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Abstract

We study the dynamics of metrics generated by measure-preserving
transformations. We consider sequences of average metrics and e-
entropies of the measure with respect to these metrics. The main
result, which gives a criterion for checking that the spectrum of a
transformation if purely point, is that the scaling sequence for the
e-entropies with respect to the averages of an admissible metric is
bounded if and only if the automorphism has a purely point spectrum.
This paper is one of a series of papers by the author devoted to the
asymptotic theory of sequences of metric measure spaces and its ap-
plications to ergodic theory.

Contents

1 Introduction

Among the many mathematical and nonmathematical problems we have been
discussing with Misha Birman for many years after our acquaintance began in
the early 1960s, the most intriguing one was the parallel between scattering
theory and ergodic theory. Recently, I have returned to the (yet nonexis-
tent) “ergodic scattering theory” and some forgotten questions related to it.
However, this paper deals with another subject, which also correlates with
M. Sh. Birman’s research.
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It is well known that the problem of deciding whether or not the spectrum
of a given (say, differential) operator is discrete is quite difficult. Several
remarkable early papers by M. Sh. Birman (in the first place, [?]) dealt with
exactly this problem. In ergodic theory and the theory of dynamical systems,
this problem (whether or not the system of eigenfunctions is complete) is also
very difficult. In what follows, we use the terminology common in ergodic
theory that slightly differs from the one adopted in operator theory: we use
the term “discrete spectrum” as a synonym for “pure point spectrum.” This
is justified by the fact that a discrete spectrum in the sense of operator theory
almost never appears in the theory of dynamical systems, since almost always
one deals with unitary operators.

As an example demonstrating the difficulty of this problem, we can men-
tion the theory of substitutions, or stationary adic transformations [?], on
which an extensive literature exists. The most intriguing problems concern
nonstationary adic transformations with subexponential growth of the num-
ber of vertices in the corresponding Bratteli-Vershik diagram (see [?]). The
simplest and most popular example of such a transformation is the Pascal
automorphism defined in [?]; in this case, the measure space (i. e., the phase
space of the dynamical system) is the space of infinite paths in the Pascal
graph endowed with a Bernoulli measure, and the transformation sends a
path to its successor in the natural lexicographic order. In spite of many
efforts, we still do not know whether the corresponding unitary operator has
a discrete (i.e., pure point) or mixed spectrum, or, which seems most likely,
its spectrum is purely continuous. Attempts to directly construct its eigen-
functions failed; another approach, based on the characterization of systems
with discrete spectrum in terms of Kushnirenko’s sequential entropy, [?] has
not been carried out.

In the paper [?] (for more details, see [?, 7, ?]), we suggested a new notion,
the so-called scaling entropy, which generalizes the notion of Kolmogorov’s
entropy. The main point is that we suggest to average the shifts of the met-
ric with respect to a given transformation and then compute the e-entropy
of the average metric. The class of increasing sequences of positive integers
that normalize the growth of this e-entropy over all admissible metrics does
not depend on the choice of an admissible metric, so that the asymptotics of
the growth of these sequences is a new metric invariant of automorphisms.
Admissible metrics are measurable metrics satisfying some conditions that
do or do not depend on the automorphism (see Section 2). It is important
that we consider not merely the e-entropy of a metric, but the e-entropy of



a metric in a measure space. Admissible metrics play the same role as mea-
surable generating partitions in the classical theory of Kolmogorov’s entropy
according to Sinai’s definition. At first sight, the difference between using
partitions and metrics looks rather technical: a partition determines a semi-
metric of a special form (a so-called “cut semimetric,” see [?]). However,
our approach has two important differences from the classical theory. First,
we use the e-entropy of the iterated metric on a measure space rather than
the entropy of a partition; this is a generalization of Kolmogorov’s entropy,
which allows one to distinguish automorphisms with zero entropy. The sec-
ond, more important, difference is that we use the average metric (rather
than the supremum of metrics, which corresponds to the supremum of parti-
tions), which has no interpretation in terms of partitions and which contains
more information about the automorphism than the supremum of metrics.

In this paper, we give a necessary and sufficient condition for an auto-
morphism to have a discrete spectrum in terms of the scaling sequence. The
condition is that this sequence is bounded. This result generalizes a theo-
rem of S. Ferenczi [?, 7], who considered the measure-theoretic complexity
of symbolic systems by analogy with the ordinary complexity in symbolic
dynamics. Our approach substantially differs from that of [?]: we consider
an arbitrary admissible metric rather than the Hamming metric only, and,
which is most important, introduce the average metric and show that it is
admissible in many cases and, in particular, for the Hamming metric.

Thus criterion, i.e., the boundedness of the growth of the scaling entropy,
should first be applied to adic transformations, e.g., to the Pascal automor-
phism (see [?]). Although it is not yet applied to checking that the spectrum
of the Pascal automorphism is not discrete, the corresponding combinatorics
is already developed and described in the recent paper [?], where a lower
bound is obtained on the scaling sequence of the sup metric for the same
Pascal automorphism. Supposedly, one can extend this bound (Inn) to the
average metric using the same techniques.

A wider context is presented in our papers [?, 7], where we suggest a plan
for the study of the dynamics of metrics in a measure space as a source of
new invariants of automorphisms. It is important that the notion of scaling
entropy provides an answer to the question of whether or not the spectrum
of a given transformation is discrete.

Sections 2-4 are of general nature and are intended not only for the pur-
poses of this paper, which is devoted mostly to automorphisms with discrete
spectrum. Here we introduce our main objects: admissible metrics, aver-



ages, scaling sequences, and the scaling entropy of an automorphism. In
Section 5, we study the dynamics of metrics on a group and find conditions
under which the average metric is admissible. The main result is given in
Section 6, where we present a criterion for checking whether the spectrum of
an automorphism is completely or partially discrete. In the last section, we
sketch possible applications, links to the ordinary construction of entropy,
and general remarks about the dynamics of metrics.

2 Admissible metrics

We consider various metrics and semimetrics on a measure space (X, 2, u).
In what follows, it is assumed to be a standard space with continuous measure
1 and o-algebra 2 of mod 0 classes of measurable sets, i.e., a Lebesgue space
with continuous measure in the sense of Rokhlin (see [?]). The space X x X
is endowed with the o-algebra A x A and the measure p x p.

We define a class of (semi)metrics on a measure space, which plays an
important role in what follows.

Definition 1. A measurable function p : X x X — R is called an admissible
(semi)metric if

1) p is a (semi)metric in the ordinary sense on a subset X' C X of full
measure (uX' = 1), i.e., p(x,y) > 0, p(z,y) = p(y,z), p(z,y) + p(y, 2) =
p(x, z) for all triples (z,y,2) € X' x X' x X', (ux p){(z,z),x € X'} =0,
and

/X /X p(@, y)dp(z)du(y) < oo.

In order to formulate the next condition, observe that if p satisfies Con-
dition 1), then the partition 1, of the space X into the classes of points
Cr ={y:plx,y) =0}, z € X, is measurable. Hence we have a well-defined
quotient space X, = X /v, endowed with the quotient metric denoted by the
same letter p and the quotient measure jiy, = p,. For the quotient space
(X,, p, ), Condition 1) is still satisfied.

2) The (completion of the) metric space (X, p) (if p is a metric) or (X,, p)
(if p on X is a semimetric) is a Polish (= metric, separable, complete) space
with a Borel probability measure v (respectively, 1, ).

Following the measure-theoretic tradition, we must identify (semi)metrics
(and hence the corresponding spaces) if they coincide almost everywhere as
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measurable functions on the space (X x X, u x u). Of course, a (semi)metric
that coincides almost everywhere with an admissible (semi)metric is admis-
sible.

Condition 2) means that the o-algebra of Borel sets in the metric space
(X, p) (or (X,,p) in the case of a semimetric) is dense in the o-algebra 2 of
all measurable sets and, therefore, the measure p (respectively, y,) is a Borel
probability measure. It is obvious from the definition that a semimetric p is
admissible if and only if the corresponding metric in the quotient space X,
is admissible.

An equivalent definition of an admissible metric is as follows: almost
every pair of points can be separated by balls of positive measure, or, in
other words, the o-subalgebra generated by the open balls mod0 separates
points of the space.

One can also formulate the admissibility condition in terms of the notion
of a pure function from our paper [?]:

Lemma 1. A metric p is admissible if and only if it satisfies Condition 1)
and, regarded as a function of two variables, is pure in the sense of [?]; the
latter means that for p x p-almost all pairs of points (x,y), we have

iz p(z,2) # ply, 2)} > 0.1

If p is a semimetric, then this condition must hold for the metric p on the
quotient space (X,, p, 1p).

Indeed, the purity condition implies that the o-algebra of sets generated
by the balls separates points and hence is dense in the o-algebra (X, 2, p);
this also implies the separability. The converse immediately follows from the
definition of an admissible metric.

It is well known (see [?]) that if (X, p) is a Polish space, then every
nondegenerate Borel probability measure p on X turns (X, p) into a Lebesgue
space. In other words, the metric p on a Polish space (X, p) endowed with a
Borel probability measure p is an admissible metric on the space (X, u).

As in other our papers, in the definition of an admissible metric we re-
verse the tradition and consider various metrics and semimetrics on a fixed
measure space rather than various measures on a given metric space. Recall
that triples (X, p, i), consisting of a metric space endowed with a measure,

'In other words, almost every point is uniquely determined by the collection of distances
from this point to all points of some set of full measure (which may depend on the point).



in M. Gromov’s book [?] were called mm-spaces, and in the paper [?], metric
triples or Gromov triples.

It is useful to regard admissible metrics as densities of some finite mea-
sures equivalent to the measure X p on X x X:

dM,.,, = p(z, y)du(x)dp(y).

If we set [y p(@,y)du(z)dpu(y) = 1, which can be done by normalizing
the metric, then the new measure is also a probability measure. Observe the
following important property of admissible metrics implied by this interpre-
tation.

Theorem 1. For almost every point x € X, there is a uniquely defined
mod 0 conditional measure pu* on X, which is given by the formula du*(A) =
Jap(z,y)du(y) for every measurable set A C X. The family of measures
{u*;x € X} satisfies the condition

H(A) = /X 1 (A)dp(z).

The metric p, regarded as a metric on the measure space (X, u*), is admis-
sible.

Proof. Consider the new measure M, , on the space X x X and the mea-
surable partition into the classes of points C* = {(x,*)} C X x X, and use
the classical theorem on the existence of conditional measures (see, e.g., [?]),
which implies the desired formula and the uniqueness mod0 of the family of
conditional measures. Now consider the space (X, p,u*) for a fixed z; the
metric p on this space is admissible since the admissibility of a metric is
obviously preserved under replacing a measure with an equivalent one. [

The conditional measure u*(A) can be interpreted as the “average dis-
tance,” or the conditional expectation of the distance from the set A to the
point z.

In these terms, the condition that the metric, regarded as a function of
two variables, is pure means that the conditional expectations do not coincide
mod 0 for almost all pairs of points.

Now we can give a convenient criterion of admissibility.



Proposition 1. A measurable function p(-,-) satisfying Condition 1) of Def-
inition 1 is admissible if and only if the following nondegeneracy condition
holds:

for p-almost all points x, the measure of any ball of positive radius cen-
tered at x is positive: ply : p(x,y) < e} > 0 for every e > 0, or, equivalently,

([0, ¢]) > 0
for almost all x and any positive €.

Proof. The fact that an admissible metric satisfies the condition in question
was observed above. Now assume that this condition is satisfied. We must
prove that the space (X, p) (if p is a metric) or the quotient space X, (if p is
a semimetric) is separable. It suffices to consider the case of a metric.

The condition stated in the proposition implies that for every e there
exists 0 = d(¢e) with lim. 0 d(e) = 0 such that some set of measure > 1 — 0
contains a finite e-net. But this means exactly that the space is separable
and the measure is concentrated on a o-compact set. O

Several examples. 1. An important example is the following class of
semimetrics, which was in fact intensively used in entropy theory. Every
partition £ of a space (X, p1) into finitely or countably many measurable sets
gives rise to a semimetric:

Pe(T,Y) = O(e(a) £ w))

where £(2) is the element of £ that contains z. In this case, X, is a finite or
countable metric space. Such (finite) semimetrics are called cuts, and their
linear combinations are called cut semimetrics (in the terminology of [?]). Tt
is easy to see that cut (semi)metrics are admissible.

2. The very important metric defined by the formula p(x,y) = const for
x # y determines a discrete uncountable space. We will call it the constant
metric. The constant metric on a space with continuous measure is not ad-
massible. In this case, the o-algebra generated by the open sets is trivial and
does not separate points of the space, i.e., a point is not determined by the
collection of distances to the other points.

3. The condition defining an admissible metric can be strengthened by
requiring, in condition 1), that

/X /X p(z, y)Pdu(z)du(y) < oo
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for p > 1; in this case, we say that the metric is p-admissible. Let us say
that co-admissible metrics (semimetrics) are bounded; this class of admissible
metrics will be most useful in what follows.

4. In combinatorial examples, it often suffices to consider metrics with
which the space is compact or precompact (or, in the case of a semimetric,
quasi-compact). For example, adic transformations [?, ?] act in the space of
infinite paths of an N-graded graph, which is a totally disconnected compact
space.

The set of admissible metrics on a Lebesgue space (X, 1) with continuous
measure is a convex cone R(X, ) = R with respect to the operation of tak-
ing a linear combination of metrics with nonnegative coefficients. This cone
is a canonical object (by the uniqueness of a Lebesgue space up to isomor-
phism) and plays a role similar to the role of the simplex of Borel probability
measures in topological dynamics. In many cases, it suffices to consider ad-
missible (semi)metrics that produce compact spaces (after completion), but
we do not exclude the case of a noncompact space. One may consider differ-
ent topologies on the cone R; the most natural of them is the weak topology,
in which an e-neighborhood of a metric p is the collection of metrics

{07 (0 w{(@,9) : Io(w,y) — 0. y)| <} > 1<},

The property of being an admissible metric is invariant under measure-
preserving transformations: if a metric p is admissible and a transformation
T of the space (X, u) preserves the measure yu, then the image p? of p,
defined by the formula p?(-,-) = p(T-,T"), is also admissible. Thus the
group of (classes of ) measure-preserving transformations acts on the cone R
in a natural way.

3 Average and maximal metrics

Let T' be a measure-preserving transformation (in what follows, it will be
an automorphism). When considering automorphisms or groups of auto-
morphisms in spaces with admissible semimetrics, it is natural to assume
that there exist an invariant set of full measure on which the (semi)metric is
admissible in the sense of our definition.

In addition to the notion of admissible (semi)metrics, we define the class
of T'-admissible metrics. The T-admissibility condition must be invariant, in
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the sense that if M is the class of T-admissible metrics, then
VM=A{p:plz,y) = pn(Vz,Vy), pr € M}

is the class of VTV ~!l-admissible metrics in the same sense. Among many
possible versions, we choose the class of admissible (semi)metrics for which
T is a Lipschitz transformation almost everywhere: there exists a positive
constant C' such that for (u x p)-almost all pairs (x,y), the condition

p(Tz, Ty) < Cp(z,y)

holds; let us say that metrics from this class are Lipschitz T-admissible
(semi)metrics.

The choice of an appropriate class depends on the problem under con-
sideration and the properties of the automorphism. For example, in the
case of adic automorphisms, it is most convenient to consider the class of
Lipschitz metrics. This class can also be defined for countable groups of
automorphisms.

For an arbitrary admissible semimetric p, we have defined the partition
1, of the space (X, ). In the same way, given an arbitrary automorphism 7'
of the space (X, u), we consider the T-invariant partition 1&5 = Vo T,
We say that the semimetric p is generating for T if z/zf is the partition into
separate points mod0 (which we denote by ¢). If p is the metric generated
by a finite partition, then this is the ordinary definition of a generator (see
7).

Let us define the average metric and the sup-metric for a given automor-
phism.

Definition 2. Let T' be an automorphism of a space (X, ), and let p be an
admissible metric.
The average metric pt is defined by the formula

—_

R 1
0

3

il

The sup-metric is defined by the formula

pn(z,y) = sup p(T"z, T"y).

0<k<n



The following important result is a direct corollary of the pointwise er-
godic theorem.

Theorem 2. For any automorphism T and any admissible (semi)metric p,
the limit of the sequence of average (semi)metrics pl, which we denote by p,
exists almost everywhere in the space (X x X, p X p):

p(x,y) = lim — Zp b, T y)

n—oo M,

p 1s a metric if and only if p is a metric or a generating semimetric.

The existence of the limit follows from the fact that the integral [, [, p(z,y)dpu(x)du(y)
is finite and the ergodic theorem.

Definition 3. The metric

(the limit exists p-a.e.) is called the average, or the I*-average of p with
respect to the automorphism T'.
The metric

p'(x,y) = sup p(T*x, T x)
k>0

15 called the limiting sup-metric of p with respect to T'.

It is clear that p7 and p’ satisfy all conditions of the definition of a
(semi)metric; in what follows, we will consider only admissible metrics or
generating semimetrics p, so that p7, and p? for an ergodic automorphism
T, are metrics. The superscript T' in the notation for the average and sup-
metrics will be omitted if the automorphism is clear from the context. It is
also obvious that p < p. However, the metrics p, p may not be admissible
even if the (semi)metric p is admissible.

In what follows, we will mainly consider the average metric p. In most
interesting cases, namely if T is weakly mixing, i.e., its spectrum in the
orthogonal complement to the space of constants is continuous, this metric
is constant and hence not admissible; the sup-metric may be constant even
for automorphisms with discrete spectrum. However, in all cases we will
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be interested not in the limiting metrics themselves, but in the asymptotic
behavior of the averages pl as n — oo. As we will see, automorphisms with
discrete spectrum stand apart, since for them the average metric is often
admissible.

It is clear that p is nothing else but the projection of the function p,
regarded as an element of the space L'(X x X, u X i), to the subspace of
(T x T')-invariant functions, i.e., the expectation of the metric p with respect
to the subspace of invariant functions on X x X. This space consists of
constants if and only if 7" has no nontrivial eigenfunctions (in other words,
T is weakly mixing). In this case, p is almost everywhere a constant, which
is equal to the average p-distance between the points of the space X. At
the same time, if T is not weakly mixing, then the spectrum of 7" contains a
discrete component and p may be a nonconstant T-invariant (semi)metric.
In this case, one may obtain bounds on p using Fourier analysis.

Here is an example of computing the average metric generated by the cut
semimetric in the case of a rotation of the circle.

Example. Let X = T' = R/Z, and let A\ € X be an irrational number.
Consider the semimetric p(x,y) = |xa(x) —xa(y)|, where x4 is the indicator
of a measurable set A C X; the metric p(z,y) is T-admissible in the sense of
our definition for the shift T by any irrational number A\. The corresponding
average metric is shift-invariant and looks as follows: p(x,y) = m[(A +
2)Apu(A+y)] = m[AA(A + x — y)]; it is obviously admissible.

4 Entropy and scaling entropy

4.1 The c-entropy of a measure in a metric space

Recall that the e-entropy of a compact metric space (X, p) is the function
e — H,(e) whose value is equal to the minimum number of points in an e-net

of (X, p).

Definition 4. The e-entropy of a measure space (X, ) with an admissible
metric p is the function

€ — Hyo(p) = inf{H(v) : ky(v, ) <e},

where v ranges over the set of all discrete measures with finite entropy and
k,(-,-) is the Kantorovich metric on the space of Borel probability measures
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on (X, p). The entropy of a discrete measure v =), c;0y, is defined in the
usual way: H(v) == ¢;Ing;.

For our purposes, it is more convenient to use in the above definition
another characteristic instead of H (), namely,

k
H;)’E(/JJ) = min{lnk CAX (X)) > 1 —¢, El{xz}'f X' C UVg(xZ)},
i=1

where V() is the e-ball centered at x; thus {1, za, ..., zx} is an e-net in X'
The finiteness of H' follows from the fact that a Borel probability measure
in a Polish space is concentrated, up to e, on a compact set; H' is more
convenient for computations than H.

In this paper, we use the following simple inequality.

Lemma 2. For every compact metric space (X, p) and every nondegenerate
Borel measure p, the following inequality holds:

Hp,(d+1)z—:(,u) < H/’),E (N)»

where d is the diameter of the space.

Proof. Assume that the diameter of the compact space does not exceed 1. As-
sume that the measure of a set X’ is greater than 1 —e and X’ C Ule Vo(z;).
Thus the points 1, ...,z form an e-net in X’. Consider the discrete mea-
sure v supported by the points z1,...,x, with charges v(x;) equal to the
measures p(V (x;)) of the corresponding balls (if two balls have a nonempty
intersection, then we distribute the measure of the intersection proportion-
ally between their centers). Choose an arbitrary point x., and set its charge
equal to 1 — u(X’). Now consider the Monge-Kantorovich transportation
problem with input measure 1 and output measure v. It is easy to see that
we have in fact determined an admissible plan W for this problem: the trans-
portation from a point x € X’ goes to the points x; for which z € V.(z;),
and the remaining part of the measure p on the set X \ X’ goes to the point
Too. It is easy to compute the cost of this plan; this gives a bound on the
Kantorovich distance between the measures v and pu:

ky(v,p) <e(l—e)+e < 2e.

On the other hand, we have H(v) <Ink = H (u). O
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4.2 Scaling sequence and scaling entropy

Let us define the notion of a scaling sequence for the entropy of an auto-
morphism. If an automorphism 7T is fixed, we omit the superscript in the
notation for the average entropy and white simply p,.

Definition 5. Let T' be an automorphism of a Lebesgue space (X, ) with a
T-invariant measure . By definition, the class of scaling sequences for the
automorphism T and a given (semi)metric p on X is the class, denoted by
H,(T), of increasing sequences of positive numbers {c,,,n € N} such that

H; H;
H,(T) = {{cn} 10 < liminfL(M) < limsupM < oo}
n—0o Cn n—o0 Cn
In many cases, the class of scaling sequences for a given metric p does not
depend on sufficiently small . In this case, it is obvious that all sequences
{cn} from H,(T') are equivalent.

Definition 6. Assume that for a given ergodic automorphism T of a space
(X, i) there exists a (semi)metric py such that the class of scaling sequences
for po is the mazximal one (i.e., for any other (semi)metric, sequences {c,}
from the corresponding class grow not faster than for p). In symbols, we
write this fact as

Hpo(T') = Sl;p Hy(T).

Then we say that H,,(T') is the class of scaling sequences for the automor-
phism T and the metric py is T-mazimal.

It seems that such a metric exists for every automorphism. If we have
chosen some T-maximal scaling sequence and the corresponding limit of en-
tropies does exist, then it is called the scaling entropy.

Conjecture 1. For every ergodic automorphism T, a generic T-admaissible
Lipschitz metric is T-maximal. In particular, for a K-automorphism (i.e.,
an automorphism with completely positive entropy), the scaling sequence is
equivalent to the sequence ¢, = h(T)n, where h(T') is the entropy of T, for
every Lipschitz metric.

A preparatory result in this direction was obtained in [?].

In this paper, we will prove that for an automorphism with purely discrete
spectrum and a T-admissible metric, the class H,(7") of scaling sequences is
the class of bounded sequences.
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5 Invariant metrics on groups and averages
of admissible metrics

5.1 Invariant metrics and discrete spectrum

Let us recall some known facts about ergodic automorphisms with discrete
spectrum. It obviously follows from the character theory of commutative
groups that the spectrum of a translation on a compact Abelian group is
discrete. By the classical von Neumann theorem, the converse is also true:
an ergodic automorphism with discrete spectrum is metrically isomorphic to
the translation 7" on a compact Abelian group G endowed with the Haar
measure m by an element whose powers form a dense subgroup:

r—Tr=x+4+¢g, Clng,neZ}=G

(we use the additive notation). Note that on a compact group G there are
many metrics that are invariant under the whole group of translations and
determine the standard group topology. We will need the following assertion
(which is, possibly, partially known).

Proposition 2. The spectrum of an ergodic automorphism T of a measure
space (X, p) for which there exists a T-invariant admissible semimetric p
contains a discrete component. Moreover, if p is a metric, then the spectrum
of T 1is discrete and, consequently, T is isomorphic to a translation on a
compact Abelian group.

Proof. Since an admissible (semi)metric lies in the space L'(X x X, u x p),
the tensor square of the operator Ur, which corresponds to the automorphism
T x T, has nonconstant eigenfunctions. This can happen only if the spectrum
of the unitary operator Ur contains a discrete component, and the first claim
is proved. In other words, T is an extension of some quotient automorphism
with discrete spectrum, which may coincide with 7" itself. This means that
T is a skew product over a base with discrete spectrum. Denote by H C
L*(X, 1) the subspace spanned by all eigenfunctions of Ur. All invariant
functions of the operator Ur ® Ur belong to the tensor square H ® H; hence
these functions, regarded as functions of two variables, do not change when
the argument ranges over a fiber of the skew product. But if these fibers are
not single point sets, it follows that the metric does not distinguish points
in fibers and hence is a semimetric. Thus if p is a metric, then each fiber
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necessarily consists of a single point, the spectrum of T is purely discrete,
and, by the ergodicity, 1" is isomorphic to a translation on a group. O

Let us supplement this proof with an important refinement. Assume that
the automorphism 7" has an orbit that is everywhere dense with respect to
the metric p, i.e., T is topologically transitive (though we do not assume
that it is a priori continuous). It is clear from above that this condition
follows in fact from the existence of an invariant metric. Since the metric is
admissible, we may assume without loss of generality that (X, p) is a Polish
space. Consider the dense orbit O = {T"z, n € Z} of some point z. The
restriction of p to O is a translation-invariant metric on the group Z, and all
translations are isometries. Hence the completion of O is an Abelian group
to which we can extend the translations and their limits. Therefore X is
a Polish monothetic group.? Obviously, the measure p is invariant under
the action of the closures of powers of T', i.e., it is an invariant probability
measure on the whole group. Hence, by Weil’s theorem, X is a compact
commutative group and 7' is the translation by an element whose powers are
everywhere dense.

5.2 Admissible invariant metrics

As we have already observed, for weakly mixing automorphisms, the aver-
age of every metric is constant, since there are no other invariant metrics.
However, for automorphims whose spectra contain a discrete component or
are purely discrete, there are many invariant (semi)metrics. Hence, in order
to study such automorphisms, we should investigate the question when the
average metric for an automorphism 7" with a discrete spectrum is admissible.

Given a translation-invariant metric p on a compact commutative group
with the Haar measure, consider the function ¢,(r) = p(z,z+7r) = p(0,7). In
the example from Section 3, it looked as ¢(r) = p(z, x+1) = m[AA(A+71)].

One can easily write down necessary and sufficient algebraic conditions
on a measurable function ¢ that guarantee that it can be written as ¢, for a
measurable invariant metrics:

¢(0) =0, ¢(x) = 0, o(—x) = d(x), ¢(x) + ¢(y) = ol +y).

2 A topological group that contains a dense infinite cyclic subgroup is called monothetic.
Note that there are many non-locally compact monothetic groups on which there is an
invariant metric, but there is no invariant measure. A recent example is the Urysohn
universal space regarded as a commutative group, see [?].
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We will not need these conditions; the only important fact is that the
admissibility condition from Lemma 1 can easily be reformulated in terms of
this function.

Theorem 3. An invariant measurable (semi)metric on a commutative com-
pact group (satisfying Condition 1 from Definition 1) is admissible if and
only if any of the following conditions holds.

1. The corresponding function ¢, is measurable, and

p{z 2 dp(2) # Gplg +2)} > 0

for almost all g.
2.

essinfyepo 9p(9) =0,
where V' is an arbitrary neighborhood of the zero of the group in the standard
topology.

Proof. Condition 1 is exactly equivalent to the condition of Lemma 1. It is
useful to give a direct proof that this condition is necessary. Assume that it is
not satisfied, i.e., for all elements g from some set of positive Haar measure,
¢p(2) = ¢,(g + z) for almost all z. Therefore, the measurable function ¢
is constant on cosets of the subgroup generated by g. However, every set
of positive Haar measure in a nondiscrete Abelian compact group on which
there is an ergodic translation contains an element g that generates a dense
cyclic subgroup. Then, since the function ¢, is measurable, it follows that it
is constant almost everywhere. But if the function ¢, is constant, then the
metric p is also constant and hence not admissible.

Let us prove that Condition 2 of the theorem is necessary. Consider the
function ¢, for an invariant admissible metric p. Assume that ¢ = essinf from
Condition 2 is positive; then, using the invariance of p, we can construct a
continuum of points lying at a fixed positive p-distance greater than 6, which
contradicts the admissibility. For the same reason, the set of values of ¢,
is dense in some neighborhood of the zero. The fact that Condition 2 is
sufficient follows from Proposition 1. O

The last assertion implies the following corollary.

Corollary 1. For every admissible invariant metric there exists a sequence
of group elements that converges to zero both in the standard topology and
with respect to the (semi)metric.
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5.3 Admissibility of the average metric

Now we can explicitly write down the condition that guarantees the admis-
sibility of the average, i.e., invariant, metric in terms of the original metric.
Consider an arbitrary measurable (non necessarily admissible) metric p on a
compact commutative group G and an ergodic translation 7" by an element
g. Let us write down an expression for the average metric:

. R
pl(zy) = lim = p(z+kg,y+kg) = /Gp(g + 2,9+ y)dm(g)
k=0

n—oo N

- /Gp(z, z+y —x)dm(z)

(we have used the fact that the measure m is invariant). Hence the function
¢(r), regarded as a function of r, is measurable and has the form

o) = [ plez)dm(z) = pla) y—o =

Obviously, p is a measurable function on the group G x G. Now we can
check the admissibility condition for the average metric p.

Definition 7. We say that an admissible metric p on a compact commutative
group G with Haar measure m is semicontinuous at zero in mean if

r—0

lim inf/ p(x,x 4+ r)dm(x) = 0;
G

we say that it is semicontinuous at zero in measure if the following condition
holds (in which “meas” means convergence in measure):
lim iglf(meas)p(a:, x+71)=0.
r—

Note that the second condition follows from the first one, and that both
conditions are stated in purely group terms, i.e., do not depend on the par-
ticular translation 7.

Thus we have the following admissibility criterion for the average metric.

Proposition 3. The average metric p* for an ergodic translation T on
a compact commutative group G 1is admissible if and only if the original
(semi)metric p is admissible and semicontinuous at zero in mean.
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Proof. The “if” part is proved above; the “only if” part follows from the
equality ¢,(r) = [, p(z,z +r)dm(x) and the previous proposition. ]

Now we are ready to formulate and prove the following important fact.

Theorem 4. For every bounded admissible metric on a compact commutative
group G, the average metric is admissible.

Proof. Assume that the metric p is not semicontinuous at zero and there
exists a positive number ¢ > 0 such that

lim iélf/ plx,z +r)dm(z) > c.
T G

Assume that the metric is normalized so that the diameter of the space
X is equal to 1. Then it follows from our assumption that for sufficiently
small (i.e., belonging to a small neighborhood of the zero in the group G)
r there exists a (depending on r) subset in X of measure «, which does
not depend on r and is greater than §, on which p(z,z +r) > 5. Indeed,
l-a+(1—a)s> [,p(x,x+r)dm(z) > c. But since the group is compact,
there is a set of positive measure for all points x of which the inequality
p(z,r + 1) > 5 holds for all sufficiently small r from some set of positive
measure. This in turn contradicts the admissibility of the metric p in the
formulation of Proposition 1: arbitrarily small values ¢(r) for small r cannot
interlace with values greater than ¢ by the triangle inequality. Thus we have

proved that p is semicontinuous. O]

Question. Does there exist an unbounded admissible metric p on the circle
St = R/Z for which the average metric p is not admissible? Does there exist
an unbounded p-admissible metric, with 1 < p < 0o, on a compact Abelian
group for which the average metric is not admissible?3

3While the paper was in press, F. Petrov and P. Zatitskiy proved that the average
of any (in particular, unbounded) admissible metric on the circle is admissible. Thus
the additional assumptions that the average metric is admissible in Proposition 2 and
Theorem 5 are superfluous.
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6 Criterion for the discreteness and continu-
ity of the spectrum in terms of the scaling
entropy

Now we formulate our main result.

Theorem 5. For an ergodic automorphism with discrete spectrum realized
as a translation on a compact commutative group with an arbitrary bounded
admissible metric, or, more generally, with a metric for which the average
metric is admissible, the scaling sequence is bounded.

Proof. Since the set B. = ¢~ !([0,¢]) is, by definition, the ball of radius &
centered at 0 € G in the metric p, which is admissible by assumption, it
follows that mB. > 0, since the metric is nondegenerate (see the definition
of an admissible metric). But the sum B. + B, like the sum A 4+ A for
every set A of positive Haar measure in a locally compact group, contains
a neighborhood V' of the zero in the standard topology (see, e.g., [?]). It
follows from the triangle inequality that B, + B, C Bs., so that V C Bs..
Since € > 0 is arbitrary, we see that the topology on G determined by the
average metric p coincides with the standard topology, i.e., in the topology
determined by p, the group G is compact and contains a finite e-net for every
E.
The pointwise a.e. convergence

n—1
.1 .
lim — > p(x + kg,y + kg) = pr(x,y),

n—oo N
k=0

which follows from the pointwise ergodic theorem, implies that the number
of points in an e-net for (G, p,) tends to the number of points in an e-net for
(G, p). This means that the sequence H,, .(X) converges to H;.(G). From
the inequalities of Lemma 3 we see that the sequence H,, .(u) is bounded as
n — oo, and thus the scaling sequence for the automorphism 7', which acts
on the metric triple (G, p, m), is bounded. O

Combining this theorem with the previous one, we obtain the following
result.

Theorem 6. An ergodic automorphism T has a discrete spectrum if and
only if the scaling sequence for T is bounded for some, and hence for every,
bounded admissible metric.
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Proof. Above we have proved that if an automorphism has a discrete spec-
trum and the average metric is admissible, then the scaling sequence is
bounded. But the average metric is always admissible provided that the
original metric is bounded and admissible.

Assume that the scaling sequence is bounded for an automorphism 7" and
an admissible metric p. Recall that the average metric is indeed a metric (and
not a semimetric). Consequently, the space (X, p) is precompact, and hence
the metric p is admissible. Since it is T-invariant, it follows from Theorem 1
that T" has a purely discrete spectrum. O

Combining the last theorems with the previous results yields a criterion
for the discreteness and continuity of the spectrum in terms of the automor-
phism 7" and an arbitrary admissible metric.

Theorem 7. Let T' be an ergodic automorphism, and let p be a bounded ad-
missible (semi)metric. If the corresponding scaling sequence is not bounded,
then the spectrum of T contains a continuous component. If the scaling se-
quence is not bounded for every admissible (semi)metric, then the spectrum
of T' is purely continuous.

In the next section, we will show how one could apply this criterion.

7 Comparison with the traditional approach,
the Pascal automorphism, and concluding
remarks

7.1 Supremum metrics

The entropy theory of dynamical systems, developed mainly by Kolmogorov,
Sinai, and Rokhlin, essentially uses the tools of the theory of measurable par-
titions. In Sinai’s definition, the entropy appears as an asymptotic invariant
of the dynamics of finite partitions under the automorphism:

-1
H(ViZy T™)

lim
n

= (T, &).

As a result of this theory, the study of the class of automorphisms with
completely positive entropy was differentiated into a separate field, whose
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methods do not apply to automorphisms with zero entropy. For example,
one cannot obtain a new invariant for such automorphisms following the
same scheme. This can be seen from the following simple fact.

Proposition 4. For every transformation T and every increasing sequence
of positive numbers {c,, n € N} satisfying the condition lim,> = 0, there
exists a generating partition & such that
n ik
i VAL M
n Cn

This means that the maximum growth of the entropy H(\/}_, T%¢) either
is linear (for automorphisms with positive entropy), or, in the case it is
sublinear, it is arbitrarily close to linear for every automorphism. Thus we
obtain no new information.

The metric corresponding to the supremum (product) &, = \/,_, T*¢ of
partitions is the supremum of the shifted metrics: pX(z,y) = supgej<, p(T*x, TFy).
Hence, following our plan, we can use the e-entropy of the metric pr(x,y)
instead of the entropy of the partition &, itself. Then, using the definitions
from Section 4, for a given metric p we can introduce an analog of the function
H,(T) with the metric p, replaced by p:

H,(T) = {{cn} 10 < limianﬁ"’—s(/l) < limsupHﬁ"’—a(M) < oo}

In this way we define the class of sup-scaling sequences ¢, for a given
metric p. This also allows us to extend the classical entropy theory following
the above scheme. Though it is somewhat easier to deal with the sup-metric
than with the average metric, the former is much less useful than the latter.
The metric p more often happens to be constant for an automorphism with
discrete spectrum, while, as we have seen, p is always admissible if the original
metric is bounded. Let us illustrate the important difference between the
operations of taking the average and supremum metrics by the following
example.

Example. Let T be an irrational rotation of the unit circle, and let p be the
semimetric corresponding to a generating two-block partition (i.e., a partition
into two sets of positive measure); the semimetric p is T-admissible, hence, as
we have seen, p is an invariant admissible metric. At the same time, p is the
constant metric. This means that the scaling sequence ¢,, is bounded, but ¢,
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(the scaling sequence for the sup-metric) is not; namely, we have ¢, ~ Inn.
Thus the difference manifests itself even in the case of a discrete spectrum.

Does in make sense to use intermediate averages, e.g., the [P-averages

n—1

1
lim {— E p(TFx, TFy)P
n
k=0

3=

:ﬁp(.%,y)

for p € (1,00), instead of ['? Apparently, they do not lead to any new
effects: these metrics behave in the same way as the ['-average metric. For
instance, in the above example, the p-average of the metric determined by a
two-block partition of the unit circle is p*(x,y) = {m[AA(A+x — y)]}% For
p = oo (i.e., the sup-metric), the picture is completely different, as in other
interpolation theories. Thus in entropy theory, the use of average metrics
substantially supplements the classical considerations.

7.2 Application of the discreteness criterion

As noted above, the problem of determining whether or not the spectrum
of an automorphism is discrete, is not at all simple. Theorems 5-7 provide
convenient nonspectral criteria for checking that the spectrum is not purely
discrete; for this, one should bound the entropy from below for one admis-
sible metric satisfying the conditions of Section 2 by a sequence that grows
arbitrarily slow with n.

One of the intriguing examples of automorphisms for which the discrete-
ness of the spectrum has not been neither proved nor disproved since the
1980s is the Pascal automorphism. It was introduced by the author in 1980
(see [?, ?7]) as an example of an adic transformation, and is defined as a nat-
ural transformation in the space of paths in the Pascal graph regarded as a
Bratteli-Vershik diagram with lexicographic ordering of paths. One can give
a short combinatorial description of this transformation by encoding these
paths with sequences of zeros and ones and identifying the space of paths
with the compact space X = {0;1}*° = Z,. Then the Pascal automorphism
is defined by the formula

T{1°071 % *} = {07170 % +});

here i > 0, j > 0, and the domain of 7" and 7! is the whole X except for
the countable set of sequences having finitely many zeros or ones. The most
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natural metric on X is the 2-adic metric p({zx}, {yx}) = 27", where n is
the first digit with xp # yg. This metric is admissible, and the Pascal au-
tomorphism satisfies the Lipschitz condition almost everywhere. The orbits
of this automorphism coincide with the orbits of the action of the infinite
symmetric group. The Bernoulli measures are T-invariant. The spectrum of
the Pascal transformation was studied in the papers [?, 7, 7, ?], where some
interesting properties were established (e.g., it was proved that T is loosely
Bernoulli, the complexity of T" was computed, etc.), but the question about
the type of the spectrum remains open. In [?, ?] it was conjectured that the
study of the behavior of scaling sequences may turn to be useful. The corre-
sponding plan was carried out in [?], but in that paper a logarithmic lower
bound was obtained on the scaling sequence for the sup-metric, and not for
the average metric; this is not sufficient for the conclusion that the spectrum
is not discrete. Nevertheless, one may hope that the combinatorics developed
in [?] will help to prove that the scaling sequence is unbounded also for the
e-entropy of the average metric, which, by our theorem, would imply that
the spectrum is not discrete. There are many adic transformations similar to
the Pascal automorphism for which the same question is also of great inter-
est. For example, if we replace the Pascal graph with its multidimensional
analog or the Young graph, we will obtain automorphisms that supposedly
have continuous spectra. As observed above, in order to prove that there are
no nontrivial eigenfunctions, one should obtain a growing lower bound on
the scaling sequence not for one, but for all (or for some representative set
of) bounded admissible (semi)metrics.

7.3 The dynamics of metrics

Recall that the general approach that consists in studying the asymptotic
behavior of metrics is not exhausted by considering the asymptotics of the
g-entropy of the average or supremum metric, i.e., does not reduce to study-
ing the growth of scaling sequences; this is only its simplest version. In fact,
we consider the original measure space (X, %2, 1) with an action of an auto-
morphism 7" (or a group of automorphisms G), fix an appropriate metric p,
and study the sequence of metric triples

[y

1
(X, pno 1), where py(2,y) = — > p(T"w, T'y).
0

3

i
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The conjecture is that, for a fixed measure and a fixed automorphism
(or group of automorphisms), the asymptotic properties of this sequence of
metric triples do not depend (or weakly depend) on the choice of an individual
admissible metric from a wide class. These properties include not only the
scaling entropy, but also more complicated characteristics of the sequence,
say the mutual properties of several consecutive metric triples. Since the
classification of metric triples up to measure-preserving isometry is known
(see [?, ?]), one may hope to apply it to this problem. In this field there
are many traditional and nontraditional questions. For example, what is the
distribution of the fluctuations of the sequence of average metrics, regarded as
functions of two variables on (X x X, i x 1), as they converge to the constant
metric (for weakly mixing transformations, e.g., K-automorphisms)? What
can be said about the asymptotic properties of neighboring pairs of metric
triples (with indices n and n + 1)? Etc.

In conclusion, it is worth mentioning that the concept of scaling entropy
appeared in connection with the classification of filtrations in [?] and was used
in [?]. In terms of the present paper, the scaling entropy for filtrations, i.e.,
decreasing sequences of measurable partitions or g-algebras, is the scaling
entropy for an action of a locally finite group such as »_ 7Z/2 instead of an
action of Z considered here. The definitions we have given for an action of
Z essentially coincide with those given in [?] for locally finite groups.
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