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Abstract We describe the canonical correspondence between finite metric spaces and
symmetric convex polytopes, and formulate the problem about classification of the
metric spaces in terms of combinatorial structure of those polytopes.
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1 Introductory Remark

We will discuss problems with very elementary formulations that concern the most
popular notions in mathematics: metric spaces, convex geometry, combinatorics of
polytopes and Kantorovich’s optimal transportation. According to Arnold’s classifi-
cation, there are two ways to introduce a new subject: the first way (he called it the
“Russian tradition”) is to start with “the simplest non-trivial partial case”—I will use
this approach. The second and the opposite tradition, which I also like very much
(he called it “Bourbaki’s tradition”) is to start with an “extremely general case that is
impossible to further generalize”.

So my metric spaces will be finite, polytopes will be finite-dimensional etc. but all
the notions and problems have infinite, infinite-dimensional, and continuous analogs.

To the memory of Dima Arnold.
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General Problem

Study and classify finite metric spaces according to combinatorial properties of their
fundamental polytopes, associated with metric spaces in a canonical fashion. A more
precise formulation follows.

In the rest of the paper, I explain the terminology that is used in the title and in the
problem.

2 Finite Metric Spaces, Canonical Polytopes, and Problems

Let (X, ρ), |X | = n, be a finite metric space. We will write V (X) for the vector space
of all real-valued functions on X . The value of a function v ∈ V (X) at a point x ∈ X
will be denoted by vx . The space V (X) can be naturally identified with the space of all
formal linear combinations of elements of X . Under this identification, any element
x ∈ X identifies with the delta-function equal to 1 at x and to 0 at all other points of X .
Define the real vector space V0(X) as a subspace of V (X) consisting of all v ∈ V (X)
with

∑
x∈X v

x = 0.
Let us define the map δ : X → V0(X) taking an element x to the function δ(x) =

δx ∈ V0(X) such that δy
x = − 1

n for all y �= x . Then we must have δx
x = n−1

n .
The convex hull Conv [{δ(x)}, x ∈ X ] of the image of this map is a (n − 1)-

dimensional simplex denoted by �(X) ⊂ V0(X) (this simplex is obtained from the
standard coordinate simplex in V (X) by the projection mapping x ∈ X to δ(x)).

The metric ρ can be considered now as a metric on the vertices of the simplex�(X),
we use the same symbol ρ to denote this metric. For every pair of distinct points x ,
y ∈ X , consider the vectors ex,y ∈ V0 defined by the formula:

ex,y = δx − δy

ρ(x, y)
.

This vectors will play a major role in what follows.

Definition 1 The fundamental polytope of a metric space (X, ρ) is the convex poly-
tope RX,ρ obtained as the convex hull of all vectors ex,y , where (x, y) run through all
pairs of distinct points of X . The combinatorial type of RX,ρ , i.e., the isomorphism
class of the corresponding poset of faces, is called the combinatorial structure of
the finite metric space (X, ρ). Two finite metric spaces with the same combinatorial
structures called similar metric spaces.

It is easy to see that the fundamental polytope RX,ρ is centrally symmetric (i.e.,
it coincides with its reflection in the origin). If ρ(x, y) = 1 for any pair of distinct
elements x , y ∈ X , then the fundamental polytope is the Minkowski sum of two
simplices �(X) and −�(X).

In general, we consider the fixed set of rays
{
λ(δx − δy) : λ > 0

}
, which is inde-

pendent of the metric, and choose one point in each ray with λ = 1
ρ(x,y) (this choice

now depends on the metric). The fundamental polytope is the convex hull of all thus
obtained points.
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A simple fact Mulleray et al. (2008) that characterizes the fundamental polytopes of
finite metric spaces, is the following: given a symmetric function ρ : X × X → R>0,
consider the polytope

RX,ρ = Conv

{

ex,y = δx − δy

ρ(x, y)
: x �= y, x, y ∈ X

}

.

Then this function ρ is a metric on X if and only if no point ex,y belongs to the interior
of convex hull of the other points.

The polytope RX,ρ is convex and central symmetric; therefore, it defines the
Minkowski–Banach norm ‖ · ‖ρ in the real vector space V0(X), whose unit ball is
by definition the polytope RX,ρ . In the finite-dimensional case, this norm is the so
called Kantorovich–Rubinstein norm. If ρ(x, y) = 1 whenever x �= y, then the corre-
sponding fundamental polytope is the so called root polytope, and the corresponding
Kantorovich–Rubinstein norm is the restriction to V0(X) of the �1-norm in the space
V (X).

Thus we reduce the analysis of metric space to the convex geometry of fundamen-
tal polytope. Since the space X is isometrically embedded into V0(X) (points of X
correspond to the vertices of the simplex �(X)), endowed with metric ρ (see above)
we can restore metric on X using fundamental polytope.

Recall that the combinatorial type of a convex polytope is the isomorphism class
of the partial ordered set form by the faces of the polytope, ordered by inclusion; the
f -vector of a convex polytope is the finite tuple ( f0, f1, . . . fn), where f0 = n is the
number of vertices, f1 is the number of edges, etc., fn−1 is number of facets (i.e.,
faces of codimension 1) and, finally, fn = 1.

Our definition is functorial in the sense that each isometry of one metric space to
another vector space produces an affine isomorphism of the corresponding fundamen-
tal polytopes.

We may say that the notion of the combinatorial type of metric spaces defines a
natural stratification of the cone Mn of all distance matrices (i.e., real symmetric n×n
matrices, whose entries are the values of a distance function defined on some finite
metric space of cardinality n). Below we suggest to study this important stratification,
more precisely, to solve the following problems.

Problem 1 1. Express the combinatorial structure of (X, ρ) in terms of the metric
ρ, i.e., find the f -vector of the corresponding fundamental polytope in terms of
the metric ρ itself—using linear inequalities on the values of metric etc.

2. Estimate the number of combinatorial structures for any given n and study its
asymptotic behavior as n tends to infinity. The most interesting thing is to estimate
the number of “open” (generic) types.

3. Provide sufficient conditions on two metric spaces to be similar.
It is well known that most finite metric spaces cannot be isometrically imbedded
into a Euclidean or a Hilbert space (we say that these metrics do not have Euclidean
type). The following question appears:

4. Describe the combinatorial types of metric spaces of Euclidean type. Do we obtain
all combinatorial types?
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5. Does the stratification of the space of distance matrices into the combinatorial types
is universal? Or, on the contrary, there are some restrictions on the topological types
of the open components?1

3 The Simplest Example: A Metric on a Cartan Subalgebra

Consider a very degenerate metric space with n points: X = n, the set of all integers
from 1 to n with mutual distances between all pairs of distinct points equal to 1:
ρ(i, j) = δi, j .

In this case, the simplex �(X) is a regular Euclidean simplex. We can view it as
(n − 1)-simplex in a Cartan subalgebra of the Lie algebra An . From this viewpoint,
the simplex is spanned by all positive simple roots ei,i+1, i = 1, . . . , n − 1, and one
maximal root en,1.

Proposition 1 Let X = n and ρ(i, j) = δi, j , i, j = 1, . . . , n. Identify the vector
space V0(X) with a Cartan subalgebra of the Lie algebra An. Then the fundamental
polytope R(X,ρ) is the convex hull of all roots. The norm ‖.‖ρ associated with the
fundamental polytope coincides with the restriction of the �1-norm on V (X)

|v = (v1, v2 . . . vn)|�1 =
n∑

i=1

|vi |,

to the hyperplane V0(X) ⊂ V (X). Thus, the polytope RX,ρ in this case is the inter-
section of an n-dimensional octahedron with the hyperplane V0(X).

The corresponding norm ‖ · ‖ on the Lie algebra of skew-hermitian matrices with
zero trace is the “nuclear norm”, for which the norm of a matrix is the sum of the
moduli of all its eigenvalues.

It is natural to call RX,ρ the “root polytope”. An easy exercise is to find the f -vector
in this case. For example, if n = 3 and dim(V0) = 2, then the fundamental polygon
is a regular hexagon, and the norm is the hexagonal norm. For n = 4, see the Fig. 1:
the f -vector is equal to (12, 24, 14), the facets are 8 regular triangles and 6 squares.
For n = 3, the group of symmetries of the fundamental polytope is the dihedral group
D6 = Z2 � Z6. For n = 4, see the Fig. 2.

Note that the group of symmetries of the root polytope includes the Weyl group
(which is isomorphic to the symmetric group). Root polytopes were mentioned for
other reason in Gelfand and Kapranov (1993).

1 A classification problem (in algebraic geometry, combinatorics, etc.) of a certain set of objects up to a cer-
tain equivalence relation is called a “universal problem” if all possible kinds of singularities or stratifications,
say, of arbitrary semi-algebraic varieties can occur in the topology of equivalence classes.

A well-known example is Mnev’s theorem on the universality of the combinatorial classification of convex
polytopes in dimensions ≥ 4. (see the papers by Vershik and Mnev (1988) and more recent literature).
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Fig. 1 The three-dimensional unit ball in Kantorovich–Rubinstein norm for 4 points space with metric r(x,
y) = 1 if x �=y

Fig. 2 Octahedron—polytope
which corresponds to metric
space with points (1, 2, 3, 4) and
metric: r(i, j) = 1, i, j = 1, 2, 3
i �= j, r(i, 4) = 1/2, i = 1, 2, 3

4 Why Such Combinatorial Types? The Kantorovich Metric and Geometry of
the Transportation Problem

Why is the definition of the fundamental polytope RX,ρ associated with a finite metric
space (X, ρ) natural? The justification is as follows. We want to define a natural
metric ρ̄ on V0(X) that extends the metric ρ on X . The latter is identified with the
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set of vertices of the simplex �(X) so that the distance between two points x and y
in X coincides with the distance between the corresponding vertices vx and vy of the
simplex �(X). In another words, we want to define a norm ‖ · ‖ in V0(X) with the
property ‖ex,y‖ = ρ(x, y). There are many such extensions but there is a maximal one:

Theorem 1 (Mulleray et al. 2008) The norm ‖·‖ρ , called the Kantorovich–Rubinstein
norm, is the unique maximal extension of ρ: all other norms possessing this extension
property are less that this one because the fundamental polytope is contained in the
unit balls of all such norms.

The direct description of an extension of the metric ρ to the whole simplex �(X)
is a classical definition by Kantorovich of his transportation metric. This definition is
well known in the mathematical economics and in linear programming but there were
no publications [before Mulleray et al. (2008), see comments below], in which charac-
teristic properties of fundamental polytopes are discussed and serious combinatorial
investigations are conducted. Recall, for the sake of completeness, the classical defi-
nition of the Kantorovich transportation metric, which is equivalent to our definition
above.

Consider the positive part v(+) and the negative part v(−) of the vector v. The
vector v(+) is defined as the componentwise maximum of v and the zero vector,
and the vector v(−) is defined as the componentwise minimum. Evidently, we have
v = v(+) + v(−). Thus we have two nonnegative vectors v(+) = u and v(−) = w

with equal sums of coordinates.
Then classical definition is

ρ̄(u, w)(= ‖u − w‖ρ) = min
ψ∈�

∑
ρ(x, y)ψx,y,

where � = {ψx,y} is the convex set of all matrices ψ with the following properties:
∑

x

ψx,y = ux ;
∑

y

ψx,y = wy, ψx,y ≥ 0, x, y ∈ X.

Here ux is the coordinate of the vector u corresponding to the point x ∈ X , and
similarly for w.

For the history of the Kantorovich metric, see Vershik (2013) and references therein.
For some further development and applications of the finite-dimensional geometry of
this metric, see Vershik (2014).

The last question is also of Arnold’s style (see e.g. Arnold 2006): in our definition
of the Kantorovich metric, we used only the root system An . My question is: what
are the analogs of this definition (and maybe even of the transportation problem!) for
other series of Lie algebras and other Weyl groups.
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