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INTEGRATION OF VIRTUALLY CONTINUOUS FUNCTIONS OVER
BISTOCHASTIC MEASURES AND THE TRACE FORMULA FOR

NUCLEAR OPERATORS

A. M. VERSHIK, P. B. ZATITSKIY, AND F. V. PETROV

To Nina Nikolaevna Uraltseva on the occasion of her anniversary

Abstract. Birman’s definition of the integral trace of a nuclear operator as an inte-
gral over the diagonal is linked to the recent concept of virtually continuous measur-

able functions of several variables [2, 3]. Namely, it is shown that the construction of
Birman is a special case of the general integration of virtually continuous functions
over polymorphisms (or bistochastic measures), which in particular makes it possi-
ble to integrate such functions over some submanifolds of zero measure. Virtually

continuous functions have similar application to embedding theorems (see [2]).

§1. Introduction

In the paper [1] unpublished in his lifetime, M. S. Birman provided a meaning for the
integral of the kernel K of a nuclear operator K ∈ S1 over a diagonal measure on X×X.1

Since any nuclear operator is represented as the product of two Hilbert–Schmidt op-
erators, we can represent its kernel (by changing it on a null set) in the form suitable for
integration over the diagonal. The value of this integral is independent of a factorization,
but this needs a proof. We show that the reason for this independence is the fact that the
kernel is a virtually continuous function, hence admitting integration not only over the
diagonal, but also over a wide class of submanifolds of zero measure — more rigorously,
over the polymorphisms, see [6, 7]. In §2 we recall the basic definitions from the theory
of virtual continuity, see [2, 3], and introduce the necessary spaces and norms. In §3 we
recall (without proof) the main duality theorem of [3].

The main property of virtually continuous functions, which is most completely ex-
pressed by the duality theorem, is that they admit integration over some subsets of zero
measure. In the last section we show that this makes it possible to get the result of [1].

§2. Virtual continuity of functions of two variables

We recall the necessary definitions from [2, 3]:

Definition 1. An admissible metric (or semimetric) ρ on a standard measure space
(X, A, µ) is a measurable function on X × X with the following property: there exists
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a measurable subset X0 ⊂ X of full measure, µ(X \ X0) = 0, such that the metric
(respectively, semimetric) space (X0, ρ) is separable.

A standard measure space (X, µ) with admissible (semi)metric ρ is called an admissible
metric triple or simply an admissible triple (X, µ, ρ).

Definition 2. A measurable function f( · , · ) on the product of measure spaces (X, µ)×
(Y, ν) is said to be properly virtually continuous if for any ε > 0 there exist subsets
X ′ ⊂ X, Y ′ ⊂ Y of almost full measure (i.e. µ(X\X ′) < ε, µ(Y \Y ′) < ε), and admissible
semimetrics ρX , ρY on X ′, Y ′ (respectively) such that the function f is continuous on
(X ′ × Y ′, ρX × ρY ). A virtually continuous function is a function coinciding with some
properly virtually continuous function on a full measure subset of X × Y . Virtually
continuous functions of several variables are defined similarly.

The class of virtually continuous functions is a linear subspace of the linear space of
all measurable functions. It is invariant under all quasi-measure preserving maps of the
form T1 × T2, where T1, T2 are quasiautomorphisms of the measure spaces (X, µ), (Y, ν),
respectively. However, it is not invariant under arbitrary measure preserving maps of the
space (X × Y, µ× ν).

Now we specify an important subclass of virtually continuous functions. The functions
of the form f(x, y) = a(x) + b(y) are separate. The next construction defines a norm
(the so-called norm with regulator) of a function of two variables, where the regulator is
a separate function and the norm is taken in L1.

Definition 3. For a measurable function f on the space (X × Y, µ × ν), we define the
following (finite or infinite) norm:

‖f‖SR1 := inf
{∫

X

a(x) dµ(x) +
∫

Y

b(y) dν(y) :

a(x) ≥ 0, b(y) ≥ 0, |f(x, y)| ≤ a(x) + b(y) a.e.
}

.

Let V C1 denote the space of virtually continuous functions with finite SR1-norm. This
space turns out to be complete (see [2, 3]), i.e., virtual continuity is SR1-limit-preserved.

The space V C1 can be described as the closure in SR1 of “rectangular-step” functions.

Theorem 1 ([2], Theorem 10). The subspace of finite linear combinations of character-
istic functions of all sets of the form X1 × Y1, where X1 ⊂ X and Y1 ⊂ Y are arbitrary
measurable subsets, is dense in the space V C1 (in the SR1-norm).

What is the dual space of V C1? Roughly speaking, what are the objects with which we
may couple (integrate) such functions? A related question arose in the generalization of
the Kantorovich optimal transportation theory. The Kantorovich theorem about duality
between an appropriate space of measures and the space of Lipschitz functions has a
side interpretation: the optimal price may be viewed as the norm of a metric, and this
norm coincides with the norm defined above. Thus, the duality theorem presented below
can be viewed as a generalization of the Kantorovich duality to cost functions different
from metrics. This question was considered in [8, 5]. However, in those works, only part
of the corresponding duality was described; in our terms this is the part corresponding
to absolutely continuous quasibistochastic measures (in other words, polymorphisms,
couplings, transport plans, etc., see [7, 6]). The answer is that the space dual to VC1 is
the space of quasibistochastic polymorphisms, as defined in the next section.

§3. Quasibistochastic signed measures and duality theorem

Definition 4. Let η be a finite measure on the product X×Y of measure spaces (X, A, µ)
and (Y, B, ν), defined on the direct product of sigma-algebras A×B. We say that it is
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bistochastic if η(X1×Y ) = µ(X1), η(X×Y1) = ν(Y1) for all measurable subsets X1 ⊂ X,
Y1 ⊂ Y . Equivalently, it is bistochastic if and only if the pushforwards P x

∗ η, P y
∗ η under

the projections Px, Py of the direct product X×Y onto X, Y coincide with the measures
µ and ν, respectively.

If the projections mentioned above are absolutely continuous with respect to µ, ν
and have bounded Radon–Nikodym density, then we say that the measure η is qua-
sibistochastic. A signed measure η is said to be quasibistochastic if its variation |η| is
quasibistochastic.

We refer the reader to [7] for more information on bistochastic measures and the
relationship with the theory of polymorphisms.

The space QB∞ of quasibistochastic signed measures admits a norm defined as an
essential supremum of the densities of projections of the total variation:

‖η‖qb = max
(

sup
X1⊂X

|η|(X1 × Y )/µ(X1), sup
Y1⊂Y

|η|(X × Y1)/ν(Y1)
)

= max
{∣∣∣∣∣∣∂P x

∗ |η|
∂µ

∣∣∣∣∣∣
L∞(X,µ)

,
∣∣∣∣∣∣∂P y

∗ |η|
∂ν

∣∣∣∣∣∣
L∞(Y,ν)

}
.

Definition 5. A signed measure η on X×Y is subbistochastic if ‖η‖qb ≤ 1. A measurable
function h( · , · ) on the space (X × Y, µ × ν) is subbistochastic if the signed measure
h( · , · )µ× ν is subbistochastic. We denote the set of all subbistochastic functions by S.
In other words, S is the “absolutely continuous” part of the unit ball of the space QB∞.

Note that a measure η is subbistochastic if and only if a signed measure η0 − η is
nonnegative for some bistochastic measure η0.

The bistochastic (and quasibistochastic) (signed) measures may be viewed as a “multi-
valued” generalization of the measurable maps from (X, µ) to (Y, ν) that transfer the mea-
sure µ to ν (respectively, to a measure absolutely continuous with respect to ν). In this
interpretation, which generalizes the theory of dynamical systems, a (quasi)bistochastic
measure is a polymorphism from (X, µ) into (Y, ν), see [7].

But here we need a direct interpretation of (quasi)bistochastic measures as functionals
on appropriate spaces of functions on X × Y . So, the SR1-norm defined above can be
defined in a dual way as the supremum of couplings with absolutely continuous (with
respect to µ× ν) subbistochastic measures.

Theorem 2. For any measurable function f on the space (X × Y, µ× ν) we have

(1) ‖f‖SR1 = sup
{∫∫

X×Y

|f(x, y)|h(x, y) dµ(x) dν(y) : h ∈ S

}
.

This theorem was proved in [2] (see Theorem 8 therein) by using the Komlos lemma.
Earlier, Kellerer [4] established a more general duality theorem in the language of the
descriptive set theory, see [5, Theorem 2.4.3].

The following theorem describes the Banach space dual to V C1.

Theorem 3 ([2], [3, Theorem 11]). The space dual to V C1 is QB∞. The action of a
signed measure η on a virtually continuous function f is defined as

∫
f̃ dη, where f̃ is a

proper virtually continuous function equivalent to f .

In a sense, the classical Kantorovich duality is a “factorization” of duality between
V C1 and QB∞, see [3].

If two proper virtually continuous functions f̃1 and f̃2 on X ×Y coincide (µ× ν)-a.e.,
then there exist subsets X0 ⊂ X, Y0 ⊂ Y of full measure such that f̃1 = f̃2 on X0 × Y0

(see [2, Proposition 6]). Thus, the action of a signed measure η with finite norm ‖η‖qb
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on a virtually continuous function f does not depend on the choice of (µ× ν)-equivalent
proper virtually continuous function f̃ ; hence, it is well defined.

Consider a particular case: (X, µ) = (Y, ν) and η is a diagonal measure (the push-
forward of µ under the map x 7→ (x, x)). Since it is bistochastic and ‖η‖qb = 1, the
integral

∫
X

f(x, x) dµ(x) =
∫

X×Y
f dη is well defined for any virtually continuous func-

tion f ∈ V C1.
Here is a criterion of ∗-weak convergence for quasibistochastic polymorphisms.

Proposition 1. A sequence of quasibistochastic polymorphisms ηn on X × Y ∗-weakly
converges to a polymorphism η in the space QB∞ = (V C1)∗ if and only if

(i) the norms ‖ηn‖qb are uniformly bounded, and
(ii) for any measurable rectangle R = X1 × Y1 we have the convergence of measures

ηn(R) → η(R).

Proof. The boundedness of the norms follows from weak convergence. Condition (ii)
implies the convergence of couplings with the characteristic functions of measurable rect-
angles. The linear combinations of such functions are dense in V C1; thus, whenever the
norms are bounded, (ii) is necessary and sufficient for weak convergence. �

§4. Approximation of the diagonal and Birman’s theorem

Now we show how the approach of [1] to regularization of the integral over the diagonal
is related to the above theory.

Let K ∈ S1 be a nuclear operator in the Hilbert space L2(X, µ), and let K be its
kernel. As in [1], we define a regular kernel corresponding to the operator K.

Definition 6. A measurable function K0 defined on a square X ′×X ′ of some subset X ′ ⊂
X of full measure is called a regular kernel corresponding to the operator K ∈ S1 if there
exist two Hilbert–Schmidt operators L, M ∈ S2 with kernels L,M ∈ L2(X ×X, µ× µ),
respectively, such that K = LM and

(2) K0(x, y) =
∫

X

L(x, z)M(z, y) dµ(z)

for all x, y ∈ X ′.

Clearly, the functions K and K0 coincide a.e. on X × X. Note that, in general, a
regular kernel for a nuclear operator is not unique, because the operator may admit
different factorizations into two Hilbert–Schmidt operators. But, as we shall see below,
any two regular kernels coincide on the square of a full measure set.

Proposition 2. A regular kernel K0 of a nuclear operator K is a properly virtually
continuous function, and the kernel K is a virtually continuous function.

Proof. Let L,M ∈ S2 be Hilbert–Schmidt operators with kernels L,M∈ L2(X ×X, µ×
µ), respectively, such that K = LM and (2) is true. Consider two semimetrics on X:

ρL(x1, x2) = ‖L(x1, · )− L(x2, · )‖L2(X,µ);(3)

ρM(x1, x2) = ‖M( · , x1)−M( · , x2)‖L2(X,µ).(4)

By the Fubini theorem, they are well defined on some subset X ′ ⊂ X of full measure.
The semimetric spaces (X ′, ρL) and (X ′, ρM) are separable, because the Hilbert space
L2(X, µ) is separable, so that the triples (X ′, µ, ρL) and (X ′, µ, ρM) are admissible.
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The continuity of the function K0(x, y) with respect to the metric ρL×ρM on X ′×X ′

follows from the following estimate, which is true for all x, x′, y, y′ ∈ X ′:

|K0(x, y)−K0(x′, y′)| ≤ |K0(x, y)−K0(x′, y)|+ |K0(x′, y)−K0(x′, y′)|

≤
∫

X

|L(x, z)− L(x′, z)| |M(z, y)| dµ(z) +
∫

X

|L(x′, z)| |M(z, y)−M(z, y′)| dµ(z)

≤ ρL(x, x′)‖M( · , y)‖L2(X) + ρM(y, y′)‖L(x′, · )‖L2(X)

≤ ρL(x, x′)‖M( · , y)‖L2(X) + ρM(y, y′)
(
‖L(x, · )‖L2(X) + ρL(x, x′)

)
.

So, the functionK0 is properly virtually continuous, and the (µ×µ)-equivalent function
K is virtually continuous. �

Birman interpreted the integral of the kernel K of the nuclear operator K as the
integral of the regular kernel K0. In [2], the authors defined the integral of a virtually
continuous function over a measure as the integral of an equivalent proper virtually
continuous function. In the case of integration of kernels of nuclear operators and diagonal
measures, this coincides with Birman’s approach.

Birman suggested to calculate the trace of a nuclear operator as the limit of averages
over the neighborhood of the diagonal.

Theorem 4 (Birman [1]). If (X, µ) is Rm with Lebesgue measure, and K is a regular
kernel of a nuclear operator in L2(X, µ), then for the integral over the diagonal we have∫

X

K(x, x) dµ(x) = lim
h→0+

1
κmhm

∫∫
|x−y|≤h

K(x, y) dµ(x) dµ(y),

where κm is the Lebesgue measure of the unit ball in Rm.

In the context of virtual continuity, this is a claim about the ∗-weak convergence of
absolutely continuous measures in the neighborhood of the diagonal to the measure on
the diagonal.

First, we recall a result on embedding of the space of nuclear operators to V C1.
One of applications of virtual continuity given in [2] is the following embedding theo-

rem.

Theorem 5 ([2, Theorem 14]). The map K 7→ K that takes an integral operator K to
its kernel K is an embedding with norm 1 of the space S1(L2(X)) to the space V C1.

The main theorem of [1] cited above (Theorem 4) is a direct consequence of this
embedding and the following general fact on ∗-weak convergence of polymorphisms to
the diagonal measure.

Proposition 3. Let (X, ρ, µ) be a separable metric space with sigma-compact Borel mea-
sure µ. Let η be a measure on the diagonal diag = {(x, x) : x ∈ X} ⊂ X × X defined
as a pushforward of the measure µ under the map x 7→ (x, x). Assume that a sequence
of bistochastic measures ηn on X × X is such that ηn(K) → 0 for any compact sub-
set K ⊂ X2 \ diag. Then the sequence of measures ηn converges to the measure η in
QB∞ = (V C1)∗ in the ∗-weak topology. In other words, for any function f ∈ V C1 we
have

∫
X2 f dηn →

∫
X2 f dη.

Proof. We check the conditions of Proposition 1. Since the bistochastic measures have
norm 1, it remains to check condition (ii). Fix a rectangle R = X1×Y1 ⊂ X2 and ε > 0.
The rectangle R is partitioned onto 4 rectangles. One of them is the square (X1 ∩ Y1)2,
and the other three do not meet the diagonal. For a bistochastic measure λ we have

λ(X1 ×X1) = µ(X1)− λ (X1 × (X \X1)) ,
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so that the convergence of values of bistochastic measures on squares reduces to con-
vergence on rectangles that do not meet the diagonal. So, we may suppose that our
rectangle R = X1 × Y1 does not meet the diagonal. By inner regularity, there exist
compact subsets X2 ⊂ X1, Y2 ⊂ Y1 such that µ(X1 \X2) + µ(Y1 \ Y2) < ε/2. Define a
compact rectangle R′ = X2 × Y2. For any bistochastic measure λ we have

λ(R) ≤ λ(R′) + λ ((X1 \X2)×X) + λ (X × (Y1 \ Y2)) ≤ λ(R′) + ε.

By our assumption ηn(R′) → 0; hence, lim sup ηn(R) ≤ ε. Since ε is arbitrary, we get
lim ηn(R) = 0 = η(R), as required. �
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