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Abstract. We prove a theorem describing central measures for random walks on graded graphs.
Using this theorem, we obtain the list of all finite traces on three infinite-dimensional algebras,
namely, on the Brauer algebra, the walled Brauer algebra, and the partition algebra. The main
result is that these lists coincide with the list of traces of the symmetric group or (for the walled
Brauer algebra) of the square of the symmetric group.
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1. Brauer Algebras and Pascalized Graphs

Consider the diagonal action of the complex orthogonal group Ok(C) on the tensor power V ⊗n

of the space V = C
k :

M · (v1 ⊗ · · · ⊗ vn) = Mv1 ⊗ · · · ⊗ Mvn, M ∈ Ok(C).

Brauer (see [3], [20]) defined a family of finite-dimensional algebras Brn(k) (Brauer algebras)
depending on a complex parameter k and a positive integer n. For integer k � n, the algebra
Brn(k) is isomorphic to the centralizer of the above-described action of Ok(C). For k ∈ (C \ Z) ∪
(N \ {1, . . . , n− 1}) and n fixed, the algebras Brn(k) are semisimple and pairwise isomorphic [19].
From now on, we consider only these values of the parameter k and denote the corresponding algebra
by Brn , omitting k in the notation. Generally speaking, the algebra Brn(k) is not semisimple for
k ∈ Z. Q1

We shall also study the walled Brauer algebra Brn,m(k), n, m ∈ Z+ . The history of the definition
of this algebra is as follows. Turaev [15] was the first to define it by a corepresentation; he also
pointed out to the second author that it is (n + m)!-dimensional and resembles the group algebra
of the symmetric group. The walled Brauer algebra was independently defined in [9] and was
later studied in [1] as the centralizer of the diagonal action of the group GLk(C) on the product
V ⊗n ⊗ V ∗⊗m . It is clear from its diagrammatic definition that this algebra is a subalgebra of the
Brauer algebra. The walled Brauer algebras are also semisimple and pairwise isomorphic for generic
k, k ∈ (C \ Z) ∪ {x ∈ Z | |x| � m + n}. (See [14] for details.) Here we again consider only these
parameter values and omit k in the notation, Brn,m = Brn,m(k).

Martin [12] introduced the partition algebras Partn(k), n ∈ Z+ , k ∈ C. For sufficiently large
k ∈ N, the algebras Part2n(k) and Part2n+1(k) are isomorphic to the centralizers of the diagonal
action of the subgroups Sk ⊂ GLk(C) and Sk−1 ⊂ GLk(C), respectively, on V ⊗n . For k ∈ (C\Z)∪
{x ∈ N | x � 2n − 1} and fixed n, the algebras Partn(k) are semisimple and pairwise isomorphic;
we denote them by Partn .

Each of the finite-dimensional algebras in question contains the ideal J (with the appropriate
subscript) spanned by all noninvertible standard generators of the corresponding algebra (see [19],
[14], [12]), and the following relations hold:

Brn/Jn
∼= C[Sn], Brn,m/Jn,m

∼= C[Sn × Sm], Part2n/J2n
∼= Part2n+1/J2n+1

∼= C[Sn]. (1)

The algebras Brn , Brn,m , and Partn form inductive families with natural embeddings. This
permits one to consider their inductive limits Br∞ = lim−→Brn , Br∞,∞ = lim−→Brn,m , and Part∞ =
lim−→Partn , which are locally semisimple algebras. From the combinatorial point of view, every locally

∗Supported in part by CRDF grant No. RUM1-2622-ST-04 and INTAS grant No. 03-51-5018.



2

semisimple algebra (i.e., an inductive limit of finite-dimensional semisimple algebras) A = lim−→An is
completely determined by its Bratteli diagram (branching graph) Γ(A), i.e., the Z+-graded graph
whose nth-level vertices are simple An-modules and whose edges joining the (n−1)st- and nth-level
vertices are determined by the decomposition of simple An-modules (treated as An−1-modules) into
simple An−1-modules. (See the surveys [16] and [18] for definitions concerning locally semisimple
algebras.) Finding the Bratteli diagram of a locally semisimple algebra defined by a corepresentation
or by some other explicit method is analogous to finding the spectrum of a commutative algebra.

To describe the Bratteli diagrams of the Brauer algebras and the partition algebra, it is conve-
nient to use a new operation on graphs, pascalization, whose definition generalizes the Jones basic
construction. Concerning the latter, see the papers [7] and [19] by Jones and Wenzl, the paper
[4], the survey [6] by Ram and Halverson on partition algebras, and the literature therein. Let us
describe this operation. Suppose that Γ is a Z+-graded locally finite graph with a single vertex at
the zero level and without pendant vertices; by Γk denote the set of kth-level vertices of Γ, k ∈ Z+ .
We also write |λ| = i for λ ∈ Γi and λ ↗ ν (λ ↘ ν) if the vertex ν follows (precedes) the vertex λ.
Now we define a Z+-graded graph Π(Γ) whose kth level Π(Γ)k is the union of Γk and the sets Γi

for all previous levels of the same parity. We denote the vertices of Π(Γ)k by (k, λ), where λ ∈ Γi ,
i � k, and k − i = 0 (mod 2). The edges of Π(Γ) are defined as follows:

(k, λ) ↗ (k + 1, ν) ⇐⇒ λ ↗ ν or λ ↘ ν. (2)

Definition 1.1. The transition from Γ to Π(Γ) is called the pascalization of Γ.
It is easily seen that this definition is equivalent to the following. To obtain the kth level of

Π(Γ) we reflect the (k − 2)nd level of the Π(Γ) with respect to the (k − 1)st level (together with
the corresponding edges) and supplement the reflection by the kth level Γk of the original graph
together with the edges that join the levels Γk−1 and Γk in Γ.

Obviously, Γ is a subgraph of Π(Γ), which however constitutes a very small part of the whole
pascalized graph.

Example 1.2. Consider the graph Γ0 whose vertex set is Z+ and whose edges join the vertices
n and n + 1 for each n ∈ Z+ . Then Π(Γ0) is a “half” of the Pascal graph; that is, Π(Γ0)2k =
{0, 2, . . . , 2k} and Π(Γ0)2k+1 = {1, 3, . . . , 2k + 1}, and the edges are (0, 1) and also (i, i − 1) and
(i, i + 1) for i > 0; this explains the name. Note that the graph Π(Γ0) corresponds to the locally
semisimple Temperley–Lieb algebra (see [4]).

By YΓ we denote the set of all paths on a graph Γ; then YΓ ⊂ YΠ(Γ) . The space YΓ naturally
possesses the structure of a totally disconnected compact set, a basis of open-closed sets being
formed by cylinder sets. The cylinder consisting of all paths through a vertex d will be denoted by
Cd = CΓ

d .
It is worth explaining what the path in Π(Γ) look like. It follows from (2) that every path in

Π(Γ) is uniquely determined by a sequence {xn}∞n=0 of vertices of Γ such that any two consecutive
vertices xn and xn+1 are neighbors in Γ (i.e., xn ↗ xn+1 or xn ↘ xn+1). In other words, every
path in Π(Γ) is the trajectory of a simple random walk on Γ; i.e., Π(Γ) is the graph of simple walks
on Γ.

For example, the homogeneous tree of degree 2k with a marked vertex determining a Z+-grading
is the Cayley graph of the free group with k generators, and the corresponding pascalized graph is
the graph of simple random walks on the free group.

Specifying the ideals J for the infinite-dimensional algebras in question in the same manner as
in the finite-dimensional case, we obtain

Br∞/J ∼= C[S∞], Br∞,∞/J ∼= C[S∞ × S∞], Part∞/J ∼= C[S∞].

The Bratteli diagrams of the algebras Br∞ , Br∞,∞ , and Part∞ are the pascalized Bratteli dia-
grams of the corresponding quotient algebras.
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Recall that the Bratteli diagram of the group algebra of the infinite symmetric group is the
Young graph Y (e.g., see [16]). The following three theorems restate known results in terms conve-
nient to us. The Bratteli diagram for the family of Brauer algebras was obtained by Wenzl [19]:

Theorem 1.3. The Bratteli diagram of the Brauer algebra Br∞ for a generic parameter is
obtained by pascalization of graph Y, Γ(Br∞) = Π(Y).

The Bratteli diagram of the walled Brauer algebra was independently described in [11] and [14].
Consider the locally semisimple algebra C[S∞×S∞] as the inductive limit of the finite-dimensional
algebras

C[S0 × S0] ⊂ C[S1 × S0] ⊂ C[S1 × S1] ⊂ C[S2 × S1] ⊂ · · · ⊂ C[S[n+1/2] × S[n/2]] ⊂ · · ·
and denote by Ȳ the corresponding Bratteli diagram, which can readily be obtained from Y.

Theorem 1.4. The Bratteli diagram of the walled Brauer algebra Br∞,∞ for a generic param-
eter is obtained by pascalization of the graph Ȳ, Γ(Br∞,∞) = Π(Ȳ).

Martin [12] found the Bratteli diagram of the partition algebra. Let ¯̄
Y be the Young graph with

each odd level repeated twice, corresponding to the family

G0 ⊂ G1 ⊂ G2 ⊂ · · · , G2i = G2i+1 = C[Si], i ∈ Z+.

Theorem 1.5. The Bratteli diagram of the partition algebra Part∞ for a generic parameter is
obtained by pascalization of the graph ¯̄

Y, Γ(Part∞) = Π(¯̄
Y).

2. A Theorem on Central Measures on Pascalized Graphs

One of the main questions in the theory of locally semisimple algebras is to describe traces
(characters) and the K -functor. A finite trace (a character) on a *-algebra A is a linear functional
f : A → C such that

1. f(1) = 1.
2. f(ab) = f(ba), a, b ∈ A.
3. f(a∗a) � 0, a ∈ A.

By Char(A) = Char(Γ(A)) we denote the set of all finite traces on A. A trace is said to be
indecomposable if it is not equal to a nontrivial convex sum of traces.

A central measure on the path space YΓ of a Z+-graded infinite graph Γ is a Borel probability
measure that induces uniform conditional measures on the finite sets of paths that coincide starting
from some level. Denote the set of all central measures on the path space of a graph Γ by Cent(Γ) =
Cent(YΓ). A central measure is said to be ergodic if it is not a nontrivial convex sum of central
measures. There is a well-known one-to-one correspondence between the set of finite traces on a
locally semisimple algebra and the set of central measures on the path space of the corresponding
Bratteli diagram,

Char(A) ←→ Cent(Γ(A))
(e.g., see [16], [18]). Indecomposable traces correspond to ergodic central measures.

We reduce the problem of finding the traces on a pascalized graph (for some algebras) to the
same problem for the original graph and apply this reasoning to the infinite-dimensional Brauer
algebras and the partition algebra. We prove that under certain conditions on the Bratteli diagram,
every central measure on the pascalized graph is nonzero only on the original graph (treated as a
subgraph of the pascalized graph) and hence coincides with a central measure on the original graph
itself. In particular, there is a one-to-one correspondence between the traces on the algebras Br∞
and Part∞ and on the infinite symmetric group S∞ as well as between the traces on Br∞,∞ and
on S∞ × S∞ .

The central measures for the infinite-dimensional Brauer algebra were described, without proof
and without specifying a set of full measure, by Kerov [8]; apparently, the traces on the infinite-
dimensional walled Brauer algebra and on the partition algebra have not been considered earlier
at all.
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For an arbitrary Z+-graded graph Γ, we denote the number of paths from a vertex d to a vertex
d′ by dim(d; d′) and the number of paths from the initial vertex to the vertex d by dim(d). Recall
the ergodic method for finding central measures

Theorem 2.1 [16]. Consider an arbitrary Z+-graded graph and an ergodic central measure µ
on it. The set S of paths of the form s = (s0 ↗ s1 ↗ · · · ↗ sn ↗ . . . ) such that

µ(Cd) = lim
n→∞

dim(d) · dim(d; sn)
dim sn

(3)

for every vertex d is of full measure.
Hence to find the central measures it suffices to describe all limits (3). Now we use this method

for pascalized graphs.
Lemma 2.2. If the condition

lim
n→∞ max

λ,|λ|<n

dim(n − 2, λ)
dim(n, λ)

= 0 (4)

holds for the vertices of Π(Γ), then µ(C(n0,λ)) = 0 for every ergodic central measure µ on Π(Γ)
and every vertex (n0, λ) ∈ Π(Γ)n0 with |λ| < n0.

Proof. If µ is an ergodic central measure and s is a path as in Theorem 2.1, then

µ(C(n0,λ)) = lim
n→∞

dim(n0, λ) · dim((n0, λ); (n, sn))
dim(n, sn)

.

If a vertex (n, sn) lies on some path issuing from a vertex (n0, λ) with |λ| < n0 , then, obviously,
|sn| < n. By parity considerations, |λ| � n0 − 2 and |sn| � n− 2, which proves the existence of the
vertices (n0 − 2, λ) and (n− 2, sn). There is a bijection (which acts by increasing the level number
by 2 for each vertex) between the paths from (n0, λ) to (n, sn) and the paths from (n0 − 2, λ) to
(n − 2, sn). Thus

µ(C(n0,λ)) = dim(n0, λ) · lim
n→∞

dim((n0 − 2, λ); (n − 2, sn))
dim(n, sn)

� dim(n0, λ) · lim
n→∞

dim(n − 2, sn)
dim(n, sn)

,

which proves the lemma.
For an arbitrary inductive family of algebras

A0
∼= C ⊂ A1 ⊂ · · · ⊂ Al ⊂ · · · ,

we set al+1 = [dimAl+1/ dim Al], l ∈ Z+ , where dim Al is the dimension of Al .
Lemma 2.3. Let Γ be the branching graph of the family

A0
∼= C ⊂ A1 ⊂ · · · ⊂ Al ⊂ · · · .

If

dim(IndAl+1

Al
λ) = al+1 dim λ

for every l ∈ Z+ and every simple module λ ∈ Γl (where IndAl+1

Al
λ is induced module), then the

ratio dim(n, λ)/ dim λ depends only on the level number n in the pascalized graph and the level
number |λ| in the original graph. In other words, there exist numbers M(n, l), l � n, n − l = 0
(mod 2), such that

dim(n, λ) = M(n, |λ|) dimλ

for every simple module (n, λ) ∈ Π(Γ)n. The numbers M(n, l) can be defined inductively by the
relations

M(n, n) = 1, M(2n + 2, 0) = M(2n + 1, 1), n = 0, 1, 2, . . . ,

M(n, l) = M(n− 1, l− 1) + al+1M(n− 1, l + 1), 0 < l < n, n = 0, 1, 2, . . . .
(5)
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Proof. Using the branching graph Π(Γ), we can represent dim(n, λ), 0 < |λ| < n, as follows:

dim(n, λ) =
∑
η↗λ

dim(n − 1, η) +
∑
ν↘λ

dim(n − 1, ν).

By induction, we obtain

dim(n, λ) = M(n − 1, |λ| − 1)
∑
η↗λ

dim η + M(n − 1, |λ| + 1)
∑
ν↘λ

dim ν.

The relation
∑

η↗λ dim η = dim λ holds for every branching graph. By the assumptions of the

lemma,
∑

ν↘λ dim ν = dim(Ind
A|λ|+1

A|λ| λ) = a|λ|+1 dim λ, whence it follows that

dim(n, λ) = (M(n − 1, |λ| − 1) + a|λ|+1M(n − 1, |λ| + 1)) dim λ,

which proves the desired formula. The case |λ| = 0 can be considered in a similar manner, and the
case |λ| = n is obvious.

Remark 2.4. The converse of Lemma 2.3 can be proved in a similar way.
Remark 2.5. Let {Gn} be an inductive family of finite groups. Then the assumptions of

Lemma 2.3 hold for the group algebra C[G] =
⋃

C[Gn], and moreover, al+1 = [Gl+1 : Gl]; i.e., the
(l + 1)st dimension ratio for the algebras is equal to the index of the subgroup Gl in the group
Gl+1 . Example 1.2 above shows that the lists of traces on Γ and Π(Γ) can be very different: there
is only one trace on Γ, while the traces on Π(Γ) are parametrized by the interval [0, 1/2].

Lemma 2.6. If n � 2, then

M(2n − 2, 0)
M(2n, 0)

=
M(2n − 3, 1)
M(2n − 1, 1)

>
M(2n − 2, 2)

M(2n, 2)
>

M(2n − 3, 3)
M(2n − 1, 3)

>
M(2n − 2, 4)

M(2n, 4)
> · · · ,

M(2n − 2, 0)
M(2n, 0)

>
M(2n − 1, 1)
M(2n + 1, 1)

>
M(2n − 2, 2)

M(2n, 2)
>

M(2n − 1, 3)
M(2n + 1, 3)

>
M(2n − 2, 4)

M(2n, 4)
> · · · .

Proof. The relation
M(2n − 2, 0)

M(2n, 0)
=

M(2n − 3, 1)
M(2n − 1, 1)

follows from (5).
To prove the inequalities, recall the following simple fact:

A

B
>

C

D
, A, B, C, D, x > 0 =⇒ A

B
>

A + xC

B + xD
>

C

D
.

By (5), M(2n−2, 2) = M(2n−3, 1)+a3M(2n−3, 3) and M(2n, 2) = M(2n−1, 1)+a3M(2n−1, 3),
and we obtain the inequalities

M(2n − 3, 1)
M(2n − 1, 1)

>
M(2n − 2, 2)

M(2n, 2)
>

M(2n − 3, 3)
M(2n − 1, 3)

.

The remaining inequalities can be obtained in a similar manner.
Corollary 2.7. Set ε(n) = 0 for n even and ε(n) = 1 for n odd. Then, under the assumptions

of Lemma 2.3,

max
λ,|λ|<n

dim(n − 2, λ)
dim(n, λ)

=
M(n − 2 + ε(n), 0)

M(n + ε(n), 0)
.

Corollary 2.8. The sequence
{ M(2n,0)

M(2n+2,0)

}∞
n=0

is decreasing.

Thus, under the assumptions of Lemma 2.3, the limit (4) is zero if and only if the decreasing
sequence

{ M(2n,0)
M(2n+2,0)

}∞
n=0

tends to zero.

Lemma 2.9. 1. lim
n→∞

M(2n, 0)
M(2n + 2, 0)

> 0 ⇐⇒ ∃M, C ∀n M(2n, 0) < C · Mn ;



6

2. lim
n→∞

M(2n, 0)
M(2n + 2, 0)

= 0 ⇐⇒ ∀M ∃C ∀n M(2n, 0) > C · Mn.

Proof. The decreasing sequence
{
mn = M(2n,0)

M(2n+2,0) > 0
}∞

n=0
always has a limit limn→∞ mn =

m � 0. If m > 0, then

M(2n, 0) =
n−1∏
k=0

M(2k + 2, 0)
M(2k, 0)

< C

(
1
m

)n

.

If m = 0, then for every M > 0 there exists an N such that M(2k,0)
M(2k+2,0) < 1

M for k > N , and so

M(2n, 0) =
n−1∏
k=0

M(2k + 2, 0)
M(2k, 0)

> C1 · Mn−N = C2 · Mn.

Theorem 2.10. Under the assumptions of Lemma 2.3,

lim
n→∞ max

λ,|λ|<n

dim(n − 2, λ)
dim(n, λ)

= 0 ⇐⇒ sup
l
{al = [dimAl/dim Al−1]} = ∞.

Proof. Suppose that supl{al} = a; then, using (5), one can readily verify by induction that
M(n, l) < (a + 1)n for every l.

If supl{al} = ∞, then for every M there exists an index L such that aL > M . Suppose that
2n > 2L and consider the path

(0, 0) ↗ (1, 1) ↗ · · · ↗ (L, L) ↗ (L + 1, L − 1) ↗ (L + 2, L) ↗ (L + 3, L − 1) ↗ · · ·
· · · ↗ (2n − L, L) ↗ (2n − L + 1, L − 1) ↗ (2n − L + 2, L − 2) ↗ · · · ↗ (2n, 0).

By induction, we obtain M(L+2i, L) > M i , whence it follows that M(2n, 0) > Mn−2L = CMn .
Thus we have obtained a criterion for the central measures to be preserved under pascalization

of the graph. Under the assumptions of Theorem 2.10,
1. Every central measure on Π(Γ) is nonzero only on the subgraph Γ ⊂ Π(Γ) and hence coincides

with a central measure on Γ.
2. Consequently, there exists a bijection Cent(Γ) ↔ Cent(Π(Γ)) between the sets of central

measures and hence a one-to-one correspondence between the traces on the corresponding algebras.
For the inductive family of Brauer algebras, we have al = dim C[Sl]/ dim C[Sl−1] = l; for the

walled Brauer algebras, al = [(l + 1)/2]; and for the partition algebras, a2l = l and a2l+1 = 1. This
gives the following theorem.

Theorem 2.11. The Bratteli diagram for each of the algebras Br∞, Br∞,∞, and Part∞ is
the pascalized graph Π(Γ) of some graph Γ. The central measures on Π(Γ) are nonzero only on the
subgraph Γ ⊂ Π(Γ) and are in a one-to-one correspondence with the central measures on Γ.

Corollary 2.12. Every trace on each of the algebra Br∞, Br∞,∞, or Part∞ is the lift of some
trace on the respective quotient algebra C[S∞], C[S∞ × S∞], or C[S∞].

Our results about traces remain true for deformations of the Brauer algebra (the Birman–Wenzl
algebras, which were studied in [2], [13], and [8]) and for deformations of the walled Brauer algebra
(see [1], [10], [5], and [11]) for generic parameter values.

3. Remarks on the K0-Functor

Recall that the K0(A)-functor (the Grothendieck group) of a locally semisimple algebra A
is the inductive limit of finitely generated infinite cyclic groups whose generators are vertices of
the Bratteli diagram of A and whose embeddings are also determined by the same diagram. This
description follows from the identification of vertices of the branching graph with the corresponding
irreducible representations (simple finite-dimensional modules) of finite-dimensional subalgebras.
To each such module, one can assign the induced simple module over the entire A (see [16]). We
say that a vertex is infinitesimal if the cylinder of paths through this vertex is of zero measure
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for every finite central measure. A projective module (in particular, a simple module) is said to be
infinitesimal if the corresponding vertex is infinitesimal, i.e., if all finite traces vanish on it. Hence
we have defined the subgroup I(A) = I of infinitesimal modules in the Grothendieck group. One
can readily see that simple infinitesimal modules generate I . For the group algebra of the infinite
symmetric group, this subgroup is trivial. For the algebras Br∞ , Br∞,∞ , and Part∞ , Theorem 2.11
says that the subgroup I is not trivial: it is generated by all vertices of the difference Π(Γ)\Γ for
the corresponding graph Γ. This leads to the following theorem.

Theorem 3.1. There are isomorphisms

K0(Br∞)/I ∼= K0(C[S∞]), K0(Br∞,∞)/I ∼= K0(C[S∞ × S∞]), K0(Part∞)/I ∼= K0(C[S∞]).

Apparently, the structure of infinitesimal modules over locally semisimple algebras has not
been studied earlier. These modules also occur in [17] as modules over the complex group algebra
of the group SL(2, F ) over a countable field F . Such a module cannot be a submodule of a factor
representation admitting a trace (in particular, of the regular representation), because a finite trace
corresponds to a finite-dimensional representation or to a II1-representation. Q2
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Вопросы к авторам

Q0. Не нужно ли всюду по тексту заменить “corepresentation” на “presentation”? вроде бы
второй перевод термина «копредставление» здесь больше подходит?

Q1. В русском варианте k ∈ Z. А может быть, k ∈ Z− ∪ {1, . . . , n − 1}?
Q2. В русском тексте факторпредставление. Это существенно?


