(0, x) ≡ 1 and
∫
X

∫ ∞

0

(
ϕ(r, x)− e−r

)
r−1 dr dm(x) <∞. (2.5)

Theorem 2.3. The following equality holds :∫
l1+(X)

( ∞∏
k=1

ϕ(rk, xk)
)
dL (ξ) = exp

( ∫
X

∫ ∞

0

(
ϕ(r, x)− e−r

)
r−1 dr dm(x)

)
.

(2.6)

Proof. Under the projection D+(X) → Φα (recall that Φα is the finite-dimensional
space associated with a partition α : X =

⋃n
k=1Xk) the left-hand side of (2.4)

takes the form

Iα =
n∏
k=1

Ikα, Ikα =
1

Γ(λk)

∫ ∞

0

ϕα,k(rk)rλk−1
k drk, (2.7)

where λk = m(Xk) and ϕα,k(rk) = λ−1
k

∫
Xk

ϕ(rk, x) dm(x). The original integral I

is the inductive limit of the integrals Iα over the set of partitions α.

Since
1

Γ(λk)

∫ ∞

0

e−trλk−1
k drk = 1, the integral Ikα can be written in the form

Ikα = 1 +
1

Γ(λk)

∫ ∞

0

(
ϕα,k(rk)− e−rk

)
rλk−1
k drk.

It follows that

Ikα = 1 + λk

∫ ∞

0

(
ϕα,k(rk)− e−rk

)
r−1
k drk +O(λ2

k),

whence

Ikα = exp
(
λk

∫ ∞

0

(
ϕα,k(rk)− e−rk

)
r−1
k drk

)
+O(λ2

k).

Thus, up to terms of order greater than 1 with respect to λk,

Iα ∼= exp
( n∑
k=1

λk

∫ ∞

0

(
ϕα,k(r)− e−r

)
r−1 dr

)
.

Since
∑n
k=1

(
λk(ϕα,k(r)−e−r)

)
=

∫
X

(
ϕ(r, x)−e−r

)
dm(x), the expression obtained

can be written in the form

Iα ∼= exp
( ∫

X

∫ ∞

0

(
ϕ(r, x)− e−r

)
r−1 dr dm(x)

)
.

The proof is completed by taking the inductive limit over the set of partitions α.4
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Corollary. If ϕ(r, x) =
∑n
i=1 ciϕi(r, x), where ci > 0,

∑
ci = 1, and the func-

tions ϕi(r, x) satisfy (2.5), then∫
l1+(X)

( ∞∏
k=1

ϕ(rk, xk)
)
dL (ξ) =

n∏
i=1

exp
(
ci

∫
X

∫ ∞

0

(
ϕi(r, x)− e−r

)
r−1 dr dm(x)

)
.

(2.8)

Example. Let ϕ(r, x) = e−r
σa(x), where σ > 1 and Re a(x) > 0. In this case we

obtain∫
l1+(X)

( ∞∏
k=1

e−r
σ
ka(xk)

)
dL (ξ) = exp

( ∫
X

∫ ∞

0

(e−r
σa(x) − e−r)r−1 dr dm(x)

)
.

Let us integrate with respect to r. We have∫ ∞

0

(e−r
σa(x) − e−r)r−1 dr = lim

λ→0

( ∫ ∞

0

(e−r
σa(x) − e−r)rλ−1 dr

)
= lim
λ→0

(
σ−1Γ

(
λ

σ

)
a−λ/σ(x)− Γ(λ)

)
.

Since Γ(λ) ∼ λ−1 + γ as λ→ 0, where γ is the Euler constant, it follows that∫ ∞

0

(
exp(−rσa(x))− exp(−r)

)
r−1 dr = −σ−1 log a(x) + (σ−1 − 1)γ.

Hence, ∫
l1+(X)

( ∞∏
k=1

exp(−rσka(xk))
)
dL (ξ)

= exp
(
(σ−1 − 1)γ

)
exp

(
−σ−1

∫
X

log a(x) dm(x)
)
. (2.9)

In particular, for σ = 1 we recover the original formula for the Laplace transform
of the measure L :∫

l1+(X)

∞∏
k=1

exp
(
−

∑
rka(xk)

)
dL (ξ) = exp

(
−

∫
X

log a(x) dm(x)
)
.

3. The canonical representations of the group P0 and
the associated representations of the current group P X

0

3.1. The definition of canonical representations. We consider the semidirect
products P = A i P0 of a locally compact group P0 and the multiplicative group
A ∼= R∗

+ of automorphisms of P0. Denote by ga the image of an element g ∈ P0

under an automorphism a ∈ A.

Definition 1.
4 Since the measure L is absolutely continuous with respect to the measure generated by the

Lévy gamma process (see [22]), this result can be obtained by similar computations with Lévy
processes.
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Unless otherwise stated, a representation is understood in what follows to be
an orthogonal or unitary representation of a group.

There is a natural action of the group A of automorphisms on the set of all
representations of P0, which sends a representation T (g) to Ta(g) = T (ga).

We say that a representation T of the group P0 on a Hilbert space H is canonical
if there exists a cyclic vector h ∈ H of norm ‖h‖ = 1 and an isomorphism σ : R∗

+ →
A such that

1) the inequality

‖Tσ(r)(g)h− h‖ < c(g)r for every g ∈ P0 (3.1)

holds for sufficiently small r;
2) the representations Ta(g) = T (ga) of P0 are pairwise non-equivalent.

We say that a cyclic vector h ∈ H satisfying (3.1) is almost invariant with respect
to T and that the representations Ta(g) = T (ga) of P0 are conjugate to T .

In what follows we identify elements a ∈ A with their pre-images r ∈ R∗
+ under

the isomorphism σ and write gr and Tr instead of gσ(r) and Tσ(r). Thus, the
condition (3.1) takes the form

‖Tr(g)h− h‖ < c(g)r for every g ∈ P0. (3.2)

It follows from Definition 1 that the representations Tr form a deformation of
the identity representation of the group P0, that is, every neighbourhood of the
identity representation in the Fell topology on the set of representations contains
all the Tr for sufficiently small r.

The definition of a canonical representation also implies the following assertion.

Proposition 3.1. If a representation T of the group P0 on a space H is canonical,
then for every summable numerical sequence {rk}, rk > 0

(∑
rk < ∞

)
and for

every g ∈ P0,
∞∑
k=1

‖Trk
(g)h− h‖ <∞, (3.3)

where h ∈ H is a vector almost invariant with respect to T .

We note that in the space H of a canonical representation T an almost invari-
ant vector h may be not unique; an example (a one-dimensional extension of the
Heisenberg group) will be considered below.

The following assertion will be useful for us.

Proposition 3.2. If in the space H of a representation T of the group P0 there is
a unique, up to a factor, unit cyclic vector h satisfying the condition 1) of Defini-
tion 1, then the representation T is canonical, that is, it satisfies also the condi-
tion 2) of this definition.

Proof. Assume that the condition 2) is not satisfied, that is, there exist two equiv-
alent representations Tr, say T = T1 and Tr0 with r0 < 1. Hence there exists
a unitary operator A such that A−1T (g)A = Tr0(g) for every g ∈ P0. Then we have

A−nTr(g)An = Trn
0 r

(g) for any g ∈ P0, r > 0, and n = 1, 2, . . . .
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Therefore, if h ∈ H is a unit cyclic vector satisfying 1), then this condition implies
that

‖Tr(g)Anh−Anh‖ < c(g)rn0 r for every g ∈ P0. (3.4)

In view of this estimate, all the vectors hn = Anh also satisfy 1). Note also that
Ah 6= ch. Otherwise we could assume that Ah = h, and the estimate obtained
would then imply that

‖Tr(g)h− h‖ < c(g)rn0 r for every g ∈ P0 and n = 1, 2, . . . ,

that is, h is an invariant vector, a contradiction to the assumption that it is cyclic.
Thus, a vector h satisfying 1) is not unique, a contradiction.

Note. In a series of earlier papers (see, for example, [1], [12], [24]) canonical rep-
resentations were understood to be a one-parameter family of representations Tr,
r > 0, with spherical functions of the form ϕr(g) = erψ(g).

A weaker condition for a family of representations Tr to be canonical is the
existence of the derivative of the spherical functions of this family as r → 0,

ψ(g) =
dϕr(g)
dr

∣∣∣∣
r=0

,

which is a conditionally positive-definite function (the generator of the system).
This condition is satisfied, for instance, for the family of complementary series
representations of the groups SO(n, 1) and SU(n, 1). The existence of a generator in
this case follows from the estimate ‖Tr(g)h−h‖2 < c(g)r, which is weaker than (3.2)
and (3.3). Various approaches to the notion of a canonical representation will be
discussed elsewhere.5

3.2. The representations of the group l∞(P0) and the current group P X
0

associated with canonical representations of the subgroup P0. We denote
by l∞(P0) the group of all infinite bounded sequences g = {g1, g2, . . .} of elements
in P0, with coordinatewise multiplication. We will associate with each canonical
representation T of P0 a family of representations of l∞(P0).

To this end we use the following well-known definition.

Definition 2. The countable tensor power of a Hilbert space H with stabilizing
unit vector h is the completion of the inductive limit of the finite tensor powers⊗n

i=1H of H under the isometric embeddings
⊗n

i=1H 3 f 7→ f ⊗ h ∈
⊗n+1

i=1 H.
We will denote this limit by H̃ =

⊗∞
i=1(H,h) or, in short,

⊗∞
i=1H.

Thus, H̃ is the Hilbert space gotten by completing the space lim indn→∞
⊗n

i=1H
with respect to the norm.

It is natural to write elements
⊗n

k=1 fk in the subspaces
⊗n

k=1H ⊂ H̃ as infinite
products stabilizing at the (n+ 1)th step:

yn = f1 ⊗ f2 ⊗ · · · ⊗ fn ⊗ h⊗ h⊗ · · · , where fk ∈ H; (3.5)

they form a total subset of H̃.
5Canonical representations in a closely related sense have also been considered in other papers

(see, for example, [26]).
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Lemma. If
∑∞
n=1 ‖fn−h‖ <∞, then the sequence {yn} of the form (3.5) converges

in the norm of the space H̃ .

The limits of such sequences {yn} will be written as infinite products y =⊗∞
n=1 fn, where

∑∞
n=1 ‖fn−h‖ <∞. In what follows, when describing the space H̃,

we will confine ourselves only to such elements and their finite linear combinations.

Definition 3. With each canonical representation T of the group P0 on a space H
with an almost invariant vector h ∈ H and each sequence {rk}, rk > 0, such that∑
rk < ∞, we associate the following representation of the group l∞(P0) on the

space
⊗∞

k=1(H,h):

T̃{rn}(g)
( ∞⊗
n=1

fn

)
=

∞⊗
n=1

(
Trn

(gn)fn
)

for g = {g1, g2, . . . }.

Let us check that this representation is well defined, that is, that the condi-
tion

∑∞
n=1 ‖fn − h‖ < ∞ implies that

∑∞
n=1 ‖Trn

(gn)fn − h‖ < ∞ for every
g = {g1, g2, . . . } ∈ l∞(P0). Indeed,

‖Trn(gn)fn − h‖ 6 ‖fn − h‖+ ‖Trn(gn)h− h‖.

Since the representation T is canonical and the sequence {gn} is bounded, it follows
that ‖Trn(gn)h − h‖ 6 crn for every g ∈ l∞(P0). Hence the condition

∑
rk < ∞

implies that
∑∞
n=1 ‖Trn

(gn)h− h‖ <∞. The assertion follows.

Proposition 3.3. If a canonical representation T of the group P0 is irreducible,
then the associated representations T{rn} of the group l∞(P0) are irreducible and
pairwise non-equivalent.

Indeed, the irreducibility of the representation T{rn} of l∞(P0) follows at once
from the irreducibility of the representation T of P0. The pairwise non-equivalence
of the T{rn} follows from the pairwise non-equivalence of the representations Tr
of P0 conjugate to T .

Starting from the representations T{rn} of l∞(P0), we will now construct repre-
sentations of the current group PX0 . For this, we associate with each ξ = {rk, xk} ∈
l1(X) a homomorphism PX0 → l∞(P0):

σξ : g(·) 7→
(
g(x1), g(x2), . . .

)
.

Thus, for each element ξ = {rk, xk} ∈ l1(X) we have a representation Tξ of PX0
factored through this homomorphism. It acts in the countable tensor product
Hξ =

⊗∞
k=1Hrk

, Hrk
= H. The operators of Tξ, ξ = {rk, xk}, are given on the

space Hξ by

Tξ(g(·))
( ∞⊗
k=1

fk

)
=

∞⊗
k=1

(
Trk

(g(xk))fk
)
.

Note that the representation Tξ, ξ = {rn, xn}, of the group PX0 is the countable
tensor product of local representations of PX0 :

Tξ =
∞⊗
n=1

Trn,xn
, where Trn,xn

(g(·)) = Trn
(g(xn)).
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Proposition 3.4. If a canonical representation T of the group P0 is irreducible,
then the representations Tξ of PX0 are irreducible and pairwise non-equivalent.

Proof. It suffices to check that the representations Tr,x and Tr′,x′ of PX0 are not
equivalent for (r, x) 6= (r′, x′). For r 6= r′ this is a consequence of the pairwise
non-equivalence of the representations Tr of P0. For r = r′ it follows from the fact
that the points x and x′ can be separated by elements of PX0 , that is, there exists
an element g ∈ PX0 such that g(x) 6= g(x′).

Remark. As noted above, an almost invariant vector h ∈ H associated with a canon-
ical representation T of P0 may not be unique; for instance, this is the case if P0

is the Heisenberg group (see below). Then the constructed representations Tξ of
PX0 depend also on the choice of an almost invariant vector h ∈ H. It is easy to
check that the families of representations associated with almost invariant vectors h
and h′ are equivalent if and only if h′ = ch with |c| = 1.

3.3. An example: P = R∗
+ i P0, where P0 is the Heisenberg group of

dimension 2n −1. Let us realize P0 as the group of pairs (t, z), t ∈ R, z ∈ Cn−1,
with the multiplication law (t1, z1)(t2, z2) =

(
t1 + t2− Im(z1z∗2), z1 + z2

)
. Elements

r ∈ R∗
+ and (t, z) ∈ P0 are related by r(t, z)r−1 = (r2t, rz).

Up to conjugacy, there are two infinite-dimensional unitary irreducible canonical
representations of P0 (see [27]), which act in the Hilbert spacesH± of entire analytic
and entire anti-analytic functions f(z) = f(z1, . . . , zn−1) on Cn−1, respectively,
with the norm

‖f‖2 =
∫

Cn−1
|f(z)|2 exp(−zz∗) dµ(z), (3.6)

where zz∗ =
∑
ziz̄i and dµ(z) is the Lebesgue measure on Cn−1 normalized by the

condition ∫
Cn−1

exp(−zz∗) dµ(z) = 1.

The operators of T+ on the space H+ have the form

(
T+(t0, z0)f

)
(z) = exp(ζ0 − zz∗0)f(z + z0), where ζ0 = it0 −

1
2
z0z

∗
0 . (3.7)

The operators of the second representation T− are obtained from them by complex
conjugation.

In this example the operators of the representations T+
r conjugate to T+ are

given by (
T+
r (t0, z0)f

)
(z) = exp(r2ζ0 − rzz∗0)f(z + rz0).

It is not difficult to check that the representations T r are pairwise non-equivalent.
Further, the definition of the norm in H+ implies that every monomial f(z) =
zk11 · · · zkn−1

n−1 , and hence every finite linear combination of such monomials, is almost
invariant with respect to T+, that is, ‖T+

r (g)f − f‖ < c(g)r. Therefore, the repre-
sentation T+ of the Heisenberg group is canonical, and the set of almost invariant
vectors associated with T+ is dense in the representation space. A similar assertion
holds for the second representation T−.
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4. The representations of the group P = R∗
+ i P0

and its current group P X that are associated with
canonical representations of the subgroup P0

4.1. The representations of the group P = R∗
+ i P0 that are associated

with representations of the subgroup P0. With each orthogonal or unitary
representation T of P0 we associate the direct integral with respect to the multi-
plicative Haar measure d∗r = r−1 dr on R∗

+ of the representations Tr of P0 on the
spaces Hr = H. The representation T̃ of P0 thus defined acts in the Hilbert space

H =
∫ ∞

0

Hr d
∗r,

that is, in the space of sections f(r) of the fibre bundle over R∗
+ with fibre Hr over

r ∈ R∗
+ such that

∫
X
‖f(r)‖2 d∗r <∞. The action of the operators T̃ (g0), g0 ∈ P0,

on H is fibrewise, that is,(
T̃ (g0)f

)
(r) = Tr(g0)f(r) for g ∈ P0. (4.1)

This representation of P0 can be extended to the whole group P . Namely, the
operators on H corresponding to elements of the subgroup R∗

+ are given by(
T̃ (r0)f

)
(r) = f(r0r) for r0 ∈ R∗

+. (4.2)

(In other words, the operators T̃ (r0) permute the fibres of the fibre bundle over R∗
+.)

Obviously, the operators T̃ (r0) preserve the inner product on H , and one can easily
check that together with the operators T̃ (g0), g0 ∈ P0, they generate a representa-
tion of the whole group P . We say that this representation of P is associated with
the original representation T of P0.

We will write elements g ∈ P as g = rg0 with r ∈ R∗
+ and g0 ∈ P0.

Proposition 4.1. If a representation T of the subgroup P0 is canonical and irre-
ducible, then the associated representation T̃ of the group P is also irreducible.

This assertion follows from the irreducibility and pairwise non-equivalence of the
representations Tr.

Theorem 4.1. If a representation T of the subgroup P0 on a space H is canonical,
then the associated representation T̃ of the group P on the space H has a non-trivial
1-cocycle b : P → H of the form 6

b(g, r) =
(
T̃ (g)f0

)
(r)− f0(r), where f0(r) = e−r/2hr (4.3)

and hr = h is a vector in H almost invariant with respect to T .

Indeed, since T is canonical, it follows that b(g) ∈ H for every g ∈ P . Further,
it is clear that b is a 1-cocycle. Since f0 6= H , this 1-cocycle is non-trivial.

With the 1-cocycle b(g) we associate the following function on P :

c(g) = 〈b(g), f0〉. (4.4)
6For information concerning cocycles with values in unitary representations, see [28], [4], [29],

and also [7].
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Proposition 4.2. The following relations hold :

‖b(g)‖2 = −τ(g)− 2 Re c(g) for every g ∈ P, (4.5)

where
τ(g) = log r0 for g = r0g0 (4.6)

and
〈T̃ (g)b(g′), b(g)〉 = −c(gg′) + c(g) + c(g′) for any g, g′ ∈ P. (4.7)

Proof. 1) It follows from (4.3) that

‖b(g)‖2 =
∫ ∞

0

F (r) r−1 dr,

where
F (r) =

∥∥(
T̃ (g)f0

)
(r)− f0(r)

∥∥2

Hr
.

The expression for F (r) can be transformed into the following form:

F (r) = −2 Re
〈(
T̃ (g)f0

)
(r)− f0(r), f0(r)

〉
Hr

+
∥∥(
T̃ (g)f0

)
(r)

∥∥2

Hr
− ‖f0(r)‖2

Hr
.

Therefore, since ‖f0(r)‖2
Hr

= e−r and
∥∥(
T̃ (g)f0

)
(r)

∥∥2

Hr
= e−r0r for g = r0g0, we

obtain
‖b(g)‖2 = −2 Re〈b(g), f0〉+

∫ ∞

0

(e−r0r − e−r)r−1 dr.

Since ∫ ∞

0

(e−r0r − e−r)r−1 dr = lim
λ→0

∫ ∞

0

(e−r0r − e−r)rλ−1 dr

= lim
λ→0

(r−λ0 − 1)Γ(λ) = − log r0,

this implies (4.5).
2) The equalities b(g) = T̃ (g)f0 − f0 and T̃ (g)b(g′) = b(gg′)− b(g) imply that

〈T̃ (g)b(g′), b(g)〉 = 〈T̃ (g)b(g′), T̃ (g)f0〉 − c(gg′) + c(g).

To prove (4.7), it suffices to check that

〈T̃ (g)b(g′), T̃ (g)f0〉 = 〈b(g′), f0〉 = c(g′).

For g = r0g0 and g′ = r′0g
′
0 we have

T̃ (g)b(g′)|Hr
= exp

(
−1

2
r0r

′
0r

)
Tr0r(g0)Tr0r′0r(g

′
0)hr − exp

(
−1

2
r0r

)
Tr0r(g0)hr,

T̃ (g)f0|Hr
= exp

(
−1

2
r0r

)
Tr0r(g0)hr.

Since the operators T (g) for g ∈ P0 are unitary and the measure d∗r is multiplica-
tively invariant, it follows that

〈T̃ (g)b(g′), T̃ (g)f0〉 =
∫ ∞

0

〈e−r
′
0r/2T (r′0r)h− e−r/2h, e−r/2h〉 d∗r = 〈b(g′), f0〉.
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4.2. The integral model of representation of the current group P X . Let
us turn to the main construction of this section. With each canonical representa-
tion T of the subgroup P0 on a Hilbert space H with a vector h almost invariant
with respect to T we associate a representation U of the group PX and call it the
integral model INTT associated with T .

The construction of the representation INTT of PX is parallel to the construc-
tion of the representation T̃ of P from a representation T of the subgroup P0 (see
above). Namely, in this construction we replace the spaces Hr, r ∈ R∗

+, of the
representations Tr of P0 by the spaces Hξ, ξ = {rk, xk} ∈ l1+(X), of the repre-
sentations Tξ of PX0 , and the direct integral of Hr with respect to the measure
r−1 dr on R∗

+ by the direct integral of Hξ with respect to the measure dL (ξ) on
the cone l1+(X). Thus, according to this construction, the integral model of repre-
sentation of PX associated with a canonical representation T of P0 is realized on
the direct integral of the Hilbert spaces Hξ with respect to the measure L ,

INTH =
∫
l1+(X)

Hξ dL (ξ), Hξ =
∞⊗
k=1

Hrk
,

that is, on the space of sections F (ξ) = F ({rk, xk}) of the fibre bundle over the
cone l1+(X) in which the fibre over a point ξ = {rk, xk} is the countable tensor
product Hξ =

⊗∞
k=1Hrk

, Hrk
= H. (This fibre, regarded as a Hilbert space, does

not depend on ξ, but the representation itself does depend on ξ.) The action of the
group PX0 in each fibre of this fibre bundle induces a representation of this group
on the whole space INTH:

U(g)
( ∞⊗
k=1

fk(rk)
)

=
∞⊗
k=1

T (g(xk))fk(rk) for g ∈ PX0 . (4.8)

We define the operators U(r0(·)) on INTH for elements of the group RX+ by the
formula

(
U(r0(·))F

)
({rk, xk}) = exp

(
1
2

∫
X

log r0(x) dm(x)
)
F

(
{r0(xk)rk, xk}

)
for any r0(·) ∈ RX+ . So these operators permute the fibres of the fibre bundle INTH.

Proposition 4.3. The operators U(r0(·)), r0(·) ∈ RX+ , are orthogonal (unitary)
and generate, together with the operators U(g0) for g0 ∈ PX0 , an orthogonal (uni-
tary) representation of the current group PX which is invariant under m-preserving
transformations of X :

U(g)
( ∞⊗
k=1

fk(rk)
)

= exp
(

1
2

∫
X

log r0(x) dm(x)
) ∞⊗

k=1

T̃
(
g(xk)fk

)
(rk) (4.9)

for every g = r0g0 ∈ PX (r0 ∈ (R∗
+)X , g0 ∈ PX0 ), where T̃ is the representation of

P associated with the representation T of the subgroup P0.
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Proof. The orthogonality (unitarity) of the operators U(r0(·)) follows from the pro-
jective invariance of the measure L (see (2.3)). Indeed,

‖U(r0(·))F‖2 = exp
( ∫

X

log r0(x) dm(x)
) ∫

l1+

‖F (r0(·)ξ)‖2 dL (ξ)

= exp
( ∫

X

log r0(x) dm(x)
) ∫

l1+

‖F (ξ)‖2 dL (r−1
0 (·)ξ) = ‖F‖2,

since dL (r−1
0 (·)ξ) = exp

(
−

∫
X

log r0(x) dm(x)
)
dL (ξ).

Further, from the definition of these operators it follows that

U−1(r0(·))U(g0(·))U(r0(·)) = U
(
r−1
0 (·)g0(·)r0(·)

)
for any g0(·) ∈ PX0 and r0(·) ∈ RX+ . Hence these operators generate a representation
of the group PX .

Since the measure L on l1+(X) is preserved by any m-preserving transformations
of X, the representation of PX obtained is also invariant with respect to these
transformations. Proposition 4.3 is proved.

Using (4.5), we can write the expression (4.9) for U(g), g ∈ PX , in the form

U(g)
( ∞⊗
k=1

fk(rk)
)

= exp
(
−

∫
X

λ(g(x)) dm(x)
) ∞⊗

k=1

T̃
(
g(xk)fk

)
(rk), (4.10)

where
λ(g) =

1
2
‖b(g)‖2 + Re c(g). (4.11)

We call the constructed representation of PX the integral model associated with
the canonical representation T of P0 and denote it, by analogy with Fock repre-
sentations, by INTT ; similarly, we denote by INTH the Hilbert space on which
INTT is realized.

The description of the integral model implies the following assertion.

Theorem 4.2. If T1 and T2 are canonical representations of the group P0 on spaces
H1 and H2, then

INT(H1 ⊕H2) = INTH1 ⊗ INTH2,

and on this space the integral model INT(T1⊕ T2) of PX associated with the repre-
sentation T1 ⊕ T2 of P0 is realized.

Theorem 4.3. If a canonical representation T of the group P0 is irreducible, then
the associated representation U = INTT of the current group PX is also irreducible.

Proof. Let us first consider the operators U(g(·)), g(·) ∈ PX0 . They preserve
the fibres Hξ of the fibre bundle INTH, and, by Proposition 3.3, the resulting
representations of PX0 are irreducible and pairwise non-equivalent. Hence every
operator A on INTH that commutes with these operators is a multiple of the
identity operator on each fibre of INTH, that is, it is multiplication by a func-
tion a(ξ) = a({rk, xk}). If this operator A also commutes with the operators
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U(r0(·)), r0(·) ∈ RX+ , then the function a({rk, xk}) is constant on the orbits of the
group M of multipliers, which acts in l1+(X) by multiplication by positive functions
r0(·) : {rk, xk} 7→ {r0(xk)rk, xk}. Since the measure L is ergodic, it follows that A
is a constant.

4.3. The total subset M ⊂ INT H. We define the vacuum vector in the space
INTH to be the vector Ω given by

Ω(ξ) =
∞⊗
k=1

f0(rk) for ξ = {rk, xk}, where f0(r) = e−r/2hr. (4.12)

It follows from the formula for the characteristic functional of the measure L that
‖Ω‖ = 1.

Definition 4. With each element g ∈ PX we associate the following vector in the
space INTH:

Fg(ξ) = exp
( ∫

X

(
1
2
‖b(g(x))‖2 − i Im c(g(x))

)
dm(x)

)
U(g)Ω(ξ), (4.13)

where c(g) = 〈b(g), f0〉.

Since Ω is cyclic, the set M consisting of vectors Fg, g ∈ PX , is total in INTH.
Further,

(U(g)Ω)(ξ) = exp
(
−

∫
X

λ(g(x)) dm(x)
) ∞⊗
k=1

(
T̃ (g(xk))f0

)
(rk) for ξ = {rk, xk},

(4.14)
where λ(g) = 1

2 ‖b(g)‖
2 + Re c(g), so that the expression for Fg can be written in

the form

Fg(ξ) = exp
(
−

∫
X

c(g(x)) dm(x)
) ∞⊗

k=1

(
T̃ (g(xk))f0

)
(rk) for ξ = {rk, xk}. (4.15)

The vector Ω = Fe and the set of vectors Fg generated by Ω can be viewed as
analogues of the vacuum vector EXP0 and the set of vectors EXP bX(g) gener-
ated by EXP 0 in the space of the Fock representation. Let us describe the main
properties of the set M .

The definition of Fg implies the following assertion.

Proposition 4.4. The action of the operators of the representation U = INTT on
vectors of the form Fg is given by the formula

U(g)Fg1 = exp
(
−

∫
X

(
c(g1(x))− c(gg1(x)) + λ(g(x))

)
dm(x)

)
Fgg1 , (4.16)

where λ(g) = 1
2 ‖b(g)‖

2 + Re c(g).
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Indeed, we have

(
U(g)Fg1

)
(ξ) = exp

(
−

∫
X

c(g1(x)) dm(x)
)
U(g)

( ∞⊗
k=1

T̃
(
g1(xk)f0

)
(rk)

)

= exp
(
−

∫
X

(
c(g1(x)) + λ(g(x))

)
dm(x)

)( ∞⊗
k=1

T̃
(
gg1(xk)f0

)
(rk)

)
= exp

(
−

∫
X

(
c(g1(x)) + λ(g(x))− c(gg1(x))

)
dm(x)

)
Fgg1 .

Proposition 4.5. On the set of vectors of the form Fg the inner product is given
by the formula

〈Fg1 , Fg2〉 = exp
( ∫

X

〈b(g1(x)), b(g2(x))〉 dm(x)
)

for all g1, g2 ∈ PX . (4.17)

Proof. From the definition of Fg it follows that

〈Fg1 , Fg2〉 = exp
(
−

∫
X

(
c(g1(x)) + c(g2(x))

)
dm(x)

)
I, (4.18)

where

I =
∫
l1+(X)

∞∏
k=1

〈(
T̃ (g1(xk))f0

)
(rk),

(
T̃ (g2(xk))f0

)
(rk)

〉
H
dL (ξ). (4.19)

To compute I we use the general formula (2.6). Let

ϕ(r, x) =
〈(
T̃ (g1(x))f0

)
(r),

(
T̃ (g2(x))f0

)
(r)

〉
H
.

In view of (2.6), we obtain

I = exp
( ∫

X

∫ ∞

0

(
ϕ(r, x)− e−r

)
d∗r dm(x)

)
.

Let us transform the integrand. Since T̃ (g1(x))f0 = b(g(x)) + f0 and e−r =
〈f0(r), f0(r)〉H , the function ϕ(r, x) can be written in the form

ϕ(r, x) =
〈
b
(
g1(x), r

)
, b

(
g2(x), r

)〉∣∣
H

+〈b
(
g1(x), r

)
, f0(r)

〉∣∣
H

+
〈
b
(
g2(x), r

)
, f0(r)

〉
H
.

Integrating with respect to r yields

I = exp
( ∫

X

(
〈b(g1(x)), b(g2(x))〉+ c(g1(x)) + c(g2(x))

)
dm(x)

)
.

Together with (4.18) this implies (4.17).

Remark. Denote by K the subgroup consisting of the elements k ∈ P such that
b(k) = 0. Clearly, two vectors Fg1 and Fg2 coincide if and only if g2 = g1k with
k ∈ KX . Hence the set of pairwise distinct vectors Fg can be naturally identified
with the quotient space GX/KX .
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4.4. The spherical function of the representation U = INT T .

Definition 5. The spherical function of the representation U = INTT of the
group PX is the following function on PX :

Ψ(g) = 〈U(g)Ω,Ω〉, where Ω(ξ) =
∞⊗
k=1

f0(rk) for ξ = {rk, xk}. (4.20)

Since the representation U is irreducible, this function uniquely determines it up
to equivalence.

Theorem 4.4. The spherical function Ψ(g) can be written in the form

Ψ(g) = exp
( ∫

X

(
i Im c(g(x))− 1

2
‖b(g(x))‖2

)
dm(x)

)
, (4.21)

where b(g) is the 1-cocycle

b(g) =
(
T̃ (g)f0

)
(r)− f0(r), f0(r) = e−r/2, (4.22)

of the representation T̃ of P associated with the representation T of P0, and c(g) =
〈b(g(x)), f0〉.

Proof. The desired formula (4.21) follows from the formula (4.17) for the inner
product of vectors of the form Fg and the formula (4.13) which expresses Fg in
terms of U(g)Ω. For completeness, let us give also a direct proof. By (4.14) we
have

Ψ(g) = exp
(
−

∫
X

λ(g(x)) dm(x)
) ∫

l1+(X)

( ∞∏
k=1

〈
T̃

(
g(xk)f0

)
(rk), f0(rk)

〉)
dL (ξ),

(4.23)
where λ(g) = 1

2 ‖b(g)‖
2 + Re c(g). To compute the integral

I =
∫
l1+(X)

( ∞∏
k=1

〈
T̃

(
g(xk)f0

)
(rk), f0(rk)

〉)
dL (ξ),

consider the projections of the cone l1+(X) on the finite-dimensional cones Φα asso-
ciated with the partitions α: X =

⋃n
k=1Xk of the space X. Under the projection

on Φα the expression for I takes the form

Iα =
n∏
k=1

Ikα, where Ikα =
∫ ∞

0

〈(
T̃ (gk)f0

)
(rk), f0(rk)

〉
H

rλk−1
k drk
Γ(λk)

.

Here we have used the notation gk = g(x)
∣∣
Xk

. Let us substitute into this formula

the expression for T̃ (gk)f0 in terms of the non-trivial cocycle b(g, r):(
T̃ (gk)f0

)
(rk) = b(gk, rk) + f0(rk).
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Taking into account that
∫ ∞

0

‖f0(r)‖2
∣∣
H

rλk−1 drk
Γ(λk)

= 1, we obtain

Ikα = 1 +
∫ ∞

0

〈b(gk, r), f0(r)〉H
rλk−1 dr

Γ(λk)
.

It follows that

Ikα = 1 + λk

∫ ∞

0

〈b(gk, r), f0(r)〉r−1 dr +O(λ2
k) = 1 + λk c(gk) +O(λ2

k).

Therefore, Iα =
∏n
k=1

(
1 + c(gk) +O(λ2

k)
)
. Since

∑
λkc(gk) =

∫
X

c(g(x)) dm(x),

where g(x) is the piecewise constant function that takes the values gk on the
elements of the partition α, the expression obtained can be written in the form
Iα ∼ exp

(∫
X
c(g(x)) dm(x)

)
up to terms of order greater than 1 with respect to λk.

Taking the inductive limit over the set of finite partitions α, we obtain the following
expression for I:

I = exp
( ∫

X

c(g(x)) dm(x)
)
.

Together with (4.23) this implies (4.21).

4.5. The relation between the integral and Fock models of represen-
tations of the current group P X = (R∗

+ i P0)X . The Fock construction
(see, for example, [1], [3], [30], [28], [31]) associates with each pair (T̃ , b), where
T̃ is a special orthogonal or unitary representation of an arbitrary locally compact
group G on a Hilbert space H and b is a non-trivial 1-cocycle b : G→ H , a unitary
representation of the current group GX on the complex Hilbert space EXPH X ,
where

H X =
∫ ⊕

X

Hx dm(x), Hx = H .

By definition,

EXPH X =
∞⊕
k=0

SkH X

(here Sk is the kth symmetric tensor power) in the case where H is a complex
Hilbert space; if H is a real space, then EXPH X is the complexification of the
real space

⊕∞
k=0 S

kH X . In the latter case, EXPH X is isomorphic to the Fock
space EXP(HC)X , where HC is the complexification of the real space H .

In the space EXPH X we consider the total subset of vectors EXP v, v ∈ H X ,
of the form

EXP v = 1I⊕ v ⊕ 1√
2!
v ⊗ v ⊕ 1√

3!
v ⊗ v ⊗ v ⊕ · · · .
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On this set the operators of the Fock representation are defined by the following
formula:

U(g) EXP v = exp
(
−1

2
‖bX(g)‖2 −

〈
T̃X(g)v, bX(g)

〉)
EXP

(
T̃X(g)v + bX(g)

)
.

Here T̃X and bX denote, respectively, the representation of GX on H X generated
by the representation T̃ of G on H , and the 1-cocycle GX → H X generated by
the 1-cocycle b : G→ H .

The operators U(g) are related by

U(g1g2) = exp
(
i Im〈TX(g1)bX(g2), bX(g1)〉

)
U(g1)U(g2) for any g1, g2 ∈ GX .

(4.24)
Thus, the Fock representation of GX associated with a unitary representation of G
is projective if the 2-cocycle

exp
(
i Im〈TX(g1)bX(g2), bX(g1)〉

)
is not identically zero, and it is equivalent to a true representation if and only if
this 2-cocycle is trivial.

Theorem 4.5. The Fock model of representation of the group PX = (R∗
+ i P0)X

on the space EXP H X is projectively equivalent to the true representation V of PX

on the same space EXPH X whose operators are related to the operators U(g) of
the Fock representation by

V (g) = exp
(
i Im

∫
X

〈b(g(x)), f0〉 dm(x)
)
U(g). (4.25)

Indeed, it follows from (4.7) that the 2-cocycle

λ(g1, g2) = exp
(
i Im〈TX(g1)bX(g2), bX(g1)〉

)
in (4.24) is trivial, namely,

λ(g1, g2) =
C(g1)C(g2)
C(g1g2)

, where C(g) = exp
(
i Im

∫
X

〈b(g(x)), f0〉 dm(x)
)
.

The assertion follows.
We define the spherical function of the representation V of PX on the space

EXP H X by the formula

Φ(g) = 〈V (g) EXP0, EXP 0〉.

The definitions of the Fock representation U and the (true) representation V of PX

projectively equivalent to U imply the following assertion.

Proposition 4.6. The spherical function Φ(g) of the representation V of PX is
equal to

Φ(g) = exp
( ∫

X

(
i Im〈b(g(x)), f0〉 −

1
2
‖b(g(x))‖2

)
dm(x)

)
. (4.26)
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Theorem 4.6. Let T be a canonical irreducible representation of the group P0

on a space H , let T̃ be the associated representation of the group P = R∗
+ i P0

on the space H , and let b(g, r) =
(
T̃ (g)f0

)
(r) − f0(r), where f0(r) = e−r/2h,

be a non-trivial 1-cocycle P → H . Then the integral model of representation
INTT of the group PX on the space INTH is projectively equivalent to the Fock
representation U of PX on the space EXPH X . The intertwining operator for these
representations is generated by the map Ω → EXP 0 of the cyclic vectors.

Proof. Note that the formulae (4.21) and (4.26) for the spherical functions of INTT
and the representation V of PX on the Fock space coincide. Hence these repre-
sentations are equivalent, and the intertwining operator for them is generated by
the map Ω → EXP0 of the cyclic vectors. The required assertion now follows from
Theorem 4.5.

4.6. Extension of the integral model of representation of the group P X

to a representation of the group GX , where P ⊂ G. We consider an arbi-
trary locally compact group G that contains P = R∗

+ i P0 as a subgroup. Let T
be an irreducible canonical representation of P0 on a space H, let T̃ be the asso-
ciated special representation of P on the space H =

∫∞
0
Hr d

∗r, Hr = H, and let
b(g) : P → H be the non-trivial 1-cocycle of T̃ defined by

b(g) = T̃ (g)f0 − f0, where f0(r) = e−r/2hr. (4.27)

Theorem 4.7. Assume that there exists an extension of the representation T̃ of
the group P on the space H to a representation of the group G, and there exists
an extension of the 1-cocycle (4.27) of P to a 1-cocycle of the same form of G.
Then there exists a corresponding extension of the integral model U = INTT of
representation of the current group PX to a representation of the current group GX .

Let us explicitly describe this extension. In § 4.3 above we defined the total set
of vectors of the form

Fg(ξ) = exp
(
−

∫
X

c(g(x)) dm(x)
) ∞⊗

k=1

(
T̃ (g(xk))f0

)
(rk) for ξ = {rk, xk} (4.28)

in the space INTH, where f0(r) = exp(−r/2)hr and c(g) = 〈b(g), f0〉.
We proved that

〈Fg1 , Fg2〉 = exp
( ∫

X

c(g1(x), g2(x)) dm(x)
)
, (4.29)

where
c(g1, g2) = 〈b(g1), b(g2)〉, (4.30)

and the action of the operators of the representation U of PX on these vectors is
given by

U(g)Fg1 = exp
(
−

∫
X

(c(g1(x))− c(g1(x)) + λ(g(x))) dm(x)
)
Fgg1 , (4.31)

where λ(g) = 1
2 ‖b(g)‖

2 + Re c(g).
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Definition 6. Let us extend the family of functions Fg, g ∈ PX , by defining Fg
for an arbitrary g ∈ GX by the same formula (4.28).

Exactly as in Proposition 4.5, we establish the following fact: on the set of vectors
of the form Fg , g ∈ GX , the inner product is given by the same formula (4.29).
In particular, 〈Fg, Fg〉 = exp

( ∫
X
c(g(x), g(x)) dm(x)

)
<∞, so that the vectors Fg,

g ∈ GX , belong to INTH.

Definition 7. On the set of vectors of the form Fg, g ∈ GX , we define the action
of the operators U(g) for g ∈ GX by the formula

U(g)Fg1 = exp
(
−

∫
X

λ(g(x), g1(x)) dm(x)
)
Fgg1 , (4.32)

where
λ(g, g1) =

1
2
‖b(g)‖2 + 〈T̃ (g)b(g1), b(g)〉 − i Im c(g). (4.33)

Theorem 4.8. The operators U(g), g ∈ GX , preserve the inner products of vectors
of the form Fg , that is,

〈U(g)Fg1 , U(g)Fg2〉 = 〈Fg1 , Fg2〉 for any g, g1, g2 ∈ GX , (4.34)

and thus they can be extended to orthogonal (unitary) operators on the whole space
INTH .

Proof. We have

〈U(g)Fg1 , U(g)Fg2〉 = exp
(
−

∫
X

u(g(x), g1(x), g2(x)) dm(x)
)
,

where
u(g, g1, g2) = λ(g, g1) + λ(g, g2)− 〈b(gg1), b(gg2)〉.

Since b(gg1) = T̃ (g)b(g1) + b(g), it follows from the expression (4.33) for λ(g, gi)
that u(g, g1, g2) = 〈b(g1), b(g2)〉. This implies (4.34).

Theorem 4.9. The operators U(g) determine a representation (in general, projec-
tive) of the group GX on the space INTH :

U(g1g2) = exp
(
i Im

∫
X

p(g1(x), g2(x)) dm(x)
)
U(g1)U(g2) for any g1, g2 ∈ GX ,

(4.35)
where

p(g1, g2) = 〈T̃ (g1)b(g2), b(g1)〉 − c(g1)− c(g2) + c(g1g2). (4.36)

Proof. For any g, g1, g2 ∈ GX we have

U(g1)U(g2)Fg = exp
(
−

∫
X

a(g1(x), g2(x), g(x)) dm(x)
)
Fg1g2g,

U(g1g2)Fg = exp
(
−

∫
X

a′(g1(x), g2(x), g(x)) dm(x)
)
Fg1g2g,



26 A.M. Vershik and M. I. Graev

where

a(g1, g2, g) = λ(g2, g) + λ(g1, g2g), a′(g1, g2, g) = λ(g1g2, g).

Let us use the relation

l(g2, g) + l(g1, g2g)− l(g1g2, g) = i Im〈T̃ (g1)b(g2), b(g1)〉

for
l(g1, g2) =

1
2
‖b(g1)‖2 + 〈T̃ (g1)b(g2), b(g1)〉.

It implies that

a(g1, g2, g)− a′(g1, g2, g) = i Im
(
〈T̃ (g1)b(g2), b(g1)〉 − c(g1)− c(g2) + c(g1g2)

)
.

Hence,

U(g1)U(g2)U−1(g1g2)Fg

= exp
(
− Im

∫
X

p(g1(x), g2(x)) dm(x)
)
Fg for every g ∈ GX ,

where p(g1, g2) is given by (4.36). The required assertion follows.

Theorem 4.10. The restriction of the representation U of the group GX to the
subgroup PX coincides with the original representation INTT .

Proof. It suffices to check that on the total set of vectors of the form Fg1 the
operators U(g) for g ∈ PX coincide with the original operators. For g, g1 ∈ P we
have 〈T̃ (g)b(g1), b(g)〉 = −c(gg1) + c(g) + c(g1) by (4.7). Hence,

λ(g, g1) = c(g1)− c(gg1) +
1
2
‖b(g)‖2 + Re c(g),

so that the expression for U(g)Fg1 coincides for g, g1 ∈ PX with the original expres-
sion (4.16).

5. The integral model of representation
of the current group O(n, 1)X , n > 2

In this and subsequent sections we describe the integral models of representa-
tions of the current groups PX , where P is the maximal parabolic subgroup of
the group O(n, 1), U(n, 1), or Sp(n, 1), and in the first two cases we extend these
representations of PX to representations of the groups O(n, 1)X and U(n, 1)X ,
respectively. (In the case of Sp(n, 1) the corresponding current group has no rep-
resentations.) A separate section is devoted to the case of SL(2,R) ∼= SU(1, 1), in
which P is the subgroup of triangular matrices. Each of these groups has a unique
(up to conjugacy) maximal parabolic subgroup P , and this subgroup can be writ-
ten as a semidirect product: P = R∗

+ i P0. Thus, the description of the integral
models essentially reduces to the description of the canonical representations of the
subgroup P0.

We begin with the case P ⊂ O(n, 1), n > 2, because in this case there is a unique,
up to conjugacy, canonical representation of P0 and, accordingly, a unique integral
model of representation of PX .
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5.1. Preliminary definitions and notation. By definition, O(n, 1) is the group
of linear transformations on Rn+1 preserving a non-degenerate quadratic form of
signature (n, 1). Here we choose 2x1xn+1 + x2

2 + · · ·+ x2
n as such a form and write

elements of the group O(n, 1) as block matrices

g = ‖gij‖i,j=1,2,3,

where the diagonal consists of square matrices of orders 1, n−1, and 1, respectively.
This matrix realization of O(n, 1) is convenient for describing its maximal para-

bolic subgroup P ⊂ O(n, 1), which is, by definition, the group of linear transforma-
tions preserving a subspace E that is isotropic with respect to the quadratic form
under consideration. Up to conjugacy, O(n, 1) has a unique maximal parabolic sub-
group. In our realization E is the one-dimensional subspace of vectors of the form
(x1, 0, . . . , 0), and the corresponding maximal parabolic subgroup P of O(n, 1) can
be written, as the group of all lower block-triangular matrices, in the form of the
semidirect product

P = D iN,

where N ∼= Rn−1 is the maximal nilpotent subgroup consisting of the block matrices
of the form

h =

 1 0 0
−γ∗ en−1 0

− 1
2 γγ

∗ γ 1

 , γ ∈ Rn−1,

and D ∼= R∗ × O(n − 1) is the group of block-diagonal matrices of the form d =
diag(s−1, u, s), s ∈ R∗, u ∈ O(n− 1).

Let D be written as the direct product D = R∗
+×D0, where D0 is the subgroup

of matrices of the form d = diag(±1, u,±1), and let

P0 = D0 iN.

Thus,
P = R∗

+ i P0 = (R∗
+ ×D0) iN.

Elements of R∗
+, D0, and N will be denoted by r, (ε, u) (with ε = ±1), and γ (a row

vector), respectively. With this notation the group relations take the form

(ε, u)−1g(ε, u) = εγu, rgr−1 = rγ for g = γ ∈ N.

5.2. Description of the canonical representations of the subgroup P0.
Up to conjugacy with respect to the group R∗

+ of automorphisms, there is a unique
canonical irreducible unitary representation T of the subgroup P0 = D0 iN . It is
realized on the Hilbert space H of functions on the unit sphere Sn−2 ⊂ Rn−1 with
the norm

‖f‖2 =
∫
Sn−2

|f(ω)|2 dω,

where dω is the invariant measure onSn−2 normalized by the condition
∫
Sn−2 dω=1.

The operators of this representation are given by the formulae(
T (γ)f

)
(ω) = e−i〈γ,ω〉 f(ω) for γ ∈ N, N ∼= Rn−1, (5.1)(

T (εωu)f
)
(ω) = f(εωu) for (ε, u) ∈ D0, D0 = {±1} ×O(n− 1). (5.2)
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The operators of the representations Tr, r ∈ R∗
+, conjugate to T act in the spaces

Hr = H and are given by the formulae(
Tr(γ)f

)
(ω) = e−ir〈γ,ω〉 f(ω), Tr(g) = T (g) for g ∈ D0. (5.3)

Remark. The representation T− of P0 defined by the formulae(
T−(γ)f

)
(ω) = ei〈γ,ω〉 f(ω), T−(g) = T (g) for g ∈ D0,

is equivalent to T : T− = A−1TA, where Af(ω) = f(−ω).

Proposition 5.1. The representation T of the group P0 is canonical.

Proof. It is clear that the representations Tr are pairwise non-equivalent. Thus, it
suffices to check the estimate

‖Tr(g)1I− 1I‖ < c(g)r for every g ∈ P0, (5.4)

where 1I stands for the vector f(ω) ≡ 1. Since Tr(g)1I = 1I for g ∈ D0, it suffices
to prove (5.4) only for the elements g = γ ∈ N . For these elements the estimate
follows from the obvious equality

‖Tr(g)1I− 1I‖2 = 2
∫
Sn−2

(
1− cos(r〈γ, ω〉)

)
dω.

5.3. The special representation of the group P . The special irreducible rep-
resentation T̃ of P associated with T acts in the direct integral of the Hilbert spaces
Hr = H with respect to the measure d∗r = r−1 dr on R∗

+,

H =
∫ ∞

0

Hr d
∗r,

that is, in the space of sections f(r) of the fibre bundle over R∗
+ with fibre Hr. The

operators corresponding to elements of the subgroup P0 act in the fibres of this
fibre bundle,

(
T̃ (g)f

)
(r) = Tr(gf(r)) for g ∈ P0, and the operators corresponding

to elements of the subgroup R∗
+ are defined by the formula(
T̃ (r0)f

)
(r) = f(r0r).

The non-trivial 1-cocycle b : P → H associated with this representation will be
written in the form

b(g) = T̃ (g)f0(r, ω)− f0(r, ω), where f0(r, ω) = e−r/2. (5.5)

Proposition 5.2. The functions ‖b(g)‖2 and c(g) = 〈b(g), f0〉 are given by the
following formulae:

‖b(g)‖2 = log
(r0 + 1)2

4r0
, c(g) = log

2
r0 + 1

for g = r0 ∈ R∗
+; (5.6)

‖b(g)‖ = 2c(g) =
∫ π/2

0

(1 + |γ|2 cos2 t) sinn−3 t dt for g = γ ∈ N. (5.7)
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Proof. Let us use the equality∫ ∞

0

(e−ar − e−br)r−1 dr = log
(
b

a

)
for Re a,Re b > 0. (5.8)

We have

‖b(r0)‖2 =
∫ ∞

0

∫
Sn−2

(
e−r0r − 2e−(r0+1)r/2 + e−r

)
dω d∗r,

c(g) =
∫ ∞

0

∫
Sn−2

(
e−(r0+1)r/2 − e−r

)
dω d∗r.

In view of (5.8), this implies (5.6).
Further, we have

‖b(γ)‖2 =
∫ ∞

0

∫
Sn−2

(
2e−r − e−(1+i〈γ,ω〉)r − e−(1−i〈γ,ω〉)r) dω d∗r.

Integrating first with respect to r, we see in view of (5.8) that

‖b(γ)‖2 =
∫
Sn−2

log(1 + 〈γ, ω〉2) dω.

Converting to spherical coordinates and integrating over Sn−3, we obtain

‖b(γ)‖2 =
∫ π

0

log(1 + |γ|2 cos2 t) sinn−3 t dt.

A similar calculation gives the expression for c(g).

5.4. Extension of the special representation of the group P to a repre-
sentation of the group O(n, 1). In order to construct this extension, we first
describe the realization of the special representation of O(n, 1) on the space of
functions on N ∼= Rn−1; in what follows, we identify elements of N with points
x ∈ Rn−1. Using the decomposition O(n, 1) = P+N , where P+ ∼= P is the sub-
group of upper block-triangular matrices, we can interpret N as a section of the
fibre bundle O(n, 1) → P+ \O(n, 1). Thus, on N there is an action x 7→ xg of the
group O(n, 1):

xg =
(
−|x|

2

2
g13 + xg23 + g33

)−1 (
−|x|

2

2
g12 + xg22 + g32

)
, (5.9)

where the gij are elements of a block matrix g ∈ O(n, 1). In particular,

xg = x+ x0 for g = x0 ∈ N ; xg = ε−1γu for g = diag(ε−1, u, ε);

xg = − 2x
|x|2

for g = s =

0 0 1
0 en−1 0
1 0 0

 .

Further, we define a function β(x, g) by the formula

β(x, g) =
∣∣∣∣−|x|22

g13 + xg23 + g33

∣∣∣∣, x ∈ Rn−1, g ∈ O(n, 1). (5.10)
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In particular, β(x, g) = 1 for g ∈ N ; β(x, g) = |ε| for g = diag(ε−1, u, ε);
β(x, s) = |x|2/2.

Definition 8 (see [24]). The special representation of the group O(n, 1) is realized
on the Hilbert space H̃ of functions ϕ(x) on Rn−1 satisfying the condition∫

Rn−1
ϕ(x) dx = 0

(where dx is the Lebesgue measure on Rn−1), with the inner product

〈ϕ1, ϕ2〉 = −
∫

Rn−1×Rn−1
log |x′ − x′′|ϕ1(x′)ϕ2(x′′) dx′ dx′′. (5.11)

The operators of this representation have the form(
T (g)ϕ

)
(x) = ϕ(xg)β1−n(x, g). (5.12)

In particular,(
T (g)ϕ

)
(x) = ϕ(x+ x0) for g = x0 ∈ N ; (5.13)(

T (g)ϕ
)
(x) = |ε|1−nϕ(ε−1γu) for g = diag(ε−1, u, ε); (5.14)

(
T (g)ϕ

)
(x) = ϕ

(
− 2x
|x|2

)(
|x|2

2

)1−n

for g = s =

0 0 1
0 en−1 0
1 0 0

 . (5.15)

The fact that these operators are unitary and satisfy the group property follows
from the relations

β(x, g1g2) = β(x, g1)β(xg1, g2) (5.16)

for any x ∈ Rn−1 and g1, g2 ∈ O(n, 1),

d(xg) = β1−n(x, g) dx (5.17)

for any g ∈ O(n, 1), and

|x′ − x′′|2 = |x′g − x′′g|2β(x′, g)β(x′′, g) (5.18)

for any x′, x′′ ∈ Rn−1 and g ∈ O(n, 1). It is convenient to define a non-trivial
1-cocycle of this representation by the formula

b(g, x) = T (g)ϕ0 − ϕ0, (5.19)

where ϕ0(x) is the Fourier transform of the function e−|γ|/2 on Rn−1; the motivation
for such a choice of ϕ0(x) will be explained below.

The required realization of the special representation of the group O(n, 1) is
obtained by passing from functions ϕ(x) to their Fourier transforms

f(γ) =
∫

Rn−1
ϕ(x)ei〈γ,x〉ϕ(x) dx.
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One can easily check that under this transformation the space H̃ turns into the
Hilbert space of functions on Rn−1 with the norm given in spherical coordinates
on Rn−1 by the formula

‖f‖2 =
∫ ∞

0

∫
Sn−2

|f(r, ω)|2 dω d∗r,

that is, into the space H of the special representation of the group P . Further, it
is clear that in this new realization the operators corresponding to elements of the
subgroup P have the form(

T̃ (g)ϕ
)
(γ) = e−i〈γ,γ0〉f(γ) for g = γ0 ∈ N, (5.20)(

T̃ (g)ϕ
)
(γ) = f(εγu) for g = diag(ε−1, u, ε), (5.21)

that is, they coincide with the operators of the original special representation of P .
Thus, the resulting representation of the group O(n, 1) is the required extension
to O(n, 1) of the original special representation of P .

Further, it is clear that the 1-cocycle in the space of functions ϕ(x) defined
by (5.19) turns into the 1-cocycle b(g) = T̃ (g)f0− f0 of the original representation,
where f0(r) = e−r/2.

The operators of the extension obtained can be written in an integral form:(
T̃ (g)ϕ

)
(γ) =

∫
Rn−1

A(γ, γ′, g)f(γ′) dγ′, (5.22)

where
A(γ, γ′, g) =

∫
Rn−1

exp
(
i(〈γ, x〉 − 〈γ′, xg〉)

)
β1−n(x, g) dx. (5.23)

These expressions simplify only for elements of the subgroup P .

5.5. Description of the integral model of representation INT T of the
current group P X associated with the representation T of the group P0.
According to the general construction, the representation INTT of PX is realized
on the direct integral of the Hilbert spaces Hξ with respect to the measure L ,

INTH =
∫ ⊕

l1+(X)

Hξ dL (ξ),

where the Hξ, ξ = {rk, xk}, are countable tensor powers of the Hilbert space
Hr = H of functions f(ω) on Sn−2 with stabilizing vector f(ω) ≡ 1:

Hξ =
∞⊗
k=1

Hrk
, Hrk

= H.

Thus, elements of the space INTH are sections F (ξ) of the fibre bundle over l1+(X)
with fibre Hξ.

The operators U(g), g ∈ PX0 , act in the fibres Hξ as

U(g(·)) =
∞⊗
k=1

Trk
(g(xk)). (5.24)
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The operators U(r0(·)), r0 ∈ RX , are given by the formula

(
U(r0(·))F

)
(ξ) = exp

(
1
2

∫
X

log r0(x) dm(x)
)
F

(
r0(·)ξ

)
. (5.25)

5.6. A formula for the spherical function and the relation between
the representation INT T of the group P X and its Fock representation.
According to § 4, the spherical function of the representation INTT of PX is defined
by the formula

Ψ(g) = 〈U(g)Ω,Ω〉, where Ω(ξ) =
∞⊗
k=1

(e−rk/2hrk
) for ξ = {rk, xk}.

Theorem 5.1. The spherical function of the representation INTT is

Ψ(g) = exp
(
−1

2

∫
X

‖b(g(x))‖2 dm(x)
)
, (5.26)

where b(g) is the 1-cocycle of the special representation of the group O(n, 1).

Indeed, in the case of O(n, 1) we have Im c(g) = 0, so that (5.26) follows imme-
diately from the general formula (4.21) for the spherical function of an integral
model.

According to the general construction of Fock models, the spherical function
Φ(g) = 〈U(g) EXP0,EXP0〉 of the Fock representation of PX associated with the
representation T̃ of P and the 1-cocycle b is given by the same formula (5.26).
Thus, Theorem 5.1 implies the following result.

Corollary. The integral model of representation INTT of the group PX is equiv-
alent to the Fock representation of PX associated with the representation T̃ of the
group P and the 1-cocycle b. The intertwining operator for these representations is
generated by the map Ω 7→ EXP0 of the cyclic vectors.

5.7. Extension of the integral model of representation of the group P X

to a representation of the group O(n, 1)X . Let T̃ be the extension (described
in § 5.4) to O(n, 1) of the special representation T̃ of the group P , and let b(g) =
T̃ (g)f0 − f0, where f0(r) = e−r/2, be a non-trivial cocycle.

According to § 4.6, the extension of the representation INTT of PX on INTH
to a representation of the group O(n, 1)X is constructed as follows. In the space
INTH we consider the total set of vectors Fg, g ∈ O(n, 1)X , of the form

Fg(ξ) = exp
(
−

∫
X

c(g(x)) dm(x)
) ∞⊗

k=1

(
T̃ (g(xk))f0

)
(rk) for ξ = {rk, xk}, (5.27)

where c(g) = 〈b(g), f0〉. Note that Im c(g) = 0.
The vectors Fg lie in the space INTH, and

〈Fg1 , Fg2〉 = exp
( ∫

X

c(g1(x), g2(x)) dm(x)
)
, where c(g1, g2) = 〈b(g1), b(g2)〉.
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We define the action of the operators U(g), g ∈ O(n, 1)X , on the set of vectors of
the form Fg by the formula

U(g)Fg1 = exp
(
−

∫
X

λ(g(x), g1(x)) dm(x)
)
Fgg1 ,

where
λ(g, g1) =

1
2
‖b(g)‖2 + 〈T̃ (g)b(g1), b(g)〉.

According to § 4.6, these operators preserve the inner products 〈Fg1 , Fg2〉 and gen-
erate a representation of O(n, 1)X on INTH which is an extension of the original
representation of PX .

Since Im c(g) = 0, this representation is a true (non-projective) representation
of O(n, 1)X .

6. Integral models of representations of the current group SL(2, R)X

We consider the subgroup P ⊂ SL(2,R) of real matrices of the form g =(
α−1 0
γ α

)
. Let us write its elements as g = ε(r, γ), where ε = ±1 and (r, γ) =(

r−1/2 0
r1/2γ r1/2

)
, r > 0. With this notation the group operation on P takes the form

(r1, γ1)(r2, γ2) =
(
r1r2, r

−1
2 γ1 + γ2

)
.

The group P can be written as the semidirect product P = R∗
+iP0 of commutative

groups, where P0 = {±1} × R is the subgroup of elements ε(1, γ) and R∗
+ is the

subgroup of pairs (r, 0), r > 0. The group R∗
+ acts on P0 by the transformations

ε(1, γ) → ε(r, 0)(1, γ)(r, 0)−1 = ε(1, rγ).

6.1. The canonical representations of the subgroup P0 and the associated
representations of the group P . The group P0 has a unique, up to passage
to conjugate representations, canonical irreducible orthogonal representation T 0 on
a two-dimensional space H0. Upon complexification, it splits into the direct sum
of two canonical unitary representations T± on spaces H± ∼= C, and H0 is the
subspace of H+ ⊕H− consisting of the vectors (x, x̄) ∈ C2.

The operators T±(ε(1, γ)) act by multiplication by e±iγ . Accordingly, the oper-
ators T±r (ε(1, γ)), r ∈ R∗

+, of the conjugate representations act by multiplication
by e±irγ . The fact that the representations T± are canonical follows from the
relation |e±irγ − 1| ∼ |γ|r as r → 0.

The representations T± of P0 give rise to special irreducible unitary representa-
tions T̃± of P . They act in the complex Hilbert space H = H ± of functions f(r)
on the half-line r > 0, with the norm

‖f‖2 =
∫ ∞

0

|f(r)|2 d∗r, d∗r = r−1 dr,

and they are given by the formulae T̃±(ε) = id (the triviality of the operators of T̃±

on the centre of the group) and(
T̃±(r0, r0γ)f

)
(r) = e±ir0rγf(r0r). (6.1)
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In particular, (
T̃±(1, γ)f

)
(r) = e±irγf(r), (6.2)(

T̃±(r0, 0)f
)
(r) = f(r0r), r0 ∈ R∗

+. (6.3)

These representations have non-trivial 1-cocycles b± : P → H whose structure
will be discussed in the next subsection.

The orthogonal canonical representation T 0 of P0 gives rise to a special orthogo-
nal representation T̃ 0 of P on the space H 0 ⊂ H +⊕H − of functions f(r) : R∗

+ →
H0 with the norm

‖f‖2 =
∫ ∞

0

‖f(r)‖2 d∗r.

The operators T̃ 0(g) are obtained by restricting to H 0 the operators T̃+(g)⊕T̃−(g)
on the space H + ⊕H −.

6.2. Extension of the representations T̃ ± and T̃ 0 of the group P to repre-
sentations of the group SL(2, R). We will introduce dense invariant subspaces
of the spaces of the special representations of P . Thus, it will suffice to construct
the required extensions only on these subspaces.

Let us begin with the case of the representation T̃+ of P on the space H +.
Denote by L the upper complex half-plane (Im z > 0) with the action of the

group SL(2,R):

z 7→ gz =
δz + γ

βz + α
for g =

(
α β
γ δ

)
(the Lobachevskii plane); in particular, gz = z for g = ±e (where e is the identity
element of the group) and

gz = r(z + γ) for g = (r, γ) ∈ P. (6.4)

We associate with each point z = u + iv ∈ L a function fz(r) on the right
half-line:

fz(r) = eirz = e−r(v−iu), where z = u+ iv, v > 0.

In particular,
fz0(r) = e−r for z0 = i.

Proposition 6.1. The functions fz1 − fz2 lie in the space H +, and the inner
product of a pair of these functions is given by

〈fz1 − fz2 , fz′1 − fz′2〉 =
∑

j,k=1,2

(−1)j+k−1c(zj , z′k), (6.5)

where

c(z1, z2) = log
(
−i(z1− z̄2)

)
= log

(
(v1 +v2)+ i(u1−u2)

)
for zk = uk+ ivk. (6.6)

In particular,

‖fz1 − fz2‖2 = log
|z1 − z̄2|2

4 Im z1 Im z2
. (6.7)
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Hereafter, log stands for the principal branch of the logarithm with log 1 = 0 on
the plane cut along the negative real axis.

Proof. It follows from the definition of the inner product in H + that if zj = uj+ivj
and z′j = u′j + iv′j , j = 1, 2, then

〈fz1−fz2 , fz′1−fz′2〉 =
∫ ∞

0

( ∑
j,k=1,2

(−1)j+kexp
(
−r((v1 + v2)− i(u1 − u2))

))
r−1 dr.

The convergence of this integral and the formula (6.5) follow from the relation∫ ∞

0

(e−ar − e−br) r−1 dr = log b− log a for Re a,Re b > 0.

Corollary. The following equality holds :

〈fz1 − fz0 , fz2 − fz0〉 = c(z1) + c(z2)− c(z1, z2)− c(z0), (6.8)

where
c(z) = c(z, z0), z0 = i. (6.9)

In particular,
‖fz − fz0‖2 = 2Re c(g)− c(z, z)− c(z0). (6.10)

Remark. The expression for ‖fz1 − fz2‖2 can be written in the form

‖fz1 − fz2‖2 = 2 log
[
cosh

d(z1, z2)
2

]
, (6.11)

where d(z1, z2) is the Lobachevskii distance between z1 and z2.

Indeed, let us transform the expression I =
4 Im z1 Im z2
|z1 − z̄2|2

using the formula

tanh
d(z1, z2)

2
=
|z1 − z2|
|z1 − z̄2|

. We have

I =
|z1 − z̄2|2 − |z1 − z2|2

|z1 − z̄2|2
= 1− tanh2 d(z1, z2)

2
= cosh−2 d(z1, z2)

2
.

This implies (6.11).

Definition 9. Denote by M+ the pre-Hilbert subspace of H + linearly spanned
by the functions fz1 − fz2 , or, equivalently, by the functions fz − fz0 .

The following assertion is a consequence of (6.4).

Proposition 6.2. The subspace M+ is invariant under the action of the operators
corresponding to elements of the group P ; namely, for any z1, z2 ∈ L

T̃+(g)(fz1 − fz2) = fgz1 − fgz2 . (6.12)

It is also clear that the subspace M+ is dense in H +. Thus, in order to extend
the representation T̃+ of P to a representation of the group SL(2,R)X , it suffices
to define the action of the operators of the representation only on this subspace.
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Definition 10. We define the operators T̃+(g) for g ∈ SL(2,R) on elements of the
space M+ by the same formula (6.12).

Theorem 6.1. The operators T̃+(g), g ∈ SL(2,R), preserve the inner product
on M+ and satisfy the group property. Thus, they generate an extension of the
representation T̃+ of the group P to a unitary representation of the group SL(2,R).

Proof. The group relation for these operators is obvious. Further, the relation

gz1 − gz̄2 = (z1 − z̄2)(βz1 + α)−1 (βz̄2 + α)−1 for every g =
(
α β
γ δ

)
implies that∑
j,k=1,2

(−1)j+k−1c(gzj , gz′k) =
∑

j,k=1,2

(−1)j+k−1c(zj , z′k) for every g ∈ SL(2,R),

(6.13)
that is, the inner product on M+ is invariant under T̃+(g) for g ∈ SL(2,R).

Proposition 6.3. The representation T̃+ of the group SL(2,R) has a non-trivial
1-cocycle b+ : SL(2,R) → H + of the form

b+(g) = fgz0 − fz0 , where z0 = i. (6.14)

Indeed, b+(g) ∈ H + for every g ∈ SL(2,R). Further, since fgz0 = T̃+(g)fz0 , it
follows that b+(g) = T̃+(g)fz0 − fz0 , so that b+(g) is a 1-cocycle. Since fz0 /∈ H 0,
this 1-cocycle is non-trivial.

The formula for the inner product in H implies the following assertion.

Proposition 6.4. For any g1, g2 ∈ SL(2,R)

〈b(g1), b(g2)〉 = c(g1z0) + c(g2z0)− c(g1z0, g2z0)− c(z0, z0); (6.15)

in particular,
‖b(g)‖2 = 2Re c(gz0)− c(gz0, gz0)− c(z0, z0). (6.16)

Corollary. The following relation holds :

−1
2
‖b(g)‖2 − 〈T̃+(g)b(g1), b(g)〉 = i Im c(gz0) +

(
c(gg1z0, gz0)− c(gg1z0, z0)

)
− 1

2
(
c(gz0, gz0)− c(z0, z0)

)
. (6.17)

In a similar way we can construct an extension of the representation T̃− of
P to a unitary representation of SL(2,R). Namely, we replace the space M+ of
functions of the form fz1−fz2 with the space M− of functions of the form fz1−fz2 .
Obviously, M− is total in H − and invariant under the action of the operators
corresponding to elements of the group P :

T̃−(g)(fz1 − fz2 ) = fgz1 − fgz2 . (6.18)
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The same formula (6.18) defines an extension of the representation T̃− of P to the
whole group SL(2,R). The non-trivial 1-cocycle b− of the representation obtained
is related to the 1-cocycle b+ by the equality b−(g) = b+(g).

The extensions thus defined of the representations T̃± of P to unitary repre-
sentations of SL(2,R) induce an extension of the orthogonal representation of P
on the space H 0 ⊂ H + ⊕H − to an orthogonal representation of SL(2,R). The
non-trivial 1-cocycle associated with this representation is

b0(g) =
(
b+(g), b−(g)

)
.

6.3. The integral models of representations of P X associated with canon-
ical representations of P0. The spaces H±

r of the representations T±r of P0 are
one-dimensional, so the countable tensor products H±

ξ , ξ = {rk, xk}, of these spaces
are also one-dimensional. Thus, the representations INTT± of PX act in the direct
integrals with respect to L of the one-dimensional spacesH±

ξ , that is, in the Hilbert
spaces INTH± of complex-valued functionals F±(ξ) = F±({rk, xk}) on l1+(X) with
the norm

‖F‖2 =
∫
l1+(X)

|F (ξ)|2 dL (ξ).

The operators of these representations are equal to the identity on the centre of PX

and are uniquely determined by the formulae

(
U±(1, γ(·))F±)

(ξ) = exp
(
±i

∑
rkγ(xk)

)
F±(ξ), (6.19)

(
U±(r0(·), 0)F±)

(ξ) = exp
(

1
2

∫
X

log r0(x) dm(x)
)
F±(r0(·) ξ) (6.20)

for ξ = {rk, xk}.
Let us proceed to the description of the orthogonal representation INTT 0 of

PX associated with the canonical representation T 0 of P0. Here elements of the
spaces H0

r = H0 of the representations T 0
r are vectors (s, s̄), s ∈ C, so that the

spaces H0
ξ of the representations of the group PX0 are countable tensor products

of two-dimensional real spaces with stabilizing vector 2−1/2(1, 1). Obviously, H0
ξ ⊂

H0
ξ ⊗H0

ξ .
Thus, the representation INTT 0 associated with the canonical representation T 0

of P0 is realized on the real orthogonal space INTH0 of functionals F (ξ) on l1+(X)
with values in the spaces H0

ξ equipped with the norm

‖F‖2 =
∫
l1+(X)

‖F (ξ)‖2 dL (ξ).

The operators U0(1, γ(·)) are given by the formula

U0(1, γ(·))
( ∞⊗
k=1

(sk, sk)
)

=
∞⊗
k=1

(
eir

2
kγ(xk)sk, e

−ir2kγ(xk)sk
)
, (6.21)



38 A.M. Vershik and M. I. Graev

and the operators U0(r0(·), 0), as in the case of the representations U±, are given
by (6.20).

Note that under the natural embedding

INTH0 ⊂ INTH+ ⊗ INTH−,

the operators U0(g) are the restrictions to INTH0 of the operators U+(g)⊗U−(g)
on the space INTH+ ⊗ INTH−.

6.4. Extension of the unitary representations U± = INT T ± of the
current group P X to projective unitary representations of the group
SL(2, R)X . Let us construct an extension of the unitary representation U+ =
INTT+ of PX on the space U+ = INTH+ to a unitary projective representation
of SL(2,R)X . As in the case of the group of coefficients SL(2,R), the action of the
current group SL(2,R)X will be defined on some total subset M̃

+
⊂ INTH+.

Denote by LX , where L is the upper complex half-plane, the space of bounded
functions z : X → L, z(x) = u(x) + iv(x), v(x) > 0. The action of the group
SL(2,R) on L induces a pointwise action on LX of the current group SL(2,R)X .

We associate with each function z ∈ LX the functional Fz(ξ) = Fz({rk, xk})
on l1+(X) given by

F+
z (ξ) = exp

(
i
∑

rkz(xk)
)

= exp
(
−

∑
rk

(
v(xk)− iu(xk)

))
for z = u+ iv.

(6.22)
It follows from the definition of the characteristic functional of the measure L that

〈F+
z1 , F

+
z2〉 = exp

(
−

∫
X

c
(
z1(x), z2(x)

)
dm(x)

)
, (6.23)

where c(z1, z2) is given by (6.6). In particular,

‖F+
z ‖2 = exp

(
−

∫
X

log(2v(x)) dm(x)
)

for z = u+ iv.

Since the functions z ∈ LX are bounded, the functionals F+
z lie in the space

INTH+, and one can easily check that the set of them is total in INTH+.

Definition 11. We define the action of the operators U+(g) for g ∈ SL(2,R)X on
the set of functionals F+

z by the formula

U+(g)F+
z = exp

( ∫
X

ϕ(g(x), z(x)) dm(x)
)
F+
gz, (6.24)

where

ϕ(g, z) = c(gz, gz0)− c(z, z0)−
1
2
(
c(gz0, gz0)− c(z0, z0)

)
, z0 = i. (6.25)

Proposition 6.5. On the elements of the subgroup PX the operators U+(g) coin-
cide with the operators of the original representation of PX .
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Proof. For g = (r0, γ) ∈ P , we have c(gz1, gz2) = log r0 + c(z1, z2). It follows
that the factor in the formula (6.24) for U+(g) is equal to one for g ∈ P0 and to
exp

(
1
2

∫
X

log r0(x) dm(x)
)

for g =
(
r0(·), γ(·)

)
∈ PX . Further, we have F+

gz(ξ) =
exp

(
i
∑
rkγ(xk)

)
F+
z (ξ) for g =

(
1, γ(·)

)
and F+

gz(ξ) = F+
z

(
r0(·)ξ

)
for g =

(
r0(·), 0

)
.

Therefore,

U+(g)F+
z (ξ) = exp

(
i
∑

rkγ(xk)
)
F+
z (ξ) for g =

(
1, γ(·)

)
,

U+(g)F+
z (ξ) = exp

(
1
2

∫
X

log r0(x) dm(x)
)
F+
z

(
r0(·)ξ

)
for g =

(
r0(·), 0

)
for every z ∈ LX . The proposition follows.

Let us check that the operators U+ determine an extension of the representa-
tion of the group PX to the whole group SL(2,R)X . For this, replace the set of
functionals of the form F+

z with the set M̃
+

of functionals of the form

Ψ+
g = 2−1/2 exp

( ∫
X

c(z(x)) dm(x)
)
Fz, g ∈ SL(2,R)X , where z = gz0.

Proposition 6.6. On the set M̃
+

the inner product and the operators of the rep-
resentation are given by the following formulae:

〈Ψ+
g1 ,Ψ

+
g2〉 = exp

( ∫
X

〈b(g1(x)), b(g2(x))〉 dm(x)
)
, (6.26)

where b(g) is the 1-cocycle P → H + defined by (6.14);

U+(g1)Ψ+
g = exp

(
−

∫
X

u
(
g1(x), g(x)

)
dm(x)

)
Ψ+
g1g, (6.27)

where
u(g1, g) = i Im c(g1z0) +

1
2
‖b(g1)‖2 + 〈T̃ (g1)b(g), b(g1)〉. (6.28)

Proof. Equation (6.26) follows from (6.15). Equation (6.27) follows from (6.17)
with g and g1 interchanged.

Theorem 6.2. The operators U+(g) preserve the inner products 〈Ψ+
g1 ,Ψ

+
g2〉 and

thus can be extended to unitary operators on the whole space INTH+.

Proof. We have

〈U+(g)Ψ+
g1 , U

+(g)Ψ+
g2〉 = exp

( ∫
X

v
(
g(x), g1(x), g2(x)

)
dm(x)

)
,

where
v(g, g1, g2) = −

(
u(g, g1) + u(g, g2)

)
+ 〈b(gg1), b(gg2)〉.

This, along with the equality

〈b(gg1), b(gg2)〉 = ‖b(g)‖2 + 〈T̃+(g)b(g1), b(g)〉+ 〈b(g), T̃+(g)b(g2)〉+ 〈b(g1), b(g2)〉,

implies that 〈U+(g)Ψ+
g1 , U

+(g)Ψ+
g2〉 = exp

( ∫
X
〈b(g1(x)), b(g2(x))〉 dm(x)

)
.
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Theorem 6.3. The operators U+ form a projective representation of the group
SL(2,R)X ; namely, for any g1, g2 ∈ SL(2,R)X

U+(g1g2) = exp
(
i Im

∫
X

a
(
g1(x), g2(x)

)
dm(x)

)
U+(g1)U+(g2), (6.29)

where

a(g1, g2) = c(g1z0) + c(g2z0)− c(g1g2z0) + 〈T (g1)b(g2), b(g1)〉. (6.30)

Proof. By (6.27) we have

U+(g1)U+(g2)Ψ+
g = exp

(
−

∫
X

a1

(
g1(x), g2(x)

)
dm(x)

)
Ψ+
g1g2g,

U+(g1g2)Ψ+
g = exp

(
−

∫
X

a2(g1g2(x)) dm(x)
)
F+
g1g2g,

where
a1(g1, g2) = u(g2, g) + u(g1, g2g), a2(g1g2) = u(g1g2, g).

Hence,

U+(g1)U+(g2)Ψg = exp
(
−

∫
X

a′
(
g1(x), g2(x)

)
dm(x)

)
U+(g1g2)Ψg,

where
a′(g1, g2) = u(g2, g) + u(g1, g2g)− u(g1g2, g),

that is, by (6.28),

a′(g1, g2) = i Im
(
c(g1z0) + c(g2z0)− c(g1g2z0)

)
+ v(g2, g) + v(g1, g2g)− v(g1g2, g),

where v(g1, g) = 1
2 ‖b(g1)‖

2 + 〈T̃+(g1)b(g), b(g1)〉. This, along with the relation

v(g2, g) + v(g1, g2g)− v(g1g2, g) = i Im〈T̃+(g1)b(g2), b(g1)〉,

implies that

a′(g1, g2) = i Im
(
c(g1z0) + c(g2z0)− c(g1g2z0) + 〈T̃+(g1)b(g2), b(g1)〉

)
.

Thus,

U+(g1g2)Ψg

= exp
(
i Im

∫
X

a
(
g1(x), g2(x)

)
dm(x)

)
U+(g1)U+(g2)Ψg for every g ∈ PX ,

where a(g1, g2) is given by (6.30) and does not depend on g. This implies (6.29).
Theorem 6.3 follows.
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An extension of the second representation U− of PX to a representation of
SL(2,R)X is obtained by replacing the total set M̃

+
⊂ H̃+ by the total set M̃

−
⊂

H̃− of functionals Ψ−
g = Ψ+

g . The formulae for the inner products 〈Ψ−
g1 ,Ψ

−
g2〉 and for

the operators U−(g), as well as the relation between U−(g1g2) and U−(g1)U−(g2),
are obtained from the corresponding formulae (6.26), (6.27), and (6.29) for the case
of U+ by complex conjugation:

〈Ψ−
g1 ,Ψ

−
g2〉 = exp

( ∫
X

〈b(g2(x)), b(g1(x))〉 dm(x)
)
, (6.31)

U−(g1)Ψ−
g = exp

(
−

∫
X

u
(
g1(x), g(x)

)
dm(x)

)
Ψ−
g1g, (6.32)

U−(g1g2) = exp
(
−i Im

∫
X

a
(
g1(x), g2(x)

)
dm(x)

)
U−(g1)U−(g2). (6.33)

6.5. Extension of the orthogonal representation U0 = INT T 0 of the cur-
rent group P X to an orthogonal representation of the group SL(2, R)X .
As mentioned above, under the natural embedding INTH0 ⊂ INTH+ ⊗ INTH−

the operators U0(g) for g ∈ PX are obtained by restricting to INTH0 the operators
U+(g)⊗U−(g) on the space INTH+ ⊗ INTH−. Thus, the resulting extensions of
the representations U± of PX to representations of SL(2,R)X induce an extension
of the representation U0 of PX on the space INTH+ to an orthogonal representa-
tion of SL(2,R)X . Its complexification is a unitary non-projective representation
INT(T+ ⊕ T−) = INTT+ ⊗ INTT− equivalent to the representations of SL(2,R)
constructed earlier in [1].

Let us give an independent description of an extension of the representation U0

of PX to a representation of SL(2,R)X .
With each pair z ∈ LX and (r, x) ∈ R∗

+ ×X we associate a vector f0
z,r,x ∈ H0

r ,

f0
z,r,x = 2−1/2

(
eirkz(xk), e−irkz(xk)

)
,

and we define functionals F 0
z (ξ), z ∈ LX , on l1+(X) by the formula

F 0
z (ξ) =

∞⊗
k=1

f0
z,rk,xk

. (6.34)

Theorem 6.4. For any z1, z2 ∈ LX

〈F 0
z1 , F

0
z2〉 = exp

(
−

∫
X

log |z1(x)− z2(x)| dm(x)
)

= exp
(
−

∫
X

Re c
(
z1(x), z2(x)

)
dm(x)

)
. (6.35)

In particular,

‖F 0
z ‖2 = exp

(
−

∫
X

log(2 Im z(x)) dm(x)
)
. (6.36)
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Proof. Note that

〈f0
z1,r,x, f

0
z2,r,x〉 =

1
2
(
eirz(x), e−irz(x)

)
, where z = z1 − z2, for any z1, z2 ∈ LX .

Hence,

〈F 0
z1 , F

0
z2〉 =

∫
l1+(X)

∞∏
k=1

(
1
2
eirkz(xk) +

1
2
e−irk z̄(xk)

)
dL (ξ), where z = z1 − z2.

To compute the integral, we use Theorem 2.3. By this theorem, we have

〈F 0
z1 , F

0
z2〉 = exp

( ∫
X

∫ ∞

0

(
1
2
eirz(x) +

1
2
e−irz̄(x) − e−r

)
r−1 dr dm(x)

)
,

that is,

〈F 0
z1 , F

0
z2〉 = exp

(
1
2

∫
X

(
a(x) + a(x)

)
dm(x)

)
,

where
a(x) =

∫ ∞

0

(eirz(x) − e−r) r−1 dr.

Since eirz(x) = e−r(v(x)−iu(x)) for z = u+ iv, where v > 0, it follows that

a(x) = − log
(
v(x)− iu(x)

)
.

This implies (6.35).

Corollary. The functionals F 0
z lie in the space INTH0.

One can easily check that the set of these functionals is total in INTH0.

Definition 12. We define the operators U0(g), g ∈ SL(2,R)X , on M̃
0

by the
formula

U0(g)F 0
z = exp

(
Re

∫
X

ϕ(g(x), z(x)) dm(x)
)
F 0
gz, (6.37)

where ϕ(g, z) is given by (6.25). In other words, the formula for U0(g) is obtained
from the formula for U±(g) by replacing the function ϕ(g, z) with its real part.

As in the case of U±, on the elements of PX these operators coincide with the
operators of the original representation of PX .

By analogy with the case of U±, we consider the total set M̃
0
⊂ INTH0 of

functionals of the form

Ψ0
g = 2−1/2 exp

(
Re

∫
X

c(z(x)) dm(x)
)
F 0
z , g ∈ SL(2,R)X , where z = gz0.

Proposition 6.7. On the set M̃
0

the inner product and the operators of the rep-
resentation are given by the following formulae:

〈Ψ0
g1 ,Ψ

0
g2〉 = exp

( ∫
X

〈b0(g1(x)), b0(g2(x))〉 dm(x)
)
, (6.38)
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where b0(g) is the 1-cocycle P → H 0 defined by

b0(g) = 2−1/2
(
b(g), b(g)

)
; (6.39)

U0(g1)Ψ0
g = exp

(
−

∫
X

ũ
(
g1(x), g(x)

)
dm(x)

)
Ψ0
g1g, (6.40)

where
ũ(g1, g) = Reu(g1, z) =

1
2
‖b(g1)‖2 + 〈T̃ 0(g1)b0(g), b0(g1)〉. (6.41)

Proof. It follows from the definition of the functionals Ψ0 that

〈Ψ0
g1 ,Ψ

0
g2〉 = exp

(
Re

∫
X

〈b(g1(x)), b(g2(x))〉 dm(x)
)
,

U0(g1)Ψ0
g = exp

(
−Re

∫
X

u
(
g1(x), g(x)

)
dm(x)

)
Ψ0
g1g,

where u(g1, g) is given by (6.28). It remains to observe that ‖b(g)‖ = ‖b0(g)‖ and
Re〈T̃+(g1)b(g), b(g1)〉 = 〈T̃ 0(g1)b0(g), b0(g1)〉.

By analogy with Theorems 6.2 and 6.3, we obtain the following assertion.

Theorem 6.5. The operators U0(g) preserve the inner products 〈Ψ0
g1 ,Ψ

0
g2〉 and can

be extended to orthogonal (non-projective) operators on the whole space INTH0.

6.6. The relation to the Fock representations of the group SL(2, R)X . We
establish a connection between the integral model of representation U+ of SL(2,R)X

and the Fock representation of this group.
By definition, the Fock representation V + of SL(2,R)X associated with the uni-

tary representation T̃+ of SL(2,R) on H + and the 1-cocycle b : SL(2,R) → H +

acts in the Hilbert space H̃ = EXPH X , where

EXPH X =
∞⊕
k=0

SkH X

and

H X =
∫ ⊕

X

H +
x dm(x), H +

x = H +.

Let M +⊂ EXPH X be the total subset of vectors of the form Φ+
g1 = EXP bX(g1),

g1 ∈ SL(2,R)X , where bX(g) is the 1-cocycle SL(2,R)X → H X generated by the
1-cocycle b+ : SL(2,R) → H +.

On this subset the inner products and the operators of the Fock representation
are given by the formulae

〈Φ+
g1 ,Φ

+
g2〉 = exp

( ∫
X

〈b(g1(x)), b(g2(x))〉 dm(x)
)
, (6.42)

V +(g)Φ+
g1 = exp

( ∫
X

v
(
g(x), g1(x)

)
dm(x)

)
Φ+
gg1 , (6.43)
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where

v(g, g1) = −1
2
‖b(g)‖2 − 〈T (g)b(g1), b(g)〉 for any g, g1 ∈ SL(2,R). (6.44)

Theorem 6.6. The extension to SL(2,R)X of the integral model of representa-
tion U+ of the group PX on the space INTH+ is projectively equivalent to the Fock
model of representation V + of SL(2,R)X .

Indeed, the bijection Ψ+
g 7→ Φ+

g of the total subsets M̃
+

and M + in the spaces
of these representations preserves the inner products, and the formulae for the
corresponding operators U+(g) and V +(g) differ only by a factor:

U+(g) = exp
(
−i

∫
X

c(g(x)z0) dm(x)
)
V +(g).

A similar argument holds for the integral model U−.
Now let us compare the integral model of the representation U0 of SL(2,R)X

and the Fock representation V 0 of this group associated with the orthogonal rep-
resentation T̃ 0 of SL(2,R) on the space H 0 and the 1-cocycle b0 : SL(2,R) → H 0.

In this case the Fock representation V 0 is a true (non-projective) representation,
and on the corresponding total subsets M0 and M 0 in the spaces of U0 and V 0

the inner products and the formulae for the operators coincide. This implies the
following theorem.

Theorem 6.7. The extension to SL(2,R)X of the integral model of orthogonal rep-
resentation U0 of PX on the space H̃0 is equivalent to the Fock model of represen-
tation V 0 of SL(2,R)X . The intertwining operator for these representations is
generated by the map Ψ0

e 7→ Φ0
e = EXP0 of the cyclic vectors.

6.7. Addendum: Unitary representations of the group G̃X , where G̃ is
the universal cover of the group G = SL(2, R). In this subsection G stands
for the group SL(2,R) and G̃ for the universal cover of G, that is, the covering space
over G in which the fibre over an element g ∈ G is the set Z of homotopy classes of
paths in G from the identity element e to g. Elements of G̃ will be denoted by g̃,
and their images in G by g.

Since G is a quotient of G̃, the integral models of projective representations U±

of GX induce projective representations Ũ± of the current group G̃X on the same
Hilbert spaces INTH±. We will show that the projective representations of G̃X

thus defined are projectively equivalent to unitary non-projective representations
V ± of G̃X on the same spaces H̃±. Let us describe these representations V ±; for
definiteness, we restrict ourselves to the case of V + = V . To describe the represen-
tation V , it suffices to determine the action of the operators of this representation
on the elements of the total subset of functionals of the form Fz.

We introduce a function ψ(g̃, z) on G̃× L, where L is the upper half-plane. Let

ϕ(g, z) = − log(βz + α) for g =
(
α β
γ δ

)
∈ G and z ∈ L,

where, as above, log is the branch of the logarithm with log 1 = 0 on the plane
cut along the negative real axis. The function ϕ is everywhere finite, and for every
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fixed z ∈ L it is a single-valued analytic function of g ∈ G in a sufficiently small
neighbourhood of the identity element e. Hence for each g ∈ G and each path g̃ in G
from e to g, this function can be analytically continued along the path. Denote this
analytic continuation by ψ(g̃, z). The function ψ(g̃, z) defined in this way depends
only on the homotopy class of the path g̃, and thus is a function on G̃× L.

It follows from the definition that

ψ(g̃, z) = − log(βz + α) for g =
(
α β
γ δ

)
(6.45)

provided that g ∈ G and the path g̃ from e to g lies in a sufficiently small neigh-
bourhood of the identity element e.

Proposition 6.8. For any g̃1, g̃2 ∈ G̃ and z ∈ L+

ψ(g̃1g̃2, z) = ψ(g̃1, g2z) + ψ(g̃2, z). (6.46)

Proof. Let us use the equality

βz + α =
(
β1(g2z) + α1

)
(β2z + α2),

where (α1, β1), (α2, β2), and (α, β) are elements of the matrices g1, g2, and g1g2,
respectively. For g1, g2 sufficiently close to the identity element, this equality implies
that

log(βz + α) = log
(
βi(g2z) + α1

)
+ log(β2z + α2).

Thus, in view of (6.45), the desired relation (6.46) holds for elements g1, g2 and
paths g̃1, g̃2 sufficiently close to the identity element. Hence it is preserved under
analytic continuation with respect to g, that is, it remains valid for any g̃1, g̃2.
Proposition 6.8 follows.

With each pair g̃ ∈ G̃X and z ∈ LX , we associate the following function on X:

Ψg̃,z(x) = ψ
(
g̃(x), z(x)

)
. (6.47)

Proposition 6.8 implies the next assertion.

Proposition 6.9. The functions Ψg̃,z are related by

Ψg̃1g̃2,z = Ψg̃1,g2z + Ψg̃2,z. (6.48)

Definition 13. We define the action of the operators V (g̃), g̃ ∈ G̃X , on the func-
tions Fz of the total set M by the formula

V (g̃)Fz = exp
( ∫

X

Ψg̃,z(x) dm(x)
)
Fgz. (6.49)

Theorem 6.8. The operators V (g̃) are unitary on M , that is,

〈V (g̃)Fz1 , V (g̃)Fz2〉 = 〈Fz1 , Fz2〉 for any z1, z2 ∈ LX and g̃ ∈ G̃X , (6.50)

and they satisfy the relation

V (g̃1g̃2)Fz = V (g̃1)V (g̃2)Fz for any g̃1, g̃2 ∈ G̃X and z ∈ LX . (6.51)

Thus, they generate a unitary (non-projective) representation of the group G̃X on
the space H̃ .
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Proof. The group property (6.51) follows at once from Proposition 6.9. Namely,

V (g̃1)V (g̃2)Fz = exp
( ∫

X

(
Ψg̃1,g2z(x) + Ψg̃2,z(x)

)
dm(x)

)
Fg1g2z

= exp
( ∫

X

Ψg̃1g̃2,z(x) dm(x)
)
Fg1g2z = U(g̃1g̃2)Fz.

Further, since the group G̃ is simply connected, it suffices to establish the unitar-
ity (6.50) only for elements g̃ ∈ G̃X sufficiently close to the identity element. From
the definition of the operators V (g̃) and (6.23) it follows that

〈V (g̃)Fz1 , V (g̃)Fz2〉 = exp
( ∫

X

u(g̃, z1, z2) dm(x)
)
,

where
u(g̃, z1, z2) = Ψg̃,z1 + Ψg̃,z2 − c(gz1, gz2).

Under our assumption we have by (6.45) that

Ψg̃,z1 + Ψg̃,z2 = − log(βz1 + α)− log(βz̄2 + α).

On the other hand, the equation

gz1 − gz2 =
z1 − z̄2

(βz1 + α)(βz̄2 + α)

implies that

c(gz1, gz2) = c(z1, z2)− log(βz1 + α)− log(βz̄2 + α).

Thus, u(g̃, z1, z2) = −c(z1, z2). This implies (6.50).

Theorem 6.9. The constructed representation V of the group G̃X is projectively
equivalent to the representation Ũ of this group.

This assertion follows immediately from the formulae for the operators of these
representations on the total set M+.

7. Integral models of representations of the current group U(n, 1)X

7.1. Initial definitions. Let us realize U(n, 1) as the group of linear transforma-
tions on Cn+1 that preserve the Hermitian form x1x̄n+1+xn+1x̄1+|x2|2+· · ·+|xn|2,
and write its elements as block matrices

g = ‖gij‖i,j=1,2,3,

where the diagonal contains matrices of orders 1, n− 1, and 1, respectively. In this
realization, the maximal parabolic subgroup P is the group of lower block-triangular
matrices and can be written as the semidirect product

P = D iN,
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where N is the maximal nilpotent subgroup consisting of the block matrices of the
form

h =

 1 0 0
−z∗ en−1 0

it− zz∗

2
z 1

 , t ∈ R, z ∈ Cn−1

(the Heisenberg group of dimension 2n− 1) and D ∼= C∗×U(n− 1) is the group of
block-diagonal matrices of the form d = diag(s̄−1, u, s), s ∈ C∗, u ∈ U(n− 1).

We write D as the direct product D = R∗
+ × D0, where D0 is the subgroup of

matrices of the form d = diag(ε, u, ε), |ε| = 1, and we set

P0 = D0 iN.

Thus,
P = R∗

+ i P0 = (R∗
+ ×D0) iN.

Elements of D0 and N will be identified with pairs (ε, u) with ε ∈ U(1) and u ∈
U(n − 1), and pairs (t, z) with t ∈ R and z ∈ Cn−1 (a row vector), respectively.
Sometimes instead of (t, z) ∈ N we will also write (ζ, z), where ζ = it − |z|2/2.
With this notation the group relations take the form

(ζ1, z1)(ζ2, z2) = (ζ1 + ζ2 − z1z
∗
2 , z1,+z2),

(ε, u)−1(ζ, z)(ε, u) = (ζ, ε̄zu),

r (ζ, z)r−1 = (r2ζ, rz) for r ∈ R∗
+.

7.2. Description of the canonical irreducible representations of P0. Up to
conjugacy with respect to the group R∗

+ of automorphisms, there are two countable
series T±m , m = 0, 1, . . . , of canonical irreducible representations of P0. Let us first
describe the representations T+

m .
We consider a unitary representation of P0 on the Hilbert space H = H+ of

functions f(z) on Cn−1 with the norm

‖f‖2 =
∫

Cn−1
|f(z)|2 exp(−zz∗) dµ(z), zz∗ =

∑
ziz̄i, (7.1)

where dµ(z) is the Lebesgue measure on Cn−1 normalized by the condition∫
Cn−1

exp(−zz∗) dµ(z) = 1.

The operators of the representation T+ of the group P0 are given by the formulae(
T+(g)f

)
(z) = exp(ζ0 − zz∗0)f(z + z0) for g = (ζ0, z0) ∈ N, (7.2)(

T+(g)f
)
(z) = f(ε̄zu) for g = (ε, u) ∈ D0. (7.3)

Correspondingly, the operators of the representations T+
r conjugate to T+ with

respect to the group R∗
+ of automorphisms are given by the formulae(

T+
r (g)f

)
(z) = exp

(
r2ζ0 − rzz∗0

)
f(z + rz0) for g = (ζ0, z0) ∈ N, (7.4)(

T+
r (g)f

)
(z) = f(ε̄zu) for g = (ε, u) ∈ D0. (7.5)
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We note that the multiplier eζ0−zz
∗
0 in (7.4) is an entire analytic function of z. It

follows that the space H+ is the direct sum

H+ =
∞⊕
m=1

H+
m

of irreducible pairwise non-equivalent invariant subspaces, where H+
m is the invari-

ant subspace cyclically generated by the homogeneous polynomials in z̄1, . . . , z̄n−1 of
homogeneity degree m. In particular, elements of the space H+

0 are entire analytic
functions on Cn−1.

Denote by T+
m(g) the restrictions of the operators T+(g), g ∈ P0, to the sub-

spaces H+
m.

Proposition 7.1. The representations T+
m of the group P0 on the spaces H+

m are
canonical, and each of them has a unique almost invariant vector ϕm(z)= ln−2

m (zz∗),
where ln−2

m is a Laguerre polynomial.

Proof. Let us find all almost invariant vectors in H+
m. Obviously, every such vec-

tor fm(z) is invariant under the subgroup U(n− 1), and thus is a function of zz∗,
f(z) = ϕ(zz∗). Further, observe that for every m the direct sum

⊕m
k=1H

+
k

contains all vectors (zz∗)k with k 6 m, but does not contain vectors (zz∗)k

with k > m. It follows that Hm contains a unique, up to a factor, vector fm(z)
of the form ϕ(zz∗), and this vector is obtained at the mth step of orthogonaliza-
tion of the sequence of vectors 1, zz∗, (zz∗)2, . . . with respect to the norm in H+.
One can easily see that the vector obtained by such an orthogonalization is, up to
a factor, a Laguerre polynomial in zz∗: fm(z) = ln−2

m (zz∗). Further, the obvious
relation

(
T+
r (g)fm

)
(z) = fm(z) + O(r) for g ∈ N implies that the vector fm(z) is

almost invariant. Therefore, by Proposition 3.2, the representation T+
m is canonical.

Proposition 7.1 follows.

The second family T−m of canonical irreducible unitary representations of the
group P0 is obtained from the family T+

m by complex conjugation; namely, the
representation T−m acts in the space of functions f(z), where f(z) ∈ H+

m, as

T−(g)f̄ = T+(g)f.

In particular, T−0 acts in the space of entire anti-analytic functions on Cn−1.
Every pair T+

m , T−m of irreducible unitary representations of P0 gives rise to
an irreducible orthogonal representation T 0

m of P0 on the space H0
m ⊂ H+

m ⊕ H−
m

of vectors of the form (f, f̄ ), f ∈ H+
m. The operators of this representation are

defined as the restrictions to H0
m of the operators T+

m(g) ⊕ T−m(g) on H+
m ⊕ H−

m,
that is,

T 0
m(g)(f, f̄ ) =

(
T+
m(g)f, T−m(g)f̄

)
=

(
T+
m(g)f, T+

m(g)f
)
.

The representations T±m of P0 give rise to pairwise non-equivalent irreducible
unitary representations T̃±m of the maximal parabolic subgroup P on the spaces
H ±
m =

∫∞
0
H±
m,rr

−1 dr, H±
m,r = H±

m, and pairwise non-equivalent integral models
U±
m = INTT±m of irreducible unitary representations of the current group PX . The
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representations T̃±m of P have non-trivial 1-cocycles b±m : P → H ±
m , which are given

by

b±m(g)(g) = T±(g)fm(r, z)− fm(r, z), where fm(r, z) = e−r ln−2
m (zz∗),

where ln−2
m is a Laguerre polynomial.

Thus, the representations T 0
m of P0 give rise to pairwise non-equivalent irre-

ducible orthogonal representations T̃ 0
m of P on the spaces H 0

m ⊂ H +
m ⊕H −

m and
pairwise non-equivalent integral models U0

m = INTT 0
m of irreducible orthogonal

representations of PX . The representations T̃ 0
m of P have non-trivial 1-cocycles,

which are given by b0(g) =
(
b+(g), b−(g)

)
.

7.3. The representations of P associated with the representations T ±

and T 0 of P0. Further in this section we restrict ourselves to canonical represen-
tations of the subgroup P0 such that the associated representation of the group P
can be extended to a representation of the whole group U(n, 1). This property is
satisfied for the unitary representations T±0 , for the orthogonal representation T 0

0 ,
and only for them. We describe these representations in detail. In what follows,
the subscript 0 will be omitted.

The representation T+ of P0 is realized on the Hilbert space H+ of entire ana-
lytic functions f(z) on Cn−1 with the norm (7.1); its operators are defined on H
by (7.2), (7.3). Correspondingly, the operators of the representations of P0 conju-
gate to T+ act in the spaces H+

r = H+ according to (7.4), (7.5).
The function f(z) ≡ 1 is a vector in H+ almost invariant with respect to the

family of conjugate representations T+
r of P0, and it will be denoted by 1I in what

follows. For this function we have

‖T+
r (g)1I− 1I‖ < c(g)r for every g ∈ P0.

The corresponding representation T̃+ of the maximal parabolic subgroup P is
realized on the direct integral of the Hilbert spaces H+

r with respect to the measure
d∗r = r−1 dr on R+,

H + =
∫ ∞

0

H+
r d

∗r,

that is, elements of H + are sections f(r) of the fibre bundle over R∗
+ with fibre H+

r

over r ∈ R∗
+ that satisfy the condition

∫ ∞

0

‖f(r)‖2r−1 dr <∞.

In this realization the operators corresponding to elements of the subgroup P0 act
in each space H+

r according to (7.4), (7.5), and the homothety operators T (r0),
r0 ∈ R∗

+, map Hr isometrically to Hr0r.
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Thus, the representation T̃+ of the group P acts in the space H + according to
the formulae(
T̃+(g)f

)
(r, z) = exp

(
r2

(
it0 −

|z0|2

2

)
− rzz∗0

)
f(r, z + rz0) for g = (t0, z0) ∈ N,

(7.6)(
T̃+(g)f

)
(r, z) = f(r, ε̄zu) for g = (ε, u) ∈ D0, (7.7)(

T̃+(g)f
)
(r, z) = f(r0r, z) for g = r0 ∈ R∗

+. (7.8)

This representation has a non-trivial 1-cocycle b+ : P → H +:

b+(g) = T̃+(g) f0(r, z)− f0(r, z), where f0(r, z) = e−r
2
.

The second canonical unitary representation T− of P0 and the associated unitary
representation of P act, respectively, in the spaces H− and H − =

∫∞
0
H−
r d

∗r,
where H− is the space of entire anti-analytic functions f(z) on Cn−1 with the
norm (7.1).

Finally, the canonical orthogonal representation T 0 of P0 and the associated
orthogonal representation of P act, respectively, in the spaces H0 and H 0 =∫∞
0
H−
r r

−1dr, where H0 ⊂ H+ ⊕H− is the subspace of vectors of the form (f, f̄),
f ∈ H+. The operators T 0(g) on H0 are obtained by restricting to H0 the oper-
ators T+(g) ⊕ T−(g) on H+ ⊕H−, where H− is the space of entire anti-analytic
functions f(z) on Cn−1 with the norm (7.1).

7.4. The representations of P X associated with the representations T ±

and T 0 of P0. According to the general definitions, the unitary representa-
tions U± of PX associated with the representations T± of P0 are realized on the
direct integrals

INTH± =
∫ ⊕

l1+(X)

H±
ξ dL (ξ),

where H±
ξ , ξ = {rk, xk}, are countable tensor powers of the Hilbert space H± with

stabilizing vector 1I:

H±
ξ =

∞⊗
k=1

H±
rk
, H±

rk
= H±.

Thus, elements of INTH± are sections F (r̃) of the fibre bundle over D+ with
fibre H±

r̃ .
The operators U±(g), g ∈ PX0 , act in the fibres H ±

r̃ of this fibre bundle according
to the formula

U±(g(·)) =
∞⊗
k=1

T±rk
(g(xk)). (7.9)

The operators U±(r0(·)), r0 ∈ RX , are given by

(
U±(r0(·))f

)
(ξ) = exp

(
1
2

∫
X

log r0(x) dm(x)
)
f
(
r0(·)ξ

)
. (7.10)
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The fact that the operators U±(g) for g ∈ PX0 are unitary and satisfy the group
property is obvious, and the unitarity of the operators U±(r0(·)), r0 ∈ RX , follows
from the projective invariance of the measure L .

Analogously, the orthogonal representation of PX associated with the represen-
tation T 0 of P0 is realized on the direct integral

INTH0 =
∫ ⊕

l1+(X)

H0
ξ dL (ξ),

where the H0
ξ , ξ = {rk, xk}, are countable tensor powers of the real Hilbert space

H0 ⊂ H+ ⊕ H− with stabilizing vector 2−1/2(1I, 1I), and the operators U0(r0(·)),
r0 ∈ RX , are given by a formula similar to (7.10).

7.5. Extension of the representations T̃ ± and T̃ 0 of the subgroup P to
representations of the group U(n, 1). The construction of these extensions is
similar to that for the case of SL(2,R) considered in the previous section. First we
describe the extension to U(n, 1) of the representation T̃+ of P .

By analogy with the Lobachevskii plane in the case of SL(2,R), let us consider the
homogeneous space L = U(n, 1)/K, where K is the maximal compact subgroup of
U(n, 1) (the n-dimensional complex Lobachevskii space). In the matrix realization
we adopt, K is the subgroup of U(n, 1) consisting of the block matrices of the formλ a µ

b c b
µ a λ

 ,

L = {v = (a, b) ∈ C⊕ Cn−1 | a+ ā+ b∗b < 0}, where b∗b =
∑

b̄ibi

(b is a column vector), and the action v 7→ gv on L of elements g = ‖gij‖i,j=1,2,3 in
U(n, 1) is defined as follows: g(a, b) = (a′, b′), where

a′ = (g11 + g12b+ g13a)−1(g31 + g32b+ g33a),

b′ = (g11 + g12b+ g13a)−1(g21 + g22b+ g23a).

In particular,

g(a, b) = (a+ ζ0 + (z0, b), b− z∗0) for g = (ζ0, z0) ∈ N,
g(a, b) = (a, ubε̄) for g = (ε, u) ∈ D0,

g(a, b) = (r2a, rb) for g = r ∈ R∗
+,

s(a, b) = (a−1, a−1b) for the involution s =

0 0 1
0 en−1 0
1 0 0

 .

(7.11)

The point v0 = (−1, 0) is a fixed point on L with respect to the action of K.
Consider the following function on L× L:

p(v1, v2) = −(a1 + ā2 + b∗2b1) for vi = (ai, bi) ∈ L. (7.12)

Obviously, p(v0, v0) = 2 for v0 = (−1, 0), and one can easily check that

Re p(v1, v2) > 0 for any v1, v2 ∈ L. (7.13)
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Proposition 7.2. The function p(v1, v2), where v1 = (a1, b1), v2 = (a2, b2) ∈ L,
and g ∈ U(n, 1), satisfies the relation

p(gv1, gv2) = p(v1, v2)(g11 + g12b1 + g13a1)−1
[
(g11 + g12b2 + g13a2)

]−1. (7.14)

In particular, p(v1, v2) is invariant under the action of the subgroup P0, and the
equality p(gv1, gv2) = r2 p(v1, v2) holds for g = r ∈ R∗

+.

Proof. For elements g ∈ P0, r ∈ R∗
+, and the involution s, the above relations follow

immediately from (7.11). Since these elements generate U(n, 1) algebraically, the
relations hold for any g ∈ U(n, 1).

We associate with each v = (a, b) ∈ L the following function on R∗
+ ⊕ Cn−1:

fv(r, z) = exp
(
r2a+ r(z, b)

)
, where (z, b) =

∑
zibi. (7.15)

Note that in this notation the expression for the 1-cocycle on H + takes the form

b+(g) = T̃+(g)fv0 − fv0 , where v0 = (−1, 0). (7.16)

Proposition 7.3. For any fixed v ∈ L and r, the function fv(r, z) lies in the
space H+, and the inner product in H+ of two such functions has the form

〈fv1 , fv2〉H+ = exp
(
−r2p(v1, v2)

)
for vi = (ai, bi), (7.17)

where p(v1, v2) is given by (7.12). In particular,

‖fv‖2
H+ = exp

(
−r2p(v, v)

)
<∞.

Proof. We have

〈fv1 , fv2〉H+ =
∫

Cn−1
exp

(
r2(a1 + ā2) + r(z, b1) + r(z, b2)− zz∗

)
dµ(z).

To prove (7.17), it suffices to use the equality∫
Cn−1

exp
(
r(z, b1) + r(z, b2)− zz∗

)
dµ(z) = exp(r2b∗2b1).

Proposition 7.4. For any v1, v2 ∈ LX the function fv1 − fv2 lies in H +, and the
inner product of functions fv1 − fv2 and fv′1 − fv′2 in the space H is equal to

〈fv1 − fv2 , fv′1 − fv′2〉 =
1
2

∑
i,j=1,2

(−1)i+j−1 log p(vi, v′j). (7.18)

In particular,

‖fv1 − fv2‖2 =
1
2

log
|p(v1, v2)|2

p(v1, v1)p(v2, v2)
<∞. (7.19)

As above, log stands for the branch of the logarithm with log 1 = 0 on the
plane C cut along the negative real axis.
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Proof. By definition,

〈fv1 − fv2 , fv′1 − fv′2〉 =
∫ ∞

0

〈fv1 − fv2 , fv′1 − fv′2〉H∗
r
r−1 dr.

Hence (7.19) follows immediately from (7.15) and the relation∫ ∞

0

(
e−ar

2
− e−br

2)
r−1 dr =

1
2

(log b− log a) for Re a,Re b > 0.

Definition 14. Denote by M+ the set of functions of the form fv1 − fv2 , v1, v2 ∈
H +, in the space H +.

One can easily check that the set M+ is total in H +.

Proposition 7.5. The set of functions of the form fv , v ∈ L, and hence the
set M+, are invariant under the action of the operators corresponding to elements
of the group P ; namely,

T̃+(g)fv = fgv for any v ∈ L and g ∈ P,

where gv = g(a, b) is defined for g ∈ P by (7.11).

One can easily check this assertion by comparing the expressions for T̃+(g)fv
and fgv.

Thus, the operators corresponding to elements of P act on the set M+ according
to the formula

T̃+(g)(fv1 − fv2) = fgv1 − fgv2 for any v1, v2 ∈ L. (7.20)

Definition 15. We define the action of the operators T̃+(g), g ∈ U(n, 1), on the
set M+ by the same formula (7.20).

Theorem 7.1. The operators T̃+(g) preserve the inner product on M+, satisfy the
group relation, and thus define an extension of the original representation T̃+ of P
to a unitary representation of U(n, 1).

Proof. The group property is obvious. The invariance of the inner product follows
from the explicit formula (7.18) for the inner product and the relation (7.14) for
the function p(v1, v2).

The representation T̃+ of U(n, 1) thus defined is special, and the non-trivial
1-cocycle b+ : U(n, 1) → H + is an extension to U(n, 1) of the 1-cocycle of P ; that is,
in our notation it is given, as in the case of P , by the formula b+(g) = T (g)fv0−fv0 .

In a similar way we define an extension of the representation T̃− of P to a unitary
representation of U(n, 1). Namely, the set M+ of functions of the form fv1 − fv2
should be replaced by the set M− of functions of the form fv1−fv2 . Obviously, M−

is total in H − and invariant under the action of the operators T̃−(g) for g ∈ P :

T̃−(g)(fz1 − fz2 ) = fgz1 − fgz2 . (7.21)
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The same formula (7.21) defines also an extension of the representation T̃− of P to
the whole group U(n, 1).

Finally, these extensions of the representations T̃± of P to unitary representa-
tions of U(n, 1) induce an extension of the orthogonal representation of P on the
space H 0 ⊂ H + ⊕H − to an orthogonal representation of U(n, 1).

In conclusion, we present some relations that will be used in what follows.
Let

c(v1, v2) = log
(
p(v1, v2)

)
, v1, v2 ∈ L. (7.22)

With this notation, the invariance condition for the inner product on M+ can be
written in the form

c(gv1, gv0) + c(gv2, gv0)− c(gv1, gv2)− c(gv0, gv0)

= c(v1, v0) + c(v2, v0)− c(v1, v2)− c(v0, v0) (7.23)

for every g ∈ U(n, 1), where v0 = (−1, 0). Further, by Proposition 7.4 we have

‖b(g)‖2 =
1
2
(
2 Re c(gv0, v0)− c(gv0, gv0)− log 2

)
, where v0 = (−1, 0), (7.24)

〈T (g)b(g1), b(g)〉 =
1
2
(
c(gg1v0, v0) + c(gv0, gv0)− c(gg1v0, gv0)− c(gv0, v0)

)
.

(7.25)

It also follows from (7.24) and (7.25) that

− 1
2
‖b(g)‖2 − 〈T (g)b(g1), b(g)〉 =

i

2
Im c(gz0, v0)

+
1
2
(
c(gg1v0, gv0)− c(gg1v0, v0)

)
− 1

4
(
c(gv0, gv0)− c(v0, v0)

)
. (7.26)

7.6. Extension of the unitary representations U± of the current group
P X to projective unitary representations of the group U(n, 1)X . The
construction of these extensions is analogous to the case of SL(2,R). We describe
the extension to U(n, 1)X of the representation U+ of the group PX .

Denote by LX the space of bounded functions v : X → L, v(x) =
(
a(x), b(x)

)
.

The action of the group U(n, 1) on L induces a pointwise action on LX of the
current group U(n, 1)X and, in particular, of the subgroup PX .

We associate with each function v(x) =
(
a(x), b(x)

)
∈ LX a functional F+

on l1+(X). Namely, we associate with each function v(x) =
(
a(x), b(x)

)
∈ LX and

each pair (r, x) ∈ R∗
+ ×X an entire function on Cn−1,

fv,r,x(z) = exp
(
r2a(x) + r(z, b(x))

)
, (7.27)

and we define functionals F+
v (ξ) = F+

v ({rk, xk}) on l1+(X) by the formula

F+
v (ξ) =

∞⊗
k=1

fv,rk,xk
for ξ = {rk, xk}. (7.28)
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Proposition 7.6. For each v ∈ LX and each ξ ∈ l1+(X), the infinite tensor prod-
uct (7.28) converges and lies in the space H+

ξ . For any v1, v2 ∈ LX

〈F+
v1(ξ), F

+
v2(ξ)〉H+

ξ
= exp

(
−

∑
r2kp

(
v1(xk), v2(xk)

))
, (7.29)

where the function p(v1, v2) is defined by (7.12).

Proof. First of all, note that the functions fv,rk,xk
(z) lie in the spaces H+

rk
= H+,

and for any v1, v2 ∈ LX we have by (7.15) that

〈fv1,rk,xk
, fv2,rk,xk

〉H+ = exp
(
−r2p(v1(xk), v2(xk))

)
. (7.30)

In particular, ‖fv‖2
H+ = exp

(
−r2p(v, v)

)
<∞.

Further, Proposition 7.1 implies that the functions fv,rk,xk
satisfy the estimate

‖fv,rk,xk
− 1I‖ < c rk.

This estimate implies that the infinite tensor product F+
v (ξ) converges and lies in

H+
ξ . Now (7.29) follows immediately from (7.30).

Note that (7.29) can be written in the form

〈F+
v1(ξ), F

+
v2(ξ)〉H+

r̃
= exp

(
−〈r̃2, p(v1, v2)〉

)
. (7.31)

Theorem 7.2. For every v ∈ LX , the functional F+
v (ξ) on l1+(X) with values

in H+
ξ lies in the space INTH+, and for any v1, v2 ∈ LX

〈F+
v1 , F

+
v2〉 = c exp

(
−1

2

∫
X

log p
(
v1(x), v2(x)

)
dm(x)

)
, c = eγ/2 (7.32)

(where γ is Euler’s constant).

Indeed, (7.32) follows immediately from (7.31) and the relation (2.9) for the
measure L , according to which∫

l1+(X)

exp
(
−

∑
r2ka(xk)

)
dL (ξ) = eγ/2 exp

(
−1

2

∫
X

log a(x) dm(x)
)
.

The convergence of the integral on the right-hand side of (7.32) follows from the
boundedness of the function v ∈ LX .

Denote by M+ the subset of functionals Fv ∈ INTH+, v ∈ LX , defined in this
way. One can easily check that this subset is total in INTH+.

Theorem 7.3. The set M+ is invariant under the operators corresponding to ele-
ments of the subgroup PX0 , namely, U+(g)F+

v = F+
gv for every v = (a, b) ∈ LX ,

where gv =
(
a + ζ0 + (z0, b), b − z∗0

)
for g = (ζ0, z0) ∈ NX and gv = (a, ubε̄) for

g = (ε, u) ∈ DX
0 .

For g = r0 ∈ (R∗
+)X

U+(r0)F+
v = exp

( ∫
X

log r0(x) dm(x)
)
F+
gv, where gv = (r20a, r0b).
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The assertions follow immediately from the formulae for the operators of U+

and the definition of F+
v .

Definition 16. We define the action of the operators U+(g), g ∈ U(n, 1)X , on the
set M+ by the formula

U+(g)F+
v = exp

(
1
2

∫
X

ϕ
(
g(x), v(x)

)
dm(x)

)
F+
gv, (7.33)

where

ϕ(g, v) =
(
c(gv, gv0)− c(v, v0)

)
− 1

2
(
c(gv0, gv0)− c(v0, v0)

)
. (7.34)

Observe that this definition is similar to the corresponding definition of the
functionals F+

z for the case of the group SL(2,R)X (see (6.24) and (6.25)). The
function c(v1, v2)/2 satisfies the same relations as the function c(z1, z2) in the case
of SL(2,R). Hence the assertions and constructions based on this definition in the
case of SL(2,R) can be carried over to the case of U(n, 1). We describe them more
briefly.

First of all, the restrictions of the operators U+(g) to the subgroup PX coincide
with the operators of the original representation of PX .

Further, as in the case of SL(2,R), we replace the set of functionals F+
v by the

set M̃
+

of functionals of the form

Ψ+
g = (2c)−1/2 exp

(
1
2

∫
X

c(v(x), v0) dm(x)
)
Fz, g ∈ U(n, 1)X ,

where v = gv0 and c = eγ/2.
On this set the inner product and the operators of the representation are given

by the following formulae:

〈Ψ+
g1 ,Ψ

+
g2〉 = exp

(∫
X

〈b+(g1(x)), b+(g2(x))〉 dm(x)
)
, (7.35)

where b+(g) is the 1-cocycle G→ H + defined by (7.16);

U+(g1)Ψ+
g = exp

(
−

∫
X

u
(
g1(x), g(x)

)
dm(x)

)
Ψ+
g1g, (7.36)

where

u(g1, g) =
i

2
Im c(g1v0, v0) +

1
2
‖b(g1)‖2 + 〈T̃ (g1)b(g), b(g1)〉. (7.37)

As in the case of SL(2,R), this implies the following theorem.

Theorem 7.4. The operators U+(g) preserve the inner products 〈Ψ+
g1 ,Ψ

+
g2〉, and

their extensions to the whole space INTH+ form a projective unitary representation
of the group U(n, 1)X .
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The extension of the second representation U− of PX to a representation of
U(n, 1)X is obtained by replacing the total set M̃

+
⊂ INTH+ by the total set

M̃
−
⊂ INTH− of functionals Ψ−

g = Ψ+
g . Obviously, the inner products 〈Ψ+

g1 ,Ψ
+
g2〉

and 〈Ψ−
g1 ,Ψ

−
g2〉 are complex conjugates. The action of the operators U−(g), g ∈

U(n, 1)X , on INTM− is given by

U−(g)Ψ−
g = U+(g)Ψ+

g .

As in the case of U+, the restrictions of the operators U−(g) to PX coincide with
the operators of the original representation of PX on the space INTH+, and The-
orem 7.4 also holds for them.

7.7. Extension of the orthogonal representation U0 of the current group
P X to an orthogonal representation of the group U(n, 1)X . We associate
with each pair v(x) =

(
a(x), b(x)

)
∈ LX and (r, x) ∈ R∗

+×X the vector f0
v,r,x ∈ H0

r

given by
f0
v,r,x = 2−1/2

(
eir

2z(x), e−ir
2z(x)

)
,

and we define functionals F 0
v (ξ) on l1+(X) by

F 0
v (ξ) =

∞⊗
k=1

f0
v,rk,xk

for ξ = {rk, xk}. (7.38)

As in the case of SL(2,R), the infinite tensor product
⊗∞

k=1 f
0
v,rk,xk

converges
and F 0

v (ξ) ∈ H0
ξ for any v ∈ LX and ξ ∈ l1+(X). The functionals F 0

v thus defined
lie in the space INTH0 and form a total subset M0 in INTH0. Moreover,

〈F 0
v1 , F

0
v2〉 = c exp

(
−1

2
Re

∫
X

log(p(v1(x), v2(x)) dm(x)
)
, c = exp

(
γ

2

)
.

(7.39)

We define the operators U0(g), g ∈ U(n, 1)X , on M̃
0

by

U0(g)F 0
v = exp

(
1
2

Re
∫
X

ϕ
(
g(x), v(x)

)
dm(x)

)
F 0
gv, (7.40)

where ϕ(g, v) is given by (7.34).
As in the case of U±, for the elements of PX these operators coincide with the

operators of the original representation U0 of PX .
Further, by analogy with the case of U±, we consider the total set M̃

0
⊂ INTH0

of functionals of the form

Ψ0
g = (2c)−1/2 exp

(
1
2

Re
∫
X

c(v(x), v0) dm(x)
)
F 0
v , g ∈ U(n, 1)X , where v = gv0.

Proposition 7.7. On the set M̃
0

the inner product and the operators of the rep-
resentation are given by the following formulae:

〈Ψ0
g1 ,Ψ

0
g2〉 = exp

( ∫
X

〈b0(g1(x)), b0(g2(x))〉 dm(x)
)
, (7.41)
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where b0(g) is the 1-cocycle G→ H 0 defined by

b0(g) = 2−1/2
(
b(g), b(g)

)
; (7.42)

U0(g1)Ψ0
g = exp

(
−

∫
X

ũ
(
g1(x), g(x)

)
dm(x)

)
Ψ0
g1g, (7.43)

where

ũ(g1, g) =
1
2
‖b(g1)‖2 + 〈T̃ 0(g1)b0(g), b0(g1)〉. (7.44)

The proof is the same as in the case of SL(2,R).
From this we deduce the next theorem by analogy with Theorems 6.2 and 6.3.

Theorem 7.5. The operators U0(g) preserve the inner products 〈Ψ0
g1 ,Ψ

0
g2〉 and can

be extended to orthogonal (non-projective) operators on the whole space INTH0.

7.8. The relation between the integral and Fock models of representation
of the group U(n, 1)X . This relation is similar to the relation established above
for the case of the group SL(2,R).

Denote by V ± the Fock projective unitary representations of U(n, 1)X corre-
sponding to the pairs (T̃±, b±), where T̃± are the special unitary representations
of U(n, 1) and b± : U(n, 1) → H ± are the 1-cocycles defined by (7.16). Similarly,
denote by V 0 the Fock orthogonal representation corresponding to the pair (T̃ 0, b0).

Theorem 7.6. The extensions to U(n, 1)X of the integral models of unitary repre-
sentations INTT± of the group PX are projectively equivalent to the Fock projective
unitary representations V ± of the group U(n, 1)X .

The extension to U(n, 1)X of the integral model of orthogonal representation
INTT 0 of PX is equivalent to the Fock orthogonal representation V 0 of U(n, 1)X .
The intertwining operator for these representations is generated by the map Ψ0

e 7→
EXP 0 of the cyclic vectors.

Proof. By definition, the Fock representation V + of U(n, 1) is realized on the com-
plex Hilbert space EXPH X , where

EXPH X =
∞⊕
k=0

SkH X

and

H X =
∫ ⊕

X

H +
x dm(x), H +

x = H +,

with H + the space of the representation T̃+ of P .
Let us introduce in EXPH X the total subset M + ⊂ EXPH X of vectors of

the form
Φ+
g = EXP bX(g), g ∈ U(n, 1)X ,

where bX : U(n, 1)X→H X is the 1-cocycle generated by the 1-cocycle b+ : U(n, 1)→
H . On this set the inner product and the operators of the representation of
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U(n, 1)X are given by the formulae

〈Φ+
g1 ,Φ

+
g2〉 = exp

( ∫
X

〈b+(g1(x)), b+(g2(x))〉 dm(x)
)
,

V +(g1)Φ+
g = exp

(
−

∫
X

u′
(
g1(x), g(x)

)
dm(x)

)
Ψ+
g1g,

where
u′(g1, g) =

i

2
Im c(g1v0, v0) +

1
2
‖b(g1)‖2 + 〈T̃ (g1)b(g), b(g1)〉.

We consider the natural bijection M̃
+
→ M + of the total subsets in the spaces

INTH+ and EXPH X . It follows from the explicit formulae for the inner products
and the operators U+(g) and V +(g) on M̃

+
and M + that under this bijection

the inner products are preserved and the corresponding operators differ only by
a factor:

U+(g) = exp
(
− i

2
Im

∫
X

c
(
g(x)v0, v0

)
dm(x)

)
V +(g).

Hence the representations U+ and V + are projectively equivalent. The same is true
for the representations U− and V −.

In a similar way, comparing the formulae for the inner products and the operators
on the total subsets M̃

0
⊂ INTH0 and M 0 ⊂ EXPH X , we see that these formulae

are preserved under the natural bijection M̃
0
→ M 0. This implies the assertion of

the theorem for the case of the representations U0 and V 0.

7.9. Addendum: a unitary representation of the group G̃X , where G̃ is
the universal cover of the group G = U(n, 1). By definition, G̃ is the covering
space over G in which the fibre over an element g ∈ G is the set of homotopy classes
of paths in G from the identity element e to g. Elements of G̃ will be denoted
by g̃, and their images in G by g. As in the case of SL(2,R), the integral models of
representations U± of the current group GX = U(n, 1)X induce representations Ũ±

of the current group G̃X on the same Hilbert spaces H̃±. These representations
of G̃X are projectively equivalent to non-projective unitary representations V ±

of G̃X on the same spaces H̃± which will be described explicitly. For definiteness,
we restrict ourselves to the representation V +.

The construction of V + is similar to the case of SL(2,R). It suffices to define
the operators of V + on the elements of the total subset of functionals F+

v . To this
end, we first set

ϕ(g, v) = − log(g11 + g12b+ g13a)

for any v = (a, b) ∈ L and g = ‖gij‖i,j=1,2,3 ∈ U(n, 1), where log as usual stands
for the branch of the logarithm with log 1 = 0 on the plane cut along the negative
real axis. This function ϕ is everywhere finite, and for any fixed v ∈ L it is
a single-valued analytic function of g ∈ G in a sufficiently small neighbourhood of
the identity element. Hence for every g ∈ G and every path g̃ in G from e to g,
this function can be analytically continued along the path. Denote this analytic
continuation by ψ(g̃, v). The function ψ(g̃, v) thus defined depends only on the
homotopy class of g̃, and hence is a function on G̃× L.
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It follows from the definition that

ψ(g̃, v) = − log(g11 + g12b+ g13a) (7.45)

provided that g ∈ G and the path g̃ from e to g lies in a sufficiently small neigh-
bourhood of the identity element e.

As in the case of SL(2,R), the following assertion holds.

Proposition 7.8. For any g̃1, g̃2 ∈ G̃ and v ∈ L+,

ψ(g̃1g̃2, v) = ψ(g̃1, g2v) + ψ(g̃2, v). (7.46)

We now associate with each pair g̃ ∈ G̃X , v ∈ LX the following function on X:

Ψg̃,v(x) = ψ
(
g̃(x), v(x)

)
. (7.47)

It follows from Proposition 7.8 that the functions Ψg̃,v are connected by the relation

Ψg̃1g̃2,v = Ψg̃1,g2v + Ψg̃2,v. (7.48)

Definition 17. We define the action of the operators V (g̃), g̃ ∈ G̃X , on the func-
tions Fv of the total set M by the formula

V (g̃)Fz = exp
( ∫

X

Ψg̃,v(x) dm(x)
)
Fgv. (7.49)

Then, as in the case of SL(2,R), we have the following theorem.

Theorem 7.7. The operators V (g̃) are unitary on M , that is,

〈V (g̃)Fv1 , V (g̃)Fv2〉 = 〈Fv1 , Fv2〉 for any v1, v2 ∈ LX and g̃ ∈ G̃X , (7.50)

and they satisfy the relation

V (g̃1g̃2)Fv = V (g̃1)V (g̃2)Fv for any g̃1, g̃2 ∈ G̃X and v ∈ LX . (7.51)

Thus, they generate a unitary linear representation of the group G̃ on the space H̃ .

Obviously, the constructed representation V of G̃X is projectively equivalent to
the representation Ũ of this group.

Remark. Another model of unitary representation of the group G̃X was constructed
in [32].

8. Integral models of representations of the group P X ,
where P is the maximal parabolic subgroup of Sp(n, 1)

For the case of the group Sp(n, 1) we describe the canonical representations of the
subgroup P0 ⊂ P . According to the general construction, each of them gives rise
to an irreducible unitary representation of PX . Note that, in contrast to the cases
of O(n, 1) and U(n, 1), these representations cannot be extended to representations
of the group Sp(n, 1)X .



Integral models 61

8.1. Initial definitions and notation. Let us realize Sp(n, 1) as the group of
linear transformations on Hn+1, where H is the space of quaternions, that preserve
the form x1ȳn+1 +xn+1ȳ1 +x2ȳ2 + · · ·+xnȳn over H, and write its elements in the
form of block matrices

g = ‖gij‖i,j=1,2,3,

where the diagonal contains square matrices of orders 1, n− 1, and 1, respectively.
In this realization

P = D iN,

where N ∼= Rn−1 is the subgroup consisting of the block matrices of the form

h =

 1 0 0
−w∗ en−1 0

t− ww∗

2
w 1

 , t ∈ H0, w ∈ Hn−1

(here H0 is the space of imaginary quaternions), and D ∼= H∗ × Sp(n − 1) is the
subgroup of block-diagonal matrices of the form d = diag(s̄−1, u, s), s ∈ H∗, u ∈
Sp(n− 1).

We write D as the direct product D = R∗
+ × D0, where D0 is the subgroup of

matrices of the form d = diag(ε, u, ε), |ε| = 1, and we set

P0 = D0 iN.

Thus,
P = R∗

+ h P0 = (R∗
+ ×D0) iN.

By Scx and Vecx we will denote the real and imaginary parts of a quaternion x,
respectively, that is, Scx = (x+ x̄)/2 and Vecx = (x− x̄)/2.

Let us identify elements of D0 and N , respectively, with pairs (ε, u), where
ε ∈ Sp(1) and u ∈ Sp(n − 1), and pairs (t, w), where t ∈ H0 and w ∈ Hn−1

(a row vector). Sometimes instead of (t, w) ∈ N we will also write (ζ, w), where
ζ = t− ww∗/2.

With this notation the group relations take the form

(ζ1, w1)(ζ2, w2) = (ζ1 + ζ2 − w1w
∗
2 , w1 + w2),

(ε, u)−1(ζ, w)(ε, u) = (ε̄ζε, ε̄zu),

r(ζ, w)r−1 = (r2ζ, rw) for r ∈ R∗
+.

8.2. Description of the canonical representations of the group P0. To
describe the canonical representations of P0, we first introduce, as in the case
of U(n, 1), a reducible unitary representation of this group and then show that
the irreducible components of this representation are canonical.

Denote by S2 the space of imaginary quaternions s of norm 1, which is isomorphic
to the two-dimensional sphere (s ∈ H0, s2 = −1). On S2 there is a natural action
of the group of quaternions ε of norm 1: s 7→ ε̄sε.

Let us introduce a unitary representation T of P0 on the Hilbert space of func-
tions f(s, w) on S2 ×Hn−1 with the norm

‖f‖2 =
∫
S2

∫
Hn−1

|f(s, w)|2 dµ(w) dµ(s), (8.1)
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where dµ(w) is the Lebesgue measure on Hn−1 ∼= R4(n−1) and dµ(s) is the invariant
measure on S2.

The operators of this representation are defined by(
T̃ (g)f

)
(s, w) = exp

(
−iSc[s(ζ0 − ww∗0)]

)
f(s, w + w0) for g = (ζ0, w0) ∈ N ;

(8.2)(
T̃ (g)f

)
(s, w) = f(ε̄sε, ε̄wu) for g = (ε, u) ∈ D0. (8.3)

The group property and unitarity of the operators T̃ (g) follow immediately from
these formulae. Obviously, the operators T̃r(g) = T̃ (rgr−1) of the representations
conjugate to T with respect to the group R∗

+ of automorphisms are given by the
formulae(
T̃r(g)f

)
(s, w) = exp

(
−iSc[s(r2ζ0 − rww∗0)]

)
f(s, w + rw0) for g = (ζ0, w0) ∈ N ;(

T̃r(g)f
)
(s, w) = f(ε̄sε, ε̄wu) for g = (ε, u) ∈ D0.

The representation of P associated with T̃ is realized on the direct integral with
respect to the measure d∗r = r−1 dr on R∗

+ of the Hilbert spaces Hr = H with the
representations T̃r of P0 defined on them,

H =
∫ ∞

0

Hr d
∗r,

that is, on the fibre bundle over R∗
+ with fibre Hr. On this fibre bundle the action of

the operators corresponding to elements of P0 is fibrewise, and the operators T̃ (r0),
r0 ∈ R∗

+, act according to the formula
(
T̃ (r0)f

)
(r) = f(r0r).

Theorem 8.1. The space H is the direct sum of invariant pairwise non-equivalent
irreducible subspaces Hm:

H =
∞⊕
m=0

Hm.

For every m > 0 the representation of the group P0 on the space Hm is canonical
and has a unique, up to a factor, almost invariant vector

fm(ω,w) = l2n−3
m (ww∗)e−

1
2ww

∗
,

where l2n−3
m (x) is a Laguerre polynomial.

To prove the theorem, we write H as the direct integral

H =
∫
S2
H(ω) dω

of the Hilbert spaces of functions f(w) on Hn−1 with the norm

‖f‖2 =
∫

Hn−1
|f(w)|2 dµ(w).
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It is clear that these spaces H(ω) are invariant under the subgroup P1 = D1 iN ⊂
P0, where D1 ⊂ D0 is the subgroup of elements of the form (1, u), and that the
representations of P1 are transformed one to another by the action of the subgroup
of automorphisms g 7→ (ε, en−1)−1g(ε, en−1), (ε, en−1) ∈ D0.

The assertion of Theorem 8.1 follows immediately from the analogous assertion
for the spaces H(ω):

Proposition 8.1. Each space H(ω) is the direct sum of pairwise non-equivalent
invariant subspaces Hm(ω) irreducible with respect to P1:

H(ω) =
∞⊕
m=0

Hm(ω).

For every m > 0 the representation of P1 on Hm(ω) is canonical and has a unique,
up to a factor, almost invariant vector

fm(w) = l2n−3
m (ww∗)e−

1
2ww

∗
. (8.4)

8.3. Proof of Proposition 8.1. It suffices to prove the assertion for one fixed
ω ∈ S2, for example, for ω = e1, where e1 is a basis vector in H. For brevity let
H(e1) = H .

We write quaternions
∑3
k=0 akek ∈ H as elements of an algebra over C: a =

(a0+ia1)+(a2+ia3)j, where j2 = −1 and ij = −ji, and we interpret functions f(w)
on Hn−1 as functions f(z) = f(z1, z2) on C2n−2 = Cn−1 × Cn−1, where w ∈ Hn−1

and z = (z1, z2) are connected by the relation w = z1 + z2j. Thus, in the new
realization the representation of P1 acts in the space of functions f(z) on C2n−2

with the norm
‖f‖2 =

∫
C2n−2

|f(z)|2 dµ(z).

Lemma. In the new realization the operators of the representation of P1 have the
following form :(

T (g)f
)
(t0, w0) = exp

(
i(t1 − Im(zz∗0))

)
f(z + z0) for g = (t0, w0) ∈ N, (8.5)

where t1 ∈ R and z0 = (z1
0 , z

2
0) ∈ C2n−2 are determined from the relations t0 =

t1e1 + t2e2 + t3e3 and w0 = z1
0 + z2

0j;(
T (g)f

)
(z) = f(zv) for g = (1, u) ∈ D1, (8.6)

where

v =
(
u1 u2

−u′2 u′1

)
for u = u1 + u2j ∈ Sp(n− 1) (8.7)

(the prime indicates the transpose).

Proof. For g = (t0, w0) ∈ N the operator T (g) in the original realization has the
form (

T̃ (g)f
)
(w) = exp

(
−iSc[e1(t0 − ww∗0)]

)
f(w + w0).

It is clear that Sc(e1t0) = −t1 in the new realization. Further, we have ww∗0 =
z1(z1

0)∗+z2(z2
0)∗+z1(z2

0j)
∗+(z2

0j)(z
1)∗. One can easily check that Sc

[
e1

(
z1(z2

0j)
∗+
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(z2
0j)(z

1)∗
)]

= 0. Hence, Sc[e1(ww∗0)] = Re
(
iz1(z1

0)∗ + z2(z2
0)∗

)
= − Im(zz∗0). This

implies (8.5).
Further, for g = (1, u) ∈ D1 the operator T (g) in the original realization has the

form (
T̃ (g)f

)
(w) = f(wu).

We have wu = (z1 + z2j)(u1 + u2j) = z1u1 + z2(ju2j) +
(
z1u2 − z2(ju1j)

)
j.

Thus, since juij = −u′i, the vector (z1, z2)v with v a block matrix of form (8.7)
corresponds to the vector wu ∈ Hn−1. The lemma follows.

Denote by Vn the group of all transformations v of the form (8.7) on C2n−2.
Obviously, Vn ≡ Sp(n− 1).

Let us check that Vn ⊂ U(n− 1).
Indeed, the condition u ∈ Sp(n− 1) is equivalent to

(u1 + u2j)(u1 + u2j)∗ = em−1,

which in turn is equivalent to the relations u1u
∗
1 + u2u

∗
2 = en−1 and u1ū2 = u2ū1,

where the bar stands for complex conjugation. These relations immediately imply
that matrices of the form (8.7) belong to the group U(2n− 2).

The formulae obtained for the operators T (g) with g ∈ P1 ⊂ Sp(n, 1) coincide
with the formulae (8.4) and (8.5) for the operators T+ of the representation of
the subgroup P0 in the case of U(n, 1) with n replaced by 2n − 1. Hence the
decomposition of the representation into irreducible canonical components can be
obtained according to the same scheme.

First we pass to a new realization of this representation by setting

f(z) = ϕ(z) exp
(
−zz

∗

2

)
.

In the new realization the representation acts in the Hilbert space of functions f(z)
with the norm

‖f‖2 =
∫

C2n−2
|f(z)|2 exp(−zz∗) dµ(z).

The formulae (8.6) for the operators T (g), g ∈ D1, remain valid, and the formulae
for the operators T (g), g = (t0, z0) ∈ N , take the form(

T (g)f
)
(z) = exp

(
i
t1 − z0z

∗
0

2
− zz∗0

)
f(z + z0). (8.8)

In this realization the multiplier in the formula for T (g), g ∈ N , is an entire
analytic function of z. As in the case of U(n, 1), this implies that the representation
space H decomposes into the direct sum

H =
∞⊕
m=0

Hm

of irreducible pairwise non-equivalent invariant subspaces, where Hm is the sub-
space cyclically generated by the homogeneous polynomials in z̄1, z̄2, . . . , z̄2n−2 of
degree m.
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We note that in the case of U(n, 1) the irreducibility of the subspacesHm followed
from the irreducibility of the space of homogeneous polynomials in z̄1, z̄2, . . . , z̄2n−2

with respect to the action of the whole unitary group U(2n − 2). However, this
property remains true also when we replace the group U(2n − 2) by its subgroup
Vn ≡ Sp(n− 1).

Further, as in the case of U(n, 1), it can be proved that in each space Hm there
is a unique almost invariant vector, which is equal to l2n−3

m (zz∗).
Since zz∗ = ww∗, this vector is given by (8.4) in the original realization of the

representation and in the original coordinates w.
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