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THE ADIC REALIZATION OF THE MORSE TRANSFORMATION AND THE EXTENSION

OF ITS ACTION TO THE SOLENOIDA. M. Vershik∗ and B. Solomyak† UDC 517.987
We consider the adic realization of the Morse transformation on the additive group of integer dyadic numbers. We
discuss the arithmetic properties of this action. Then we extend this action to an action of the group of rational
dyadic numbers on the solenoid. Bibliography: 14 titles. To the memory of Alexander LivshitsSasha Livshits (1950{2008) was the author of one of the most important theorems of modern dynamis,whih is well-known now, | the theorem about the ohomology of hyperboli systems. He proved this theoremwhen he was a student. Later he worked on many other problems of symboli dynamis, ergodi theory, andombinatoris. His deep and important ideas made a great impression on those who interated with him (thisinludes the seond author). The �rst author onsiders him the best of his students.

1. IntroductionThe Morse dynamial system was disovered by Morse and popularized by Hedlund and Gottshalk. Later itwas studied by many authors (see [12, 11℄ and referenes therein) as a simplest nontrivial substitution. Moreover,it was historially the �rst example of a substitution. It is generated by the Thue{Morse sequene, whih wasextensively studied from the point of view of the ombinatoris of words and symboli omplexity (see [5. 10℄, andreferenes therein). The new approah to symboli dynamis and ergodi transformations (based on the notion ofadi transformation), whih was suggested by the �rst author [2℄, an also be applied to substitutions (so-alledstationary adi transformations). This idea was realized in the paper by A. Livshits and the �rst author [13℄.Later, other authors developed this onnetion in the ontext of topologial dynamis (see [8, 7℄), but here ourfous is on measure-preserving transformations. The adi realization of a substitution dynamial system allowsone to onsider simultaneously not only the substitution itself, but also the one-sided shift whih aompaniesany substitution. The idea that was advoated by the �rst author in [3℄ is to onsider the natural extension ofthat shift and orrespondingly extend the substitution system in order to make an essential link between thetheory of substitutions and hyperboli dynamis. In this paper we onsider the \two-sided extension" of theMorse system whih yields the Morse ation of the ountable group Q2 (the group of dyadi rational numbers)on the group of its haraters | the solenoid Q̂2, reworking more arefully and orreting some details of [13℄.We obtain also some new properties of the adi realization of the Morse transformation. One of the orollariesof the adi approah is an expliit alulation that shows how to obtain the Morse system as a time hangeof the dyadi odometer. The operation of di�erentiation of dyadi sequenes plays an important role in ouronstrutions. The spetral theory of the Morse system, whih goes bak to Kakutani [9℄ (see also [12, 11℄ andreferenes therein) is also beoming more transparent under these onsiderations, but we do not address it inthis paper.In Se. 2, we ollet a series of well-known and new results on the Morse system using its adi realization.In partiular, we disuss in more detail (than in [3℄) the so-alled \Morse arithmeti." Setion 3 desribes thetwo-sided extension of the Morse transformation and its embedding into the Morse ation of the group Q2 onthe group Q̂2. We also formulate some open problems.One should onsider this artile as an attempt, looking at the speial ase of the Morse transformation, toattak the general problem of de�ning a two-sided extension of a substitution system, and a orrespondingembedding of this system into an ation of a larger group. The �nal goal of the onstrutions is to show the linkbetween the theory of substitutions and of hyperboli systems.
2. Definitions and the adic realization of the Morse system2.1. The Morse transformation as a substitution system. Consider the alphabet {0; 1}. The Morsesubstitution is de�ned by �(0) = 01, �(1) = 10; it is extended to all words in the alphabet {0; 1} by onatenation.
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The Thue{Morse sequene (sometimes also alled the Prouhet{Thue{Morse sequene) is a �xed point of thissubstitution: u = u0u1u2 : : : = limn→∞ �n(0) = 0110100110010110 : : : : (1)This sequene has many remarkable features (see, e.g., [5℄ and [11, Chaps. 2 and 5℄). It is easy to see thatu[0; 2n+1 − 1℄ = u[0; 2n − 1℄u[0; 2n − 1℄ for n ≥ 0;where we denote u[i; j℄ = ui : : : uj and w is the \ip" of a word w in the alphabet {0; 1}, that is, the wordobtained from w by interhanging 0 ↔ 1. The sequene u is nonperiodi, but uniformly reurrent, with well-de�ned uniform frequenies of subwords. It is also known that un is the sum of the digits (mod 2) in the binaryrepresentation of n.Let � be the left shift on the spaes {0; 1}N and {0; 1}Z with the produt topology. The substitution dynamialsystem is sometimes onsidered on the spae of one-sided sequenes, and sometimes on the spae of two-sidedsequenes.1The \one-sided" substitution spae is de�ned as the orbit losure of u under the shift:X+� = los {�nu : n ≥ 0}:The \two-sided" substitution spae is de�ned as the set X� of all bi-in�nite sequenes in {0; 1}Z whose everyblok (subword) ours in u. The substitution dynamial systems are (X+� ; �) (one-sided) and (X� ; �) (two-sided). The advantage of the two-sided system is that it is a homeomorphism, whereas the one-sided system isnot. Measure-theoretially, these two systems are isomorphi: in fat, both are minimal and uniquely ergodi,and the one-sided system is a.e. invertible. The sequene onsisting of the nonnegative oordinates of any pointin X� lies in X+� , and all but ountably many elements of X+� have a unique extension to elements in X� . Theexeptions are u, whih extends to u : u and u : u, and its \ip" u, as well as their orbits.2.2. The adi realization. Here we follow the general de�nition of the adi transformation from [2℄ and [13℄,but fous only on the Morse system, as it was done in [3℄. Consider Z2 ∼= {0; 1}N, the ompat additive groupof 2-adi integers, and the odometer (\adding mahine") transformation T , whih is an adi transformationby de�nition | this is the group translation on Z2 (see below). We obtain the adi realization of the Morsetransformation by hanging the order of symbols 0; 1 depending on the next symbol. Namely, onsider thelexiographi order on Z2 indued by the relation0 ≺0 1; 1 ≺1 0as follows:
{xi} ≺ {yi} ⇐⇒ ∃ j : xi = yi for i > j and xj ≺z yj ; where z = xj+1 = yj+1:This is a partial order; two sequenes are omparable if they are o�nal (i.e., agree exept in �nitely many plaes).The set of maximal points is Max = {(01)∞; (10)∞}, and the set of minimal points is Min = {(0)∞; (1)∞}.2 LetM be the immediate suessor transformation in the order ≺ on Z2. Here we write down the formulas for theation of M expliitly. If x 6∈ Max, then x starts with (01)n00, or (01)n1, or (10)n0, or (10)n11, where n ≥ 0. Wehave M((01)n00∗) = (12n+10∗); M((01)n1∗) = (02n1∗); (2)M((10)n0∗) = (12n0∗); M((10)n11∗) = (02n+11∗):Note that M is well de�ned everywhere exept on the two maximal points, i.e., the elements of the set Max =

{(01)∞; (10)∞}. It is easy to see that M is ontinuous on Z2 \ Max. But one annot extend M to these pointsby ontinuity: there are no well-de�ned limits limn→∞M((01)n∗) and limn→∞M((10)n∗), beauselimn→∞M((01)n00∗) = (1)∞;
1Above we have used the terms “one-sided” and “two-sided” in a completely different sense; see also below.
2We denote the infinite periodic sequence with period (ab . . . c) by (ab . . . c)∞.
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but limn→∞M((01)n1∗) = (0)∞:Analogously, limn→∞M((10)n0∗) = (1)∞;but limn→∞M((10)n11∗) = (0)∞:Sine we also have two minimal points, we an extend M to a bijetion arbitrarily, settingM((01)∞) = (1)∞; M((10)∞) = (0)∞ (3)or vie versa. But this extension is not ontinuous at these points.The obvious orollary of the de�nition of M is that it ommutes with \ips," that is,M(x) =M(x) for any x ∈ Z2: (4)The ation of M on Z2 \ Max may be expressed as follows: we san the sequene x from left to right until we seetwo idential symbols aa, and replae the beginning of the sequene by a : : : aa, keeping the seond ourreneof a and everything that follows unhanged.2.3. The relation of the adi model to the traditional representation. Now we indiate the relationbetween the dynamial systems (Z2;M) and (X� ; �). Letg : Z2 → X� ; g(x) = {(Mn−1x)0}n∈Z:We have the following diagram: Z2 M
−−−−→ Z2yg ygX� �
−−−−→ X� :It is obvious from the de�nition that the diagram ommutes. It is also easy to see that g is surjetive, ontinuouson Z2 \ M̃ax, and g(0∞) = u : u. Here we denoted by M̃ax the set of points in Z2 that are o�nal with the pointsin Max (or, equivalently, the left semiorbits of both points from M̃ax).It may be useful to write down g−1 expliitly. Consider the substitution map on X� :� : X� → X� ; �(: : : a−2a−1 : a0a1 : : : ) = : : : �(a−2)�(a−1) : �(a0)�(a1) : : : :It is well known (and easy to see) that for every a ∈ X� there is a unique a′ ∈ X� suh that either a = �(a′) ora = ��(a′), and these ases are mutually exlusive. Let 	 : X� → X� be given by 	(a) = a′. Then we have thefollowing ommutative diagram: Z2 �
−−−−→ Z2yg ygX� 	
−−−−→ X� ;where � is the left shift on Z2. Therefore, to ompute the nth symbol of g−1(a), we need to take (	n(a))0 forn = 0; 1; 2 : : : .Now let us explain why this model is riher than the \two-sided" model X� . In the adi realization, wehave the adi transformation, whih is isomorphi, up to negleting two orbits, to the substitution, AND wehave the one-sided shift in the spae Z2. The evolution under the adi transformation of the �rst digit x0 of asequene {xi} ∈ Z2 gives exatly the orbit of u under the transformation � on X� . The one-sided shift in thespae Z2, in terms of the theory of substitutions, is a proper substitution, i.e., the transformation that replaes,in any sequene, 0 by 01 and 1 by 10. Thus in the adi model we have a simultaneous realization of bothtransformations: the shift (it turned into the adi shift) and the substitution (it turned into the one-sided shift).The problem arises how to introdue into this piture the natural extension of the one-sided shift, the two-sidedshift; and, at the same time, how to extend the adi transformation to the whole spae. We will do this in thenext setion, but �rst we interpret a familiar property of the Morse system in our terms.
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2.4. The Morse system as a 2-point extension of the odometerDe�nition 2.1. The lassial 2-odometer is the following aÆne transformation T on the additive group Z2 ofdyadi integers: T : Tx = x+ 1:The transformation T preserves the Haar (= Bernoulli, Lebesgue) measure on the group Z2. It is well knownthat the Morse system an be represented as a group (2-point) extension of the dyadi odometer. This is themost popular point of view on the Morse system in dynamis. The adi realization of the Morse transformationgives another way to look at this fat; the homomorphism of the Morse transformation to the odometer is, inour model, the omposition of the Morse transformation with the di�erentiation.Let us de�ne an important map.De�nition 2.2. The di�erentiation of sequenes is the map D : Z2 → Z2 given byD({xn}∞n=0) = {(xn+1 − xn) mod 2; n = 0; 1; : : :}:This is nothing else than a 2-to-1 fatorization of Z2 on itself. It is lear that the di�erentiation ommuteswith the \ip" de�ned above: D(x) = D(x).In spite of the simpliity of the de�nition of the map D : Z2 → Z2, there are no good and simple \arithmeti"or \analyti" expressions for the desription of D(·). Reently, V. Arnold, for di�erent reasons, made manyexperiments on the behavior of 0−1 sequenes under the iteration of di�erentiation [6℄. But the most importantthing for us is that the map D takes the Morse transformation to the odometer.Proposition 2.3. The following equality takes plae: T ◦D = D ◦M .This is an immediate orollary of (2). Thus, in the adi realization, the Morse transformationM is a 2-overingof the odometer in its algebrai form. Let us give a preise desription of the equivalene between the Morsetransformation and the 2-extension of the odometer. Let F (x) = (Dx; x0) be the map from Z2 to Z2 × {0; 1}.This is a bijetion, and we have the following ommutative diagram:Z2 M
−−−−→ Z2yF yFZ2 × {0; 1} T (�)
−−−−→ Z2 × {0; 1}:Here T (�) is the 2-extension of T with the oyle � on Z2 de�ned by�(y) = { 0 if y starts with an odd number of 1's,1 if y starts with an even number of 1's. (5)To make it work on maximal elements, we also need to set �(1∞) = �(0∞) = 1. Reall that the group extensionis de�ned by T (�)(x; g) = (Tx; �(x) + g):We have M = F−1T (�)F;so M is anonially isomorphi to the 2-extension of the odometer T with the oyle �. We an identify Z2with Z2 × {0; 1} regarding the seond omponent, i.e., an element of {0; 1}, as a new digit of a sequene. Thenthe map F beomes a transformation of Z2, and we an onsider this extension as a new transformation on thegroup Z2 itself. We give another interpretation of this oyle in the next setion.Remark. The Morse system an also be realized as a 2-point extension of the odometer in the traditionalsubstitution form, and it is interesting that the projetion is again given by the di�erentiation map. This followsfrom the fat that for the Thue{Morse sequene u (see (1)), its derivative sequene D(u) = 1011101010 : : :is a �xed point of the substitution 0 → 11; 1 → 10 (see [5, p. 201℄), whih generates a measure-preservingtransformation isomorphi to the 2-odometer.Denote by S the map x→ [x=2℄ on Z2. This is nothing else than the one-sided noninvertible shift, or Bernoulliendomorphism, if we represent the elements of Z2 as sequenes of 0's and 1's. It is easy to hek the followingfat.
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Proposition 2.4. The 2-odometer, as well as the Morse transformation, satis�es the following equation:TS = ST 2; MS = SM2:Note that under the two-sided extension of the 2-odometer T and Morse transformationM and the replaementof S by the two-sided shift, these relations turn into relations (10) and (14), whih de�ne the ation of the groupof dyadi rational numbers on the solenoid.2.5. The Morse system as a time hange of the odometer, and the Morse arithmeti. Sine thegroup of rational integers Z is a dense invariant subgroup of the group of dyadi integers, we an onsider theMorse transformation M in the adi realization as a map of the set of integers to itself. This subsetion is basedon [3, p. 538℄, but we provide more details.Let us identify a sequene x0x1x2 : : : with the dyadi deomposition of the number ∑j xj2j . Here is the listof several �rst values of M(n):0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 : : :1 3 7 2 5 15 4 6 9 11 31 10 13 8 12 14 : : :The table an easily be veri�ed using (2).To simplify this veri�ation, we introdue the following sequene:ar = 



2r − 13 if r ≡ 0 (mod 2);2r − 23 if r ≡ 1 (mod 2): (6)Eah n ∈ N an be uniquely represented in one of the following ways (r = r(n)):n = { 2r`+ ar−1 (i);2r`+ 2r−1 + ar (ii); (7)where ` ≥ 0 is an integer. De�ne a mapping M : N→ N \ {0} byM(n) = { n+ ar(n) in the ase (i);n− ar(n) in the ase (ii): (8)Although these formulas look a bit mysterious, they easily follow from (2). In fat,ar = 2r − 13 = (10)(r−2)=2; r ≡ 0 (mod 2); ar = 2r − 23 = (01)(r−1)=2; r ≡ 1 (mod 2):The ase (i) above ours when the �rst pair aa in the binary representation of n is 00. Then M(n) replaes thebeginning of the sequene with 1's, whih inreases the number by ar(n) (observe that ar−1 + ar = 2r−1 − 1 =(1)r−1 independently of the parity of r). Similarly, the ase (ii) above ours when the �rst pair aa in the binaryrepresentation of n is 11. In this ase M(n) dereases or inreases the number n by ar(n).Thus we have desribed independently the restrition of the adi Morse system to N; that is why we use thesame symbol M . De�ne M for negative integers by M(−n) = −M(n − 1) − 1. Then it is easy to hek thatthe mapping thus de�ned has the property M(x) = M(x), where n = −n − 1; this should be understood byidentifying integers with their binary expansions. Thus we have M : Z→ Z \ {0;−1}. Note that 0 = (0)∞ and
−1 = (1)∞ are the two minimal points in our order on Z2. Aording to (3),M(−1=3) ≡M((10)∞) = (0)∞ ≡ 0 and M(−2=3) ≡M((01)∞) = (1)∞ ≡ −1:
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2.6. The orbit equivalene of the Morse system and 2-odometer. The orbit of a point x ∈ X withrespet to an invertible transformation S of X is the set {Snx; n ∈ Z}. Obviously, the T -orbit of any pointx ∈ Z2 that has in�nitely many 0's and 1's is the set of all points that eventually oinide with x. The set of allpoints that have �nitely many 0's or 1's makes one orbit (this is the ommon T -orbit of (0)∞ and (1)∞). Let usdesribe the orbit partition of the Morse transformation, whih follows diretly from de�nition (2).Proposition 2.5. If a point x ∈ Z2 has in�nitely many subwords 00 and in�nitely many subwords 11, then theM-orbit of x is the set of all points that eventually oinide x. The remaining ountable set of points that have�nitely many subwords 00 or 11 is exatly the union of four semiorbits of M : two positive M-semiorbits { of thepoint (0)∞ and of the point (1)∞, and two negative M-semiorbits { of the point (10)∞ and of the point (01)∞.Note that the negative M -semiorbit of (10)∞ (respetively, (01)∞) onsists of the points that eventuallyoinide with (10)∞ (respetively, (01)∞) and have an initial even word.Corollary 2.6. The orbit partitions of the 2-odometer and the adi realization of the Morse transformationoinide ( mod 0) with respet to the Haar (Lebesgue) measure on Z2.As we have seen, these partitions oinide on the omplement of a ountable set. We will re�ne this laimbelow.Using our extension of M de�ned by (3), we an make an additional remark about those four semiorbits; wedo not use it later. Note that two positive M -semiorbits generate one T -orbit, and eah negative M -semiorbit isa full T -orbit. Thus in our de�nition (3) we ut the ommon T -orbit of (0)∞ and (1)∞ and glue the T -semiorbitof 0∞ with the M -semiorbit of (10)∞, and the T -semiorbit of 1∞ with the M -semiorbit of (01)∞.If x ∈ N ⊂ Z2, then we have the tautologyM(n) = TM(n)−n(n);where in the left-hand sideM(n) is the image of n under the transformationM , and in the right-hand sideM(n)is a natural number. Now observe that, by de�nition (8) of the ation of the Morse automorphism M on the setof integers, we have M(n)− n = (−1)r(n) · ar(n):It is worth mentioning that the value of the oyle �(n) from the previous subsetion is exatly M(n) − n(mod 2), i.e., it is equal to 0 if and only if n and M(n) have the same parity.Denote �(n) = (−1)r(n) · ar(n):Then we have M(n) = T �(n)nfor eah rational integer n. It is lear that the funtion r(·) and, onsequently, the funtion �(·) an be extendedfrom the set of positive integers N to the group of all dyadi integers Z2 as follows: formula (6) with some r ∈ Nand ` ∈ Z2 makes sense for all x ∈ Z2, not only for integers x. Hene we may onsider in�nite sequenes of xnas well. Thus �(·) beomes a funtion on Z2 with integer values; we may say that this is simply the extension of�(·) by ontinuity in the pro-2-topology.We have proved the following theorem.Theorem 2.7. Let M be the adi realization of the Morse transformation in the spae Z2. Let M̃ax∪ M̃in be theountable set that is the union of the M-semiorbits of the four points of Z2 :(0)∞; (1)∞; (01)∞; (10)∞:Then on the M-invariant set Z2�(M̃ax ∪ M̃in), the odometer T : Tx = x+ 1 and the Morse transformation Mhave the same orbit partition, and, moreover,Mx = T �(x)x for x ∈ Z2�(M̃ax ∪ M̃in);where �(x) is the funtion de�ned above.
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The formula above gives an independent de�nition of the Morse transformation using a time hange of theodometer.Dye's theorem asserts that any ergodi automorphism S is isomorphi (mod 0) to an automorphism that is atime hange of the odometer T (or any other given ergodi automorphism): Sx = T �(x)(x). Nevertheless, thereare few examples of an expliit formula for suh a time hange funtion �(·). The theorem above is just of thistype: the Morse automorphism is represented as a time hange of the dyadi odometer. It is also known (see[1, Theorem 3.8℄ that if the ergodi automorphisms have the same orbits, then the time hange integer-valuedfuntion �(·) annot be integrable, unless T = S or T = S−1. It is easy to hek that our funtion � is indeednonintegrable, beause it has exatly two singularities on the spae Z2 at the points (01)∞ (≡ −1=3), and (10)∞(≡ −2=3), the measure of the ylinder on whih the values of �(x) are equal to ar being of order C2−r, so thatthe singularities are simple poles and the funtion in their neighborhoods is equivalent to 1=t. The weakness(loseness to integrability) of these singularities shows that the Morse automorphism is, in a sense, very lose tothe odometer, i.e., to an automorphism with disrete spetrum.Question. What is the group generated by two transformations of Z2 | the odometer T and the Morsetransformation M? Is it a free group?
3. Extension of the Morse transformation up to an action of the group Q2 on the solenoidIn this setion, we de�ne the so-alled two-sided extension of the Morse transformation, whih ats on thegroup of haraters of dyadi rational numbers. This is an elaboration of [3, p. 539℄, with important hangesand additions.3.1. Preliminary fats about the dyadi groups Q2, Q̂2, et. Consider the exat sequene1 −→ Z −→ Q2 −→ Q2=Z −→ 1;where Q2 is the ountable additive group of real dyadi rational numbers (r=2m, r ∈ Z, m ≥ 0), the subgroup

Z ⊂ Q2 is the group of rational integers, and the quotient group Q2=Z is the group of all roots of the unity oforders 2n, n = 0; 1; : : : (a subgroup of the rotation group).The group Q2 an be presented as the indutive limitlim
−→n(Z; wn)of the groups Z, with the embedding of the nth group given bywn(x) = 2x; n = 0; 1 : : : :Consider the orresponding dual exat sequene for the groups of haraters of the groups above:1←− R=Z←− Q̂2 ←− Z2 ←− 1:The group of haraters of the group Q2=Z is just the additive group Z2 of dyadi integers, whih we onsideredin the previous setions and whih is the inverse limit of the 2n-yli groups:Z2 = lim
←−

(Z=2n; pn);with the maps pn : Z=2n → Z=2n−1, pn(x) = x mod 2n−1. The group of haraters of the group Z is the rotationgroup S1 = R=Z (or the unit irle).Our main objet, the group Q̂2 of haraters of the group Q2, is the so-alled 2-solenoid and an be presentedas an inverse limit of the rotation groups:Q̂2 = lim
←−n(R=Z; vn+1); n = 0; 1; : : : ;where the homomorphisms are vn : R=Z→ R=Z; vn(u) = 2u; n = 1; 2; : : : :
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The group Z2 is a losed subgroup of the group Q̂2 onsisting of those elements that have zero projetionto R=Z.The additive group Q2 of dyadi rational numbers is naturally embedded into Q̂2 as a dense subgroup. Itonsists of those haraters that send elements of the group Q2 to roots of the unity of degree 2n.Note that the additive group of the loally ompat �eld Q2 of all 2-adi numbers is naturally embeddedinto the solenoid Q̂2 as a dense subgroup onsisting of those elements of Q̂2 whose projetion under the mapQ̂2 → R=Z is a root of the unity of degree 2n for some n:Q2 ⊂ Q̂2:Being a ompat group, Q̂2 has a normalized Haar measure, whih is the produt of the Haar measures onthe groups Z2 and R=Z.The group Q2 is a subgroup of the diret produt of the groups Z and Q2=Z (the generator z ∈ Z is thesquare of the generator h1 ∈ Q2=Z). Consequently, the group Q̂2 is the quotient group of the diret produt ofthe groups of haraters S1 and Z2 over the subgroup that onsists of haraters that are identially equal to 1on Q2. More preisely, there is an exat sequene that desribes the group of haraters Q̂2:1→ diag(�)→ S1 × Z2 → Q̂2 → 1;where � is the subgroup of all roots of the unity whose degree does not ontain twos, and diag is its naturalembedding into the diret produt of the fators. For details, see [6℄.But we will use the oordinates on the group Q̂2 and represent its elements (nonuniquely) as pairs of elementsof the groups S1 and Z2.Sine the group Q2 of dyadi rational numbers an be represented as the group of all �nite (on both sides)two-sided sequenes of 0's and 1's with the usual binary expansion, one may think that the analog of thisdeomposition for the group Q̂2 is also true. Moreover, we have used one-sided sequenes with positive indiesfor parametrization of the elements of the subgroup Z2, and that parametrization agrees with the group strutureof 2-adi integers. Thus it is tempting to onsider the whole group Q̂2 of haraters of the groupQ2 as the ompatspae of all two-sided in�nite {0; 1}-sequenes: X = ∏+∞
−∞{0; 1} = {0; 1}Z. But this is not orret, beause thereis no required group struture on the spae X. Nevertheless, we an de�ne a map � : X→ Q̂2 with the help ofthe usual dyadi deomposition of points of the unit interval (0; 1) as follows. Let {xn}, n ∈ Z, be a point of X;onsider the pair (y; �), where y = (x0; x1; : : :) ∈ Z2 (see Se. 2) and� = ∞∑n=1x−n2−n:Denote this map by �: � : +∞∏

−∞

{0; 1} −→ Q̂2; � : {xn} 7→ (y; �): (9)The map � is not an isomorphism of groups or even topologial spaes, but trivially is an isomorphism (mod0) of measure spaes, where the spae X is endowed with the (1=2; 1=2) Bernoulli (produt) measure, and thegroup Q̂2, with the Haar measure. Thus if we ignore the group struture of Q̂2 and onsider it not as thesolenoid but as a symboli spae with measure-preserving transformations (odometer, Morse, et.), then it isonvenient to use the anonial map � : ∏+∞
−∞{0; 1} → Q̂2, whih identi�es only ountably many pairs of points.Roughly speaking, we an onsider the 2-solenoid Q̂2 as the spae X of all two-sided sequenes of 0's and 1'safter some identi�ations of elements from the negative (left) side orresponding to the nonuniqueness of dyadideompositions.3.2. Some transformations and di�erentiation on the solenoid. There is a anonial automorphism Ŝon the group Q̂2 : the multipliation by 2. It is onjugate to the automorphism S∗ of the group Q2 that is themultipliation by 1=2. The transformation Ŝ is a hyperboli automorphism of the solenoid, and in the usualoordinatization it is just the Bernoulli 2-shift and a natural extension in the sense of Rokhlin [4℄ of the one-sidedshift S of the spae Z2 de�ned in Se. 2.
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Now we de�ne the two-sided version of the 2-odometer. Let 1 be the unit of the ring Z2 (unity of themultipliative group). We de�ne the extension T̂ of the odometer T from Se. 2 by the same formulaT̂ x = x+ 1;where x now is an element of Q̂2. It is useful to keep in mind that 1 is a harater of the group Q2 that sendsintegers Z ⊂ Q2 to 1.The ation of T̂ does not hange the seond (left) omponent in the deomposition Q̂2 = Z2 × R=Z, so it isindeed an extension of T . Note that T̂ is not an ergodi transformation of Q̂2, whereas T is ergodi on Z2. Wean also de�ne the family of odometer transformationsT0 := T̂ ; Ti := SiT0S−i; i ∈ Z:It is lear that Ti and Tj ommute, and the joint (over all i ∈ Z) ation of the Ti's determines an ation of thegroup Q2 on the solenoid Q̂2. Indeed, the Ti's at as translations, so thatT 2i = Ti+1; i ∈ Z: (10)This equation is immediate for i = 0 and hene for all i.Together with the shift Ŝ, the odometers Ti generate a solvable group (wreath produt) Z ⋌
∑

Z
Z; the ationof this group on the group Q̂2 is ontinuous and loally transversal in the sense of [3℄.We de�ne the di�erentiation D̂ as the transformation of X that extends the map D to the spae of two-sidedsequenes: D̂({xn}+∞−∞) = {(xn − xn+1) (mod 2)}:Of ourse, we may de�ne the di�erentiation on the solenoid Q̂2 by the formula D̃ = � ◦ D̂ ◦ �−1, whoseright-hand side is well de�ned almost everywhere. Observe that D̂ identi�es a two-sided sequene ~x with its\ip" ~x, and hene almost everywhere on Q̂2 we haveD̃(y; �) = D̃(z; ) ⇐⇒ (y; �) = (z; ) or (y; �) = (z; 1− ):As we mentioned above, it is diÆult to give a preise formula for D̃ in terms of haraters.3.3. Extension of the Morse transformation. Now we would like to extend the Morse transformation Mfrom the subgroup Z2 to the whole group Q̂2 and the spae X.We want M̂ to have the following properties. First, it must be a 2-extension of the extended odometer T̂ ,namely, satisfy the relation generalizing Proposition 2.1:T̂ ◦ D̂ = D̂ ◦ M̂: (11)Seond, it must be an extension of M : M̂ |Z2 =M:Theorem 3.1. There is a unique transformation of the spae X that satis�es the last two equations. It de�nesa measure-preserving transformation M̃ on Q̂2 via M̃ = � ◦ M̂ ◦ �−1, where � is de�ned by (9).Proof. The uniqueness is lear, and the existene an be shown as follows. The sequenes of the spae X anbe divided into the positive and negative parts: given x̂ = (: : : x−1; x0; x1 : : : ), denote x− = (: : : x−2; x−1) andx+ = (x0; x1 : : : ). Now set M̂(x̂) ≡ M̂((x−; x+)) = { (x−;M(x+)) if �(x+) = 0;(x−;M(x+)) if �(x)+ = 1; (12)Here � is the oyle de�ned in (5). Equation (11) is immediate.We obtain an expliit formula for the Morse transformation on the solenoid Q̂2:M̃(y; �) = (My; �) if �(y) = 0; M̃(y; �) = (Ma; 1− �) if �(y) = −1:(Here we use the oordinates (y; �) introdued above.) �Observe that M̂ is not \loal," in the sense that it does hange the negative oordinates when the oyledoes not vanish.The extension M̂ is ontinuous on {x ∈ Q̂2 : x+ 6∈ M̃ax}, whih is a set of full (Haar) measure.Denote M̂ =M0 and de�ne Mi = SiM0S−i; learly, we haveTi ◦ D̂ = D̂ ◦Mi; (13)beause D̂ ommutes with S.
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