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THE ADIC REALIZATION OF THE MORSE TRANSFORMATION AND THE EXTENSION

OF ITS ACTION TO THE SOLENOIDA. M. Vershik∗ and B. Solomyak† UDC 517.987
We consider the adic realization of the Morse transformation on the additive group of integer dyadic numbers. We
discuss the arithmetic properties of this action. Then we extend this action to an action of the group of rational
dyadic numbers on the solenoid. Bibliography: 14 titles. To the memory of Alexander LivshitsSasha Livshits (1950{2008) was the author of one of the most important theorems of modern dynami
s,whi
h is well-known now, | the theorem about the 
ohomology of hyperboli
 systems. He proved this theoremwhen he was a student. Later he worked on many other problems of symboli
 dynami
s, ergodi
 theory, and
ombinatori
s. His deep and important ideas made a great impression on those who intera
ted with him (thisin
ludes the se
ond author). The �rst author 
onsiders him the best of his students.

1. IntroductionThe Morse dynami
al system was dis
overed by Morse and popularized by Hedlund and Gottshalk. Later itwas studied by many authors (see [12, 11℄ and referen
es therein) as a simplest nontrivial substitution. Moreover,it was histori
ally the �rst example of a substitution. It is generated by the Thue{Morse sequen
e, whi
h wasextensively studied from the point of view of the 
ombinatori
s of words and symboli
 
omplexity (see [5. 10℄, andreferen
es therein). The new approa
h to symboli
 dynami
s and ergodi
 transformations (based on the notion ofadi
 transformation), whi
h was suggested by the �rst author [2℄, 
an also be applied to substitutions (so-
alledstationary adi
 transformations). This idea was realized in the paper by A. Livshits and the �rst author [13℄.Later, other authors developed this 
onne
tion in the 
ontext of topologi
al dynami
s (see [8, 7℄), but here ourfo
us is on measure-preserving transformations. The adi
 realization of a substitution dynami
al system allowsone to 
onsider simultaneously not only the substitution itself, but also the one-sided shift whi
h a

ompaniesany substitution. The idea that was advo
ated by the �rst author in [3℄ is to 
onsider the natural extension ofthat shift and 
orrespondingly extend the substitution system in order to make an essential link between thetheory of substitutions and hyperboli
 dynami
s. In this paper we 
onsider the \two-sided extension" of theMorse system whi
h yields the Morse a
tion of the 
ountable group Q2 (the group of dyadi
 rational numbers)on the group of its 
hara
ters | the solenoid Q̂2, reworking more 
arefully and 
orre
ting some details of [13℄.We obtain also some new properties of the adi
 realization of the Morse transformation. One of the 
orollariesof the adi
 approa
h is an expli
it 
al
ulation that shows how to obtain the Morse system as a time 
hangeof the dyadi
 odometer. The operation of di�erentiation of dyadi
 sequen
es plays an important role in our
onstru
tions. The spe
tral theory of the Morse system, whi
h goes ba
k to Kakutani [9℄ (see also [12, 11℄ andreferen
es therein) is also be
oming more transparent under these 
onsiderations, but we do not address it inthis paper.In Se
. 2, we 
olle
t a series of well-known and new results on the Morse system using its adi
 realization.In parti
ular, we dis
uss in more detail (than in [3℄) the so-
alled \Morse arithmeti
." Se
tion 3 des
ribes thetwo-sided extension of the Morse transformation and its embedding into the Morse a
tion of the group Q2 onthe group Q̂2. We also formulate some open problems.One should 
onsider this arti
le as an attempt, looking at the spe
ial 
ase of the Morse transformation, toatta
k the general problem of de�ning a two-sided extension of a substitution system, and a 
orrespondingembedding of this system into an a
tion of a larger group. The �nal goal of the 
onstru
tions is to show the linkbetween the theory of substitutions and of hyperboli
 systems.
2. Definitions and the adic realization of the Morse system2.1. The Morse transformation as a substitution system. Consider the alphabet {0; 1}. The Morsesubstitution is de�ned by �(0) = 01, �(1) = 10; it is extended to all words in the alphabet {0; 1} by 
on
atenation.
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The Thue{Morse sequen
e (sometimes also 
alled the Prouhet{Thue{Morse sequen
e) is a �xed point of thissubstitution: u = u0u1u2 : : : = limn→∞ �n(0) = 0110100110010110 : : : : (1)This sequen
e has many remarkable features (see, e.g., [5℄ and [11, Chaps. 2 and 5℄). It is easy to see thatu[0; 2n+1 − 1℄ = u[0; 2n − 1℄u[0; 2n − 1℄ for n ≥ 0;where we denote u[i; j℄ = ui : : : uj and w is the \
ip" of a word w in the alphabet {0; 1}, that is, the wordobtained from w by inter
hanging 0 ↔ 1. The sequen
e u is nonperiodi
, but uniformly re
urrent, with well-de�ned uniform frequen
ies of subwords. It is also known that un is the sum of the digits (mod 2) in the binaryrepresentation of n.Let � be the left shift on the spa
es {0; 1}N and {0; 1}Z with the produ
t topology. The substitution dynami
alsystem is sometimes 
onsidered on the spa
e of one-sided sequen
es, and sometimes on the spa
e of two-sidedsequen
es.1The \one-sided" substitution spa
e is de�ned as the orbit 
losure of u under the shift:X+� = 
los {�nu : n ≥ 0}:The \two-sided" substitution spa
e is de�ned as the set X� of all bi-in�nite sequen
es in {0; 1}Z whose everyblo
k (subword) o

urs in u. The substitution dynami
al systems are (X+� ; �) (one-sided) and (X� ; �) (two-sided). The advantage of the two-sided system is that it is a homeomorphism, whereas the one-sided system isnot. Measure-theoreti
ally, these two systems are isomorphi
: in fa
t, both are minimal and uniquely ergodi
,and the one-sided system is a.e. invertible. The sequen
e 
onsisting of the nonnegative 
oordinates of any pointin X� lies in X+� , and all but 
ountably many elements of X+� have a unique extension to elements in X� . Theex
eptions are u, whi
h extends to u : u and u : u, and its \
ip" u, as well as their orbits.2.2. The adi
 realization. Here we follow the general de�nition of the adi
 transformation from [2℄ and [13℄,but fo
us only on the Morse system, as it was done in [3℄. Consider Z2 ∼= {0; 1}N, the 
ompa
t additive groupof 2-adi
 integers, and the odometer (\adding ma
hine") transformation T , whi
h is an adi
 transformationby de�nition | this is the group translation on Z2 (see below). We obtain the adi
 realization of the Morsetransformation by 
hanging the order of symbols 0; 1 depending on the next symbol. Namely, 
onsider thelexi
ographi
 order on Z2 indu
ed by the relation0 ≺0 1; 1 ≺1 0as follows:
{xi} ≺ {yi} ⇐⇒ ∃ j : xi = yi for i > j and xj ≺z yj ; where z = xj+1 = yj+1:This is a partial order; two sequen
es are 
omparable if they are 
o�nal (i.e., agree ex
ept in �nitely many pla
es).The set of maximal points is Max = {(01)∞; (10)∞}, and the set of minimal points is Min = {(0)∞; (1)∞}.2 LetM be the immediate su

essor transformation in the order ≺ on Z2. Here we write down the formulas for thea
tion of M expli
itly. If x 6∈ Max, then x starts with (01)n00, or (01)n1, or (10)n0, or (10)n11, where n ≥ 0. Wehave M((01)n00∗) = (12n+10∗); M((01)n1∗) = (02n1∗); (2)M((10)n0∗) = (12n0∗); M((10)n11∗) = (02n+11∗):Note that M is well de�ned everywhere ex
ept on the two maximal points, i.e., the elements of the set Max =

{(01)∞; (10)∞}. It is easy to see that M is 
ontinuous on Z2 \ Max. But one 
annot extend M to these pointsby 
ontinuity: there are no well-de�ned limits limn→∞M((01)n∗) and limn→∞M((10)n∗), be
auselimn→∞M((01)n00∗) = (1)∞;
1Above we have used the terms “one-sided” and “two-sided” in a completely different sense; see also below.
2We denote the infinite periodic sequence with period (ab . . . c) by (ab . . . c)∞.
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but limn→∞M((01)n1∗) = (0)∞:Analogously, limn→∞M((10)n0∗) = (1)∞;but limn→∞M((10)n11∗) = (0)∞:Sin
e we also have two minimal points, we 
an extend M to a bije
tion arbitrarily, settingM((01)∞) = (1)∞; M((10)∞) = (0)∞ (3)or vi
e versa. But this extension is not 
ontinuous at these points.The obvious 
orollary of the de�nition of M is that it 
ommutes with \
ips," that is,M(x) =M(x) for any x ∈ Z2: (4)The a
tion of M on Z2 \ Max may be expressed as follows: we s
an the sequen
e x from left to right until we seetwo identi
al symbols aa, and repla
e the beginning of the sequen
e by a : : : aa, keeping the se
ond o

urren
eof a and everything that follows un
hanged.2.3. The relation of the adi
 model to the traditional representation. Now we indi
ate the relationbetween the dynami
al systems (Z2;M) and (X� ; �). Letg : Z2 → X� ; g(x) = {(Mn−1x)0}n∈Z:We have the following diagram: Z2 M
−−−−→ Z2yg ygX� �
−−−−→ X� :It is obvious from the de�nition that the diagram 
ommutes. It is also easy to see that g is surje
tive, 
ontinuouson Z2 \ M̃ax, and g(0∞) = u : u. Here we denoted by M̃ax the set of points in Z2 that are 
o�nal with the pointsin Max (or, equivalently, the left semiorbits of both points from M̃ax).It may be useful to write down g−1 expli
itly. Consider the substitution map on X� :� : X� → X� ; �(: : : a−2a−1 : a0a1 : : : ) = : : : �(a−2)�(a−1) : �(a0)�(a1) : : : :It is well known (and easy to see) that for every a ∈ X� there is a unique a′ ∈ X� su
h that either a = �(a′) ora = ��(a′), and these 
ases are mutually ex
lusive. Let 	 : X� → X� be given by 	(a) = a′. Then we have thefollowing 
ommutative diagram: Z2 �
−−−−→ Z2yg ygX� 	
−−−−→ X� ;where � is the left shift on Z2. Therefore, to 
ompute the nth symbol of g−1(a), we need to take (	n(a))0 forn = 0; 1; 2 : : : .Now let us explain why this model is ri
her than the \two-sided" model X� . In the adi
 realization, wehave the adi
 transformation, whi
h is isomorphi
, up to negle
ting two orbits, to the substitution, AND wehave the one-sided shift in the spa
e Z2. The evolution under the adi
 transformation of the �rst digit x0 of asequen
e {xi} ∈ Z2 gives exa
tly the orbit of u under the transformation � on X� . The one-sided shift in thespa
e Z2, in terms of the theory of substitutions, is a proper substitution, i.e., the transformation that repla
es,in any sequen
e, 0 by 01 and 1 by 10. Thus in the adi
 model we have a simultaneous realization of bothtransformations: the shift (it turned into the adi
 shift) and the substitution (it turned into the one-sided shift).The problem arises how to introdu
e into this pi
ture the natural extension of the one-sided shift, the two-sidedshift; and, at the same time, how to extend the adi
 transformation to the whole spa
e. We will do this in thenext se
tion, but �rst we interpret a familiar property of the Morse system in our terms.
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2.4. The Morse system as a 2-point extension of the odometerDe�nition 2.1. The 
lassi
al 2-odometer is the following aÆne transformation T on the additive group Z2 ofdyadi
 integers: T : Tx = x+ 1:The transformation T preserves the Haar (= Bernoulli, Lebesgue) measure on the group Z2. It is well knownthat the Morse system 
an be represented as a group (2-point) extension of the dyadi
 odometer. This is themost popular point of view on the Morse system in dynami
s. The adi
 realization of the Morse transformationgives another way to look at this fa
t; the homomorphism of the Morse transformation to the odometer is, inour model, the 
omposition of the Morse transformation with the di�erentiation.Let us de�ne an important map.De�nition 2.2. The di�erentiation of sequen
es is the map D : Z2 → Z2 given byD({xn}∞n=0) = {(xn+1 − xn) mod 2; n = 0; 1; : : :}:This is nothing else than a 2-to-1 fa
torization of Z2 on itself. It is 
lear that the di�erentiation 
ommuteswith the \
ip" de�ned above: D(x) = D(x).In spite of the simpli
ity of the de�nition of the map D : Z2 → Z2, there are no good and simple \arithmeti
"or \analyti
" expressions for the des
ription of D(·). Re
ently, V. Arnold, for di�erent reasons, made manyexperiments on the behavior of 0−1 sequen
es under the iteration of di�erentiation [6℄. But the most importantthing for us is that the map D takes the Morse transformation to the odometer.Proposition 2.3. The following equality takes pla
e: T ◦D = D ◦M .This is an immediate 
orollary of (2). Thus, in the adi
 realization, the Morse transformationM is a 2-
overingof the odometer in its algebrai
 form. Let us give a pre
ise des
ription of the equivalen
e between the Morsetransformation and the 2-extension of the odometer. Let F (x) = (Dx; x0) be the map from Z2 to Z2 × {0; 1}.This is a bije
tion, and we have the following 
ommutative diagram:Z2 M
−−−−→ Z2yF yFZ2 × {0; 1} T (�)
−−−−→ Z2 × {0; 1}:Here T (�) is the 2-extension of T with the 
o
y
le � on Z2 de�ned by�(y) = { 0 if y starts with an odd number of 1's,1 if y starts with an even number of 1's. (5)To make it work on maximal elements, we also need to set �(1∞) = �(0∞) = 1. Re
all that the group extensionis de�ned by T (�)(x; g) = (Tx; �(x) + g):We have M = F−1T (�)F;so M is 
anoni
ally isomorphi
 to the 2-extension of the odometer T with the 
o
y
le �. We 
an identify Z2with Z2 × {0; 1} regarding the se
ond 
omponent, i.e., an element of {0; 1}, as a new digit of a sequen
e. Thenthe map F be
omes a transformation of Z2, and we 
an 
onsider this extension as a new transformation on thegroup Z2 itself. We give another interpretation of this 
o
y
le in the next se
tion.Remark. The Morse system 
an also be realized as a 2-point extension of the odometer in the traditionalsubstitution form, and it is interesting that the proje
tion is again given by the di�erentiation map. This followsfrom the fa
t that for the Thue{Morse sequen
e u (see (1)), its derivative sequen
e D(u) = 1011101010 : : :is a �xed point of the substitution 0 → 11; 1 → 10 (see [5, p. 201℄), whi
h generates a measure-preservingtransformation isomorphi
 to the 2-odometer.Denote by S the map x→ [x=2℄ on Z2. This is nothing else than the one-sided noninvertible shift, or Bernoulliendomorphism, if we represent the elements of Z2 as sequen
es of 0's and 1's. It is easy to 
he
k the followingfa
t.
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Proposition 2.4. The 2-odometer, as well as the Morse transformation, satis�es the following equation:TS = ST 2; MS = SM2:Note that under the two-sided extension of the 2-odometer T and Morse transformationM and the repla
ementof S by the two-sided shift, these relations turn into relations (10) and (14), whi
h de�ne the a
tion of the groupof dyadi
 rational numbers on the solenoid.2.5. The Morse system as a time 
hange of the odometer, and the Morse arithmeti
. Sin
e thegroup of rational integers Z is a dense invariant subgroup of the group of dyadi
 integers, we 
an 
onsider theMorse transformation M in the adi
 realization as a map of the set of integers to itself. This subse
tion is basedon [3, p. 538℄, but we provide more details.Let us identify a sequen
e x0x1x2 : : : with the dyadi
 de
omposition of the number ∑j xj2j . Here is the listof several �rst values of M(n):0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 : : :1 3 7 2 5 15 4 6 9 11 31 10 13 8 12 14 : : :The table 
an easily be veri�ed using (2).To simplify this veri�
ation, we introdu
e the following sequen
e:ar = 



2r − 13 if r ≡ 0 (mod 2);2r − 23 if r ≡ 1 (mod 2): (6)Ea
h n ∈ N 
an be uniquely represented in one of the following ways (r = r(n)):n = { 2r`+ ar−1 (i);2r`+ 2r−1 + ar (ii); (7)where ` ≥ 0 is an integer. De�ne a mapping M : N→ N \ {0} byM(n) = { n+ ar(n) in the 
ase (i);n− ar(n) in the 
ase (ii): (8)Although these formulas look a bit mysterious, they easily follow from (2). In fa
t,ar = 2r − 13 = (10)(r−2)=2; r ≡ 0 (mod 2); ar = 2r − 23 = (01)(r−1)=2; r ≡ 1 (mod 2):The 
ase (i) above o

urs when the �rst pair aa in the binary representation of n is 00. Then M(n) repla
es thebeginning of the sequen
e with 1's, whi
h in
reases the number by ar(n) (observe that ar−1 + ar = 2r−1 − 1 =(1)r−1 independently of the parity of r). Similarly, the 
ase (ii) above o

urs when the �rst pair aa in the binaryrepresentation of n is 11. In this 
ase M(n) de
reases or in
reases the number n by ar(n).Thus we have des
ribed independently the restri
tion of the adi
 Morse system to N; that is why we use thesame symbol M . De�ne M for negative integers by M(−n) = −M(n − 1) − 1. Then it is easy to 
he
k thatthe mapping thus de�ned has the property M(x) = M(x), where n = −n − 1; this should be understood byidentifying integers with their binary expansions. Thus we have M : Z→ Z \ {0;−1}. Note that 0 = (0)∞ and
−1 = (1)∞ are the two minimal points in our order on Z2. A

ording to (3),M(−1=3) ≡M((10)∞) = (0)∞ ≡ 0 and M(−2=3) ≡M((01)∞) = (1)∞ ≡ −1:
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2.6. The orbit equivalen
e of the Morse system and 2-odometer. The orbit of a point x ∈ X withrespe
t to an invertible transformation S of X is the set {Snx; n ∈ Z}. Obviously, the T -orbit of any pointx ∈ Z2 that has in�nitely many 0's and 1's is the set of all points that eventually 
oin
ide with x. The set of allpoints that have �nitely many 0's or 1's makes one orbit (this is the 
ommon T -orbit of (0)∞ and (1)∞). Let usdes
ribe the orbit partition of the Morse transformation, whi
h follows dire
tly from de�nition (2).Proposition 2.5. If a point x ∈ Z2 has in�nitely many subwords 00 and in�nitely many subwords 11, then theM-orbit of x is the set of all points that eventually 
oin
ide x. The remaining 
ountable set of points that have�nitely many subwords 00 or 11 is exa
tly the union of four semiorbits of M : two positive M-semiorbits { of thepoint (0)∞ and of the point (1)∞, and two negative M-semiorbits { of the point (10)∞ and of the point (01)∞.Note that the negative M -semiorbit of (10)∞ (respe
tively, (01)∞) 
onsists of the points that eventually
oin
ide with (10)∞ (respe
tively, (01)∞) and have an initial even word.Corollary 2.6. The orbit partitions of the 2-odometer and the adi
 realization of the Morse transformation
oin
ide ( mod 0) with respe
t to the Haar (Lebesgue) measure on Z2.As we have seen, these partitions 
oin
ide on the 
omplement of a 
ountable set. We will re�ne this 
laimbelow.Using our extension of M de�ned by (3), we 
an make an additional remark about those four semiorbits; wedo not use it later. Note that two positive M -semiorbits generate one T -orbit, and ea
h negative M -semiorbit isa full T -orbit. Thus in our de�nition (3) we 
ut the 
ommon T -orbit of (0)∞ and (1)∞ and glue the T -semiorbitof 0∞ with the M -semiorbit of (10)∞, and the T -semiorbit of 1∞ with the M -semiorbit of (01)∞.If x ∈ N ⊂ Z2, then we have the tautologyM(n) = TM(n)−n(n);where in the left-hand sideM(n) is the image of n under the transformationM , and in the right-hand sideM(n)is a natural number. Now observe that, by de�nition (8) of the a
tion of the Morse automorphism M on the setof integers, we have M(n)− n = (−1)r(n) · ar(n):It is worth mentioning that the value of the 
o
y
le �(n) from the previous subse
tion is exa
tly M(n) − n(mod 2), i.e., it is equal to 0 if and only if n and M(n) have the same parity.Denote �(n) = (−1)r(n) · ar(n):Then we have M(n) = T �(n)nfor ea
h rational integer n. It is 
lear that the fun
tion r(·) and, 
onsequently, the fun
tion �(·) 
an be extendedfrom the set of positive integers N to the group of all dyadi
 integers Z2 as follows: formula (6) with some r ∈ Nand ` ∈ Z2 makes sense for all x ∈ Z2, not only for integers x. Hen
e we may 
onsider in�nite sequen
es of xnas well. Thus �(·) be
omes a fun
tion on Z2 with integer values; we may say that this is simply the extension of�(·) by 
ontinuity in the pro-2-topology.We have proved the following theorem.Theorem 2.7. Let M be the adi
 realization of the Morse transformation in the spa
e Z2. Let M̃ax∪ M̃in be the
ountable set that is the union of the M-semiorbits of the four points of Z2 :(0)∞; (1)∞; (01)∞; (10)∞:Then on the M-invariant set Z2�(M̃ax ∪ M̃in), the odometer T : Tx = x+ 1 and the Morse transformation Mhave the same orbit partition, and, moreover,Mx = T �(x)x for x ∈ Z2�(M̃ax ∪ M̃in);where �(x) is the fun
tion de�ned above.
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The formula above gives an independent de�nition of the Morse transformation using a time 
hange of theodometer.Dye's theorem asserts that any ergodi
 automorphism S is isomorphi
 (mod 0) to an automorphism that is atime 
hange of the odometer T (or any other given ergodi
 automorphism): Sx = T �(x)(x). Nevertheless, thereare few examples of an expli
it formula for su
h a time 
hange fun
tion �(·). The theorem above is just of thistype: the Morse automorphism is represented as a time 
hange of the dyadi
 odometer. It is also known (see[1, Theorem 3.8℄ that if the ergodi
 automorphisms have the same orbits, then the time 
hange integer-valuedfun
tion �(·) 
annot be integrable, unless T = S or T = S−1. It is easy to 
he
k that our fun
tion � is indeednonintegrable, be
ause it has exa
tly two singularities on the spa
e Z2 at the points (01)∞ (≡ −1=3), and (10)∞(≡ −2=3), the measure of the 
ylinder on whi
h the values of �(x) are equal to ar being of order C2−r, so thatthe singularities are simple poles and the fun
tion in their neighborhoods is equivalent to 1=t. The weakness(
loseness to integrability) of these singularities shows that the Morse automorphism is, in a sense, very 
lose tothe odometer, i.e., to an automorphism with dis
rete spe
trum.Question. What is the group generated by two transformations of Z2 | the odometer T and the Morsetransformation M? Is it a free group?
3. Extension of the Morse transformation up to an action of the group Q2 on the solenoidIn this se
tion, we de�ne the so-
alled two-sided extension of the Morse transformation, whi
h a
ts on thegroup of 
hara
ters of dyadi
 rational numbers. This is an elaboration of [3, p. 539℄, with important 
hangesand additions.3.1. Preliminary fa
ts about the dyadi
 groups Q2, Q̂2, et
. Consider the exa
t sequen
e1 −→ Z −→ Q2 −→ Q2=Z −→ 1;where Q2 is the 
ountable additive group of real dyadi
 rational numbers (r=2m, r ∈ Z, m ≥ 0), the subgroup

Z ⊂ Q2 is the group of rational integers, and the quotient group Q2=Z is the group of all roots of the unity oforders 2n, n = 0; 1; : : : (a subgroup of the rotation group).The group Q2 
an be presented as the indu
tive limitlim
−→n(Z; wn)of the groups Z, with the embedding of the nth group given bywn(x) = 2x; n = 0; 1 : : : :Consider the 
orresponding dual exa
t sequen
e for the groups of 
hara
ters of the groups above:1←− R=Z←− Q̂2 ←− Z2 ←− 1:The group of 
hara
ters of the group Q2=Z is just the additive group Z2 of dyadi
 integers, whi
h we 
onsideredin the previous se
tions and whi
h is the inverse limit of the 2n-
y
li
 groups:Z2 = lim
←−

(Z=2n; pn);with the maps pn : Z=2n → Z=2n−1, pn(x) = x mod 2n−1. The group of 
hara
ters of the group Z is the rotationgroup S1 = R=Z (or the unit 
ir
le).Our main obje
t, the group Q̂2 of 
hara
ters of the group Q2, is the so-
alled 2-solenoid and 
an be presentedas an inverse limit of the rotation groups:Q̂2 = lim
←−n(R=Z; vn+1); n = 0; 1; : : : ;where the homomorphisms are vn : R=Z→ R=Z; vn(u) = 2u; n = 1; 2; : : : :
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The group Z2 is a 
losed subgroup of the group Q̂2 
onsisting of those elements that have zero proje
tionto R=Z.The additive group Q2 of dyadi
 rational numbers is naturally embedded into Q̂2 as a dense subgroup. It
onsists of those 
hara
ters that send elements of the group Q2 to roots of the unity of degree 2n.Note that the additive group of the lo
ally 
ompa
t �eld Q2 of all 2-adi
 numbers is naturally embeddedinto the solenoid Q̂2 as a dense subgroup 
onsisting of those elements of Q̂2 whose proje
tion under the mapQ̂2 → R=Z is a root of the unity of degree 2n for some n:Q2 ⊂ Q̂2:Being a 
ompa
t group, Q̂2 has a normalized Haar measure, whi
h is the produ
t of the Haar measures onthe groups Z2 and R=Z.The group Q2 is a subgroup of the dire
t produ
t of the groups Z and Q2=Z (the generator z ∈ Z is thesquare of the generator h1 ∈ Q2=Z). Consequently, the group Q̂2 is the quotient group of the dire
t produ
t ofthe groups of 
hara
ters S1 and Z2 over the subgroup that 
onsists of 
hara
ters that are identi
ally equal to 1on Q2. More pre
isely, there is an exa
t sequen
e that des
ribes the group of 
hara
ters Q̂2:1→ diag(�)→ S1 × Z2 → Q̂2 → 1;where � is the subgroup of all roots of the unity whose degree does not 
ontain twos, and diag is its naturalembedding into the dire
t produ
t of the fa
tors. For details, see [6℄.But we will use the 
oordinates on the group Q̂2 and represent its elements (nonuniquely) as pairs of elementsof the groups S1 and Z2.Sin
e the group Q2 of dyadi
 rational numbers 
an be represented as the group of all �nite (on both sides)two-sided sequen
es of 0's and 1's with the usual binary expansion, one may think that the analog of thisde
omposition for the group Q̂2 is also true. Moreover, we have used one-sided sequen
es with positive indi
esfor parametrization of the elements of the subgroup Z2, and that parametrization agrees with the group stru
tureof 2-adi
 integers. Thus it is tempting to 
onsider the whole group Q̂2 of 
hara
ters of the groupQ2 as the 
ompa
tspa
e of all two-sided in�nite {0; 1}-sequen
es: X = ∏+∞
−∞{0; 1} = {0; 1}Z. But this is not 
orre
t, be
ause thereis no required group stru
ture on the spa
e X. Nevertheless, we 
an de�ne a map � : X→ Q̂2 with the help ofthe usual dyadi
 de
omposition of points of the unit interval (0; 1) as follows. Let {xn}, n ∈ Z, be a point of X;
onsider the pair (y; �), where y = (x0; x1; : : :) ∈ Z2 (see Se
. 2) and� = ∞∑n=1x−n2−n:Denote this map by �: � : +∞∏

−∞

{0; 1} −→ Q̂2; � : {xn} 7→ (y; �): (9)The map � is not an isomorphism of groups or even topologi
al spa
es, but trivially is an isomorphism (mod0) of measure spa
es, where the spa
e X is endowed with the (1=2; 1=2) Bernoulli (produ
t) measure, and thegroup Q̂2, with the Haar measure. Thus if we ignore the group stru
ture of Q̂2 and 
onsider it not as thesolenoid but as a symboli
 spa
e with measure-preserving transformations (odometer, Morse, et
.), then it is
onvenient to use the 
anoni
al map � : ∏+∞
−∞{0; 1} → Q̂2, whi
h identi�es only 
ountably many pairs of points.Roughly speaking, we 
an 
onsider the 2-solenoid Q̂2 as the spa
e X of all two-sided sequen
es of 0's and 1'safter some identi�
ations of elements from the negative (left) side 
orresponding to the nonuniqueness of dyadi
de
ompositions.3.2. Some transformations and di�erentiation on the solenoid. There is a 
anoni
al automorphism Ŝon the group Q̂2 : the multipli
ation by 2. It is 
onjugate to the automorphism S∗ of the group Q2 that is themultipli
ation by 1=2. The transformation Ŝ is a hyperboli
 automorphism of the solenoid, and in the usual
oordinatization it is just the Bernoulli 2-shift and a natural extension in the sense of Rokhlin [4℄ of the one-sidedshift S of the spa
e Z2 de�ned in Se
. 2.
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Now we de�ne the two-sided version of the 2-odometer. Let 1 be the unit of the ring Z2 (unity of themultipli
ative group). We de�ne the extension T̂ of the odometer T from Se
. 2 by the same formulaT̂ x = x+ 1;where x now is an element of Q̂2. It is useful to keep in mind that 1 is a 
hara
ter of the group Q2 that sendsintegers Z ⊂ Q2 to 1.The a
tion of T̂ does not 
hange the se
ond (left) 
omponent in the de
omposition Q̂2 = Z2 × R=Z, so it isindeed an extension of T . Note that T̂ is not an ergodi
 transformation of Q̂2, whereas T is ergodi
 on Z2. We
an also de�ne the family of odometer transformationsT0 := T̂ ; Ti := SiT0S−i; i ∈ Z:It is 
lear that Ti and Tj 
ommute, and the joint (over all i ∈ Z) a
tion of the Ti's determines an a
tion of thegroup Q2 on the solenoid Q̂2. Indeed, the Ti's a
t as translations, so thatT 2i = Ti+1; i ∈ Z: (10)This equation is immediate for i = 0 and hen
e for all i.Together with the shift Ŝ, the odometers Ti generate a solvable group (wreath produ
t) Z ⋌
∑

Z
Z; the a
tionof this group on the group Q̂2 is 
ontinuous and lo
ally transversal in the sense of [3℄.We de�ne the di�erentiation D̂ as the transformation of X that extends the map D to the spa
e of two-sidedsequen
es: D̂({xn}+∞−∞) = {(xn − xn+1) (mod 2)}:Of 
ourse, we may de�ne the di�erentiation on the solenoid Q̂2 by the formula D̃ = � ◦ D̂ ◦ �−1, whoseright-hand side is well de�ned almost everywhere. Observe that D̂ identi�es a two-sided sequen
e ~x with its\
ip" ~x, and hen
e almost everywhere on Q̂2 we haveD̃(y; �) = D̃(z; 
) ⇐⇒ (y; �) = (z; 
) or (y; �) = (z; 1− 
):As we mentioned above, it is diÆ
ult to give a pre
ise formula for D̃ in terms of 
hara
ters.3.3. Extension of the Morse transformation. Now we would like to extend the Morse transformation Mfrom the subgroup Z2 to the whole group Q̂2 and the spa
e X.We want M̂ to have the following properties. First, it must be a 2-extension of the extended odometer T̂ ,namely, satisfy the relation generalizing Proposition 2.1:T̂ ◦ D̂ = D̂ ◦ M̂: (11)Se
ond, it must be an extension of M : M̂ |Z2 =M:Theorem 3.1. There is a unique transformation of the spa
e X that satis�es the last two equations. It de�nesa measure-preserving transformation M̃ on Q̂2 via M̃ = � ◦ M̂ ◦ �−1, where � is de�ned by (9).Proof. The uniqueness is 
lear, and the existen
e 
an be shown as follows. The sequen
es of the spa
e X 
anbe divided into the positive and negative parts: given x̂ = (: : : x−1; x0; x1 : : : ), denote x− = (: : : x−2; x−1) andx+ = (x0; x1 : : : ). Now set M̂(x̂) ≡ M̂((x−; x+)) = { (x−;M(x+)) if �(x+) = 0;(x−;M(x+)) if �(x)+ = 1; (12)Here � is the 
o
y
le de�ned in (5). Equation (11) is immediate.We obtain an expli
it formula for the Morse transformation on the solenoid Q̂2:M̃(y; �) = (My; �) if �(y) = 0; M̃(y; �) = (Ma; 1− �) if �(y) = −1:(Here we use the 
oordinates (y; �) introdu
ed above.) �Observe that M̂ is not \lo
al," in the sense that it does 
hange the negative 
oordinates when the 
o
y
ledoes not vanish.The extension M̂ is 
ontinuous on {x ∈ Q̂2 : x+ 6∈ M̃ax}, whi
h is a set of full (Haar) measure.Denote M̂ =M0 and de�ne Mi = SiM0S−i; 
learly, we haveTi ◦ D̂ = D̂ ◦Mi; (13)be
ause D̂ 
ommutes with S.
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Theorem 3.2. The group of transformations generated by the Mi's, i ∈ Z, is algebrai
ally isomorphi
 to thegroup Q2: Mi+1 =M2i ; i ∈ Z: (14)Thus we obtain a new (Morse) a
tion of the group Q2 on Q̂2. For every i, the transformation Mi is a 2-pointextension of Ti.Proof. We only need to 
he
k (14); all other statements follow immediately. Using the equations SD̂ = D̂S andTi+1 = T 2i , we obtain that D̂Mi+1 = D̂M2i . It remains to observe that Mi+1(x̂) and M2i (x̂) are 
o�nal (agreesuÆ
iently far to the right) for all x 6∈ M̃ax. �We have de�ned two 
anoni
al measure-preserving a
tions of the solvable group Z ⋌Q2 on Q̂2. The �rst oneis generated by the odometer (this is an algebrai
 a
tion), and the se
ond one is generated by the Morse a
tion.Re
all that the Morse a
tion is 
ontinuous only almost everywhere.Questions.1. Find the 
o
y
le that de�nes the Morse a
tion as a 2-extension of the algebrai
 a
tion analogously to (5).2. Find a formula analogous to the formula of Theorem 2.7 that de�nes the Morse a
tion on the solenoid asa time 
hange of the algebrai
 a
tion.3. How 
an we 
hara
terize both a
tions of the group Z ⋌Q2 in an intrinsi
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